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Nonparametric Bounds on Welfare Measures:
A New Tool for Nonmarket Valuation

In a series of influential papers, Varian (1982, 1985) extended and refined the

work of Afriat (1967, 1976), Samuelson (1948), Houthakker (1950), and Richter (1966),

among others, to form the basis for a series of empirically testable hypotheses known

generally as the theory of revealed preference. This work demonstrates how observed

demand behavior can be used to recover information about an individual’s preference

ordering without resorting to parametric assumptions regarding the form of the

consumer’s underlying demand or utility function. Revealed preference theory has been

influential in developing empirical tests of utility theory (Varian (1982, 1983)),

investigating issues of changes in consumer’s tastes (Chalfant and Alston (1988)), testing

whether firms behave as profit maximizers (Varian (1984)), as well as a variety of other

applications. The general framework has also been extended to account for stochastic

elements (Varian (1985)), Sakong and Hayes (1993)). The ability to characterize

information about consumer’s preferences without imposing a specific functional form

for utility or demand is intuitively appealing and has provided a rich base for empirical

research in consumer and firm theory.

The issue of parametric specification has been of widespread concern in

nonmarket valuation. Most nonmarket valuation methods require the analyst to specify a

particular functional form for an estimating equation.  It may be a demand, bid, or utility

function (or hedonic price function). Although the analyst may perform goodness of fit

tests or use other tools to choose among functional forms, there remains a great deal of

arbitrariness and researcher judgment in the choice of functional form.
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In the travel cost model, it has long been understood that the choice of functional

form for either the demand function or the indirect utility function can have significant

consequences for the magnitude of the resulting welfare estimates (Ziemer, Musser, and

Hill (1980), Kling (1989), Ozuna, Jones, and Capps (1993)). The same has been found in

random utility models of recreation demand with respect to the choice of functional form

and the assumed error structure (Morey, Rowe, and Watson (1993), Kling and Thomson

(1996), Herriges and Kling (1997)). Hedonic housing models used to value air quality are

subject to similar concerns (Cropper, Deck, and McConnell (1989)). Finally, the

contingent valuation literature has found that changes in either the error structure or the

assumed bid function's form can yield large differences in valuation estimates from

discrete choice formats (Hanemann (1994)).

Given the empirically observed sensitivity of welfare estimates to functional

form, it is natural to consider whether nonparametric methods such as those refined and

developed by Varian might be of value in nonmarket welfare analysis.  In this research,

we first adapt Varian’s work on bounding welfare measures to the task of valuing

nonmarket commodities.  We show how Varian's bounds can be constructed with a single

price/quantity combination for each individual in the sample. Unfortunately, these bounds

may not be very tight. To remedy this, we develop narrower bounds that can be derived if

the analyst has additional data on optimal market bundles at new prices.  To derive these

bounds, we show how the theoretical relationship between compensating variation and

equivalent variation can be exploited to further tighten the bounds. The exciting aspect of
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this work is that these bounds are derived using only quantity and price information and

without any parametric assumption on demand or utility.1

The nonparametric bounds thus developed will only prove useful if they are fairly

tight. To investigate their potential empirical value, we conduct a Monte Carlo

experiment. In this experiment, the nonparametric lower and upper bounds are compared

to simulated “true” values of WTP using simulated data sets.  Additionally, a natural

comparison is to consider how well the bounds perform in estimating welfare relative to

traditional parametric approaches.  To consider this, traditional travel cost type models

are estimated on the simulated data sets and point estimates and confidence intervals are

constructed from these models which are then compared to the nonparametric bounds.

In the recreation demand literature, Boxall, Adamowicz, and Tomasi, (1996) and

Larson, Klotz, and Chien (1991) have used Varian’s methodology to test for consistency

between contingent valuation (stated preference) models and recreation demand (revealed

preference) models.  Here, we use and extend the methodology to actually provide

information on the magnitude of welfare changes for nonmarket goods.

Using Observed Data to Compute Bounds on the WTP for Price Changes

Bounds Based on One Data Point for Each Individual

     To begin, assume that the analyst has a single price/quantity observation for each

sample observation.  Varian’s seminal work demonstrates how bounds on each

                                               
1 Note, however, that because the bounds rely upon the theoretical relationship

between compensating and equivalent variation, and because this relationship itself
reverses if the good is inferior, the analyst must assume that the good is normal (or
inferior and make the appropriate changes in the derivations). This then is a caveat on the
bounds and their nonparametric nature. We comment further on this issue in the
theoretical section of the paper.
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individual's compensating variation for a proposed price change can be constructed.

Consider a simple budget constraint for an individual choosing between recreation visits

(v) and a composite commodity (z).  In Figure 1, X v z0 0 0≡ ( , )  denotes the chosen

commodity bundle at the initial price vector (denoted P0 in the figure) and M is the

consumer’s income.  Let Χ ≡ ∈ +v z v z R, : ,b gm r  be the set of all possible bundles.

In order to calculate the exact compensating variation (CV) associated with a

particular price change, we would need to determine the amount of money the individual

is willing to give up to receive the price change. Formally,

CV e P U e P U
M e P U

N

N

= −
= −

( , ) ( , )
( , ),

0 0 0

0

(1)

where e P U,b g denotes the individual’s expenditure function, U U v z0 0 0≡ ,b g denotes the

level of utility at X0 , and P0  and PN  are the prices before and after the price change.

The first term e P U0 0,b g is exactly the initial income of the consumer (M). If we can

provide bounds on the second term, e P UN , 0b g, we can also bound CV. Thus, we seek to

compute lower and upper bounds on the expenditure that would be necessary for the

consumer after the price change to obtain the original utility level.

We now ask the question: What is the most amount of income we can take away

from or give to this individual after a price change to be sure that he or she can attain the

original level of utility? Suppose, as depicted in Figure 1, we are interested in the CV for

a price decrease from P0 to PN  where P0 represents the budget constraint at the initial

prices and PN  represents the new budget constraint.
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 We know the individual can at least attain his initial level of utility if he can

afford his initial bundle. Thus, that amount of expenditure is the most he would ever need

after the price change. In Figure 1, this upper-bound on expenditure is:

M P XCV
O

N O= . (2)

Graphically, MCV
O  can be identified as the vertical intercept of a straight line parallel to

PN  that intersects X0 (the dashed line through X0 in Figure 1).  If the consumer views v

and z as perfect complements, MCV
O  is exactly equal to the expenditure necessary to

attain the original level of utility at the new prices.  However, if there is at least some

substitution possible between v and z, the consumer could attain his initial utility level

with less income than P XN 0 , thus MCV
O  represents an upper bound on necessary

expenditure.

Following this logic, the least expenditure that could possibly be required to keep

the consumer at the original level of utility after the price change would occur if the

goods were perfect substitutes (i.e., straight line indifference curves). In this case, income

can be taken away from or given to the consumer until he would pick the corner solution

that minimizes expenditures. Graphically, the lower bound on expenditure can be

identified by drawing a straight line parallel to PN  that intersects the vertical intercept of

P0, denoted M CV
O  in Figure 1.

 Combining the upper and lower bounds on expenditure, we get bounds on CV:

B M M M MCV
O

CV
O

CV
O≡ − −,n s . (3)

The superscript on the LHS and the expenditure bounds reflects the fact that these bounds

are constructed knowing only a single data point (the original commodity bundle). Note
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that the lower bound on expenditures determines the upper bound on CV and vice versa.

The proximity of CV to the bounds depends upon the degree of substitutability between

the goods. If the goods are perfect substitutes, CV will exactly equal the upper bound.

Conversely, if the goods are perfect complements, CV is exactly the lower bound.

Although it is clear that this procedure can be used to compute bounds on

individual CV, such bounds will only be of interest if they are fairly narrow.  The next

section describes how the addition of a second data point (price/quantity observation) can

narrow these bounds.

Bounds Based on Two Data Points for Each Individual

     In this section, we demonstrate how Varian’s bounds can be improved upon with

additional data and by appealing to the properties of Hicksian welfare measures.  Suppose

that in addition to knowing the optimal bundle chosen by the consumer at the original

prices, the analyst also knows the optimal bundle chosen by the individual at the new

prices.  A second price/quantity vector might be obtained for an actual sample in at least

two different ways.  First, analysts might collect data on use over two seasons or time

periods. In this case, the analyst would have two consumption bundles at two sets of

prices based on revealed preference data.  Alternatively, contingent behavior (stated

preference) data could be combined with the revealed preference data to generate the

second data point. In fact, a series of price/quantity combinations could be collected in a

survey where respondents are asked how many visits they would take under a range of

different prices of access to the good.

Regardless of the source of this second data point, the question of interest is: does

the addition of this information help us tighten the bounds on CV for a price change from
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P0  to PN ?  The answer is yes, but the link is indirect and requires us to consider the

equivalent variation (EV) for the price decrease. In particular, suppose that the consumer

reveals to the researcher that XN is (or would be) his chosen commodity bundle at prices

PN .  This information allows us to compute bounds on the EV for the price change from

P0 to PN .  By appealing to the fact that the equivalent variation for a price decrease for a

normal good is greater than or equal to the compensating variation for the same price

decrease, we can potentially tighten the upper bound on CV by using the upper bound on

EV in its place.

Equivalent variation for the price decrease is defined as

EV e P U e P U
e P U M

N N N

N

= −
= −

( , ) ( , )
( , ) .

0

0

 (4)

The second term on the RHS of (4) equals the consumers income so, again, if we can

bound the first term, we can bound the equivalent variation.

To do so, again consider Figure 1.  The exact EV could be obtained if we knew

exactly how much money we would need to give the consumer at the initial prices (P0) to

achieve the utility at XN.  Now, the most that would be required to achieve this utility

level is if the consumer could obtain bundle XN at the original prices. Thus, if the

consumer were given M MEV
N −  instead of the price change, we can be certain that he

could achieve at least the same level utility as if the price change had occurred. Thus,

M MEV
N − provides an upper bound on the necessary compensation.

However, unless the consumer is unwilling to substitute any z for v, the consumer

will be able to achieve the same level of utility as XN provides at less than this level of

compensation.  What is the least amount of compensation that might allow the consumer
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to obtain the same utility as provide by XN?  If z and v are perfect substitutes and an

interior solution is observed, the indifference curve between them would be a straight line

and would be identical to the budget line defined by PN. In this case, the consumer would

need only his original income to achieve the new utility level.  Thus, the lower bound on

EV is simply M MEV
N − = 0 .  Unfortunately, a lower bound of zero is not particularly

informative.  Nevertheless, we can now bound EV as follows:

B M M M M M MEV
N

EV
N

EV
N

EV
N≡ − − = −, ,n s m r0 , (5)

where the superscript “N” indicates that only the second data point is used to construct

these bounds.  We now use the bounds on EV to potentially help tighten the bounds on

CV.  Since EV for a price decline is greater than CV, we know that an upper bound on

EV must also be an upper bound on the CV. Thus, we can use the lower of the two upper

bounds derived via nonparametric methods to provide an upper bound on CV. The

bounds on CV derived using information from both data points can be written

B M M Min M M M MCV
ON

CV
O

CV
O

EV
N≡ − − −, ( , )n s . (6)

The superscripts on B indicate that both points are used in inferring the bounds.

As  pointed out initially, this methodology is valid only for a non-inferior good.

That is, the income effect must be non-negative.  In some cases, this may be problematic

as empirical research on recreation goods has found evidence of negative income effects

for certain resources.  However if the analyst knows that the good is inferior, the

relationship between CV and EV can still be used to tighten the bounds. In this case, CV

exceeds EV so the EV provides a tighter lower bound.
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Finally, note that bounds on EV can be similarly constructed and tightened by

using information about CV.  Specifically,

B Max M M M M M MEV
ON

EV
N

CV
O

EV
N≡ − − −( , ),n s . (7)

The improvement of the lower bound in this case also follows from the fact that the EV

for a price decrease equals or exceeds the CV.  Clearly this might tighten the bounds

significantly as the lower bound of M MEV
N − = 0  is uninformative.

Both commodity bundles considered thus far have been located on one of the

budget constraints corresponding to the two price vectors for which the welfare change is

being assessed.  In the next section, we consider whether further tightening of the bounds

is possible if the analyst also knows what choices the consumer would make at

intermediate price ratios.

Bounds Based on Three or More Data Points for Each Individual

Now suppose that the analyst knows yet a third price-quantity combination for each

individual and suppose that that combination corresponds to a price ratio that lies

between the initial and proposed price change.  Can information about the commodity

bundle that the consumer chooses at such a price ratio be used to narrow the bounds on

CV (or EV)?  The answer is yes: it can raise the lower bound under some circumstances

and lower the upper bound in all cases.

To see how this point may raise the lower bound, turn to Figure 2 where we have

depicted the original and new budget constraints (P0 and PN ) and the corresponding

optimal commodity bundles (X0 and XN). We have also drawn an intermediate budget

constraint and an associated optimal bundle labeled X1.  Recall that to provide a lower
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bound on CV, we want to know what amount of income we can take away from the

consumer and be sure that he can still attain the same level of utility with the new prices

as at the original commodity bundle.

As drawn, knowledge that X1 is the optimal commodity bundle at prices P1 allows

us to increase the amount of income that can be taken away from the consumer and still

be sure that the original utility level is obtained, thus increasing the lower bound on CV.

To see this, note that since X1 is chosen at P1 when X0 was affordable, we know that X1

represents a higher level of utility than X0 and lies on a higher indifference curve than X0.

This, in turn, implies that if income were taken away from the consumer at the new set of

prices (PN) until the consumer could afford X1, they would still be obtaining at least as

much utility as at X0.  Thus, an expenditure level of MCV
1 is sufficient to ensure that the

consumer is no worse off than the original utility level.  Thus, we have an improved

lower bound on CV and we can write our newly formulated lower bounds that are based

on information from three data points as

LB Max M M M MCV
ON

CV
O

CV
1 1≡ − −( , )m r . (8)

Thus, we have succeeded in further decreasing the interval over which the true CV is

contained.  In like manner, lower bounds on the EV can be written

LB Max M M M M M MEV
ON

EV
N

CV
O

CV
1 1≡ − − −( , , )n s (9)

At this point, it is important to point out that not all intermediate price ratios will

provide information that can be used to raise the lower bounds.  Graphically, the optimal

commodity bundle associated with P1 (X1) must lie to the left of the line through X0 with

a price ratio of PN. Otherwise, no improvement on the bound generated by MCV
O can be
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computed. Consumption bundles that will tighten the welfare bounds will be generated

only when the consumer’s preferences generate backward bending offer curves such that

the new consumption bundle is cheaper than the original bundle at the new prices.

The addition of this third data point can also lower the upper bound on CV.

Specifically, with a third data point, the new upper bound can be written

P P v P P vO N N− + −1 1 1b g b g .   (10)

To demonstrate that (10) constitutes an upper bound, appeal again to the fact that the EV

for a price decrease is greater than the CV for the same price decrease.  From this fact

follows the first inequality in (11)

e P U e P U e P U e P U
P v z M
P v z P v z
P P v

( , ) ( , ) ( , ) ( , )

( )
( ) .

0 0 1 0 0 1 1 1

0 1 1

0 1 1 1 1 1

0 1 1

− ≤ −
≤ + −
= + − +
= −

(11)

The second inequality in (11) follows from the fact that the expenditure necessary to

achieve U1 at the initial prices (P0) must be less than or equal to the expenditure that

would be required to allow the consumer to purchase the commodity bundle that achieves

U1 at prices P1.  Based on identical reasoning, the following inequalities hold

e P U e P U e P U e P U
P v z M
P v z P v z
P P v

N N N N

N N

N N N N N

N N

( , ) ( , ) ( , ) ( , )

( )
( ) .

1 0 0 1

1

1

1

− ≤ −
≤ + −
= + − +
= −

(12)

Summing (11) and (12) yields

e P U e P U P P v P P vN N N( , ) ( , ) ( ) ( ) ,0 0 0 0 1 1 1− ≤ − + − (13)

which establishes the new upper bound. The reasoning can be extended indefinitely so

that all additional data points will also lower this upper bound.
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This new upper bound is strictly less than the potential upper bound determined

by EV i.e.,

P P v P P v P P v P v P v z z M MO N N O N N O N N N N N EV
N− + − < − = − + − = −1 1 1b g b g b g . (14)

It is now possible to write lower and upper bounds on CV associated with three data

points

B Max M M M M Min M M P P v P P vCV
ON

CV
O

CV CV
O

O N N
1 1

1 1 1≡ − − − − + −( , ), ( ,( ) ( )n s (15)

Adding information on individual’s optimal commodity bundles at a variety of

price ratios can tighten the nonparametric bounds on CV or EV for a price change. Again,

the analyst must know whether the good is normal or inferior, but other than that, there

are no parametric assumptions necessary: regardless of the preferences of the individual,

as long as they conform to the basic postulates of neo-classical consumer theory, the

bounds must contain the true WTP.2

Although their accuracy is certain (subject only to error in the underlying data),

the ultimate value of these bounds depends on their width. Bounds that are very wide will

provide too little information for a policy analyst and will likely be passed over in favor

of parametric estimates that provide at least the appearance of precision to those who use

this information. If parametric methods can be accurately estimated and/or if the

nonparametric bounds are quite wide, there is little reason to pursue research employing

the nonparametric bounds. Alternatively, if nonparametric bounds are found to have the

potential to be relatively narrow in practice and/or if parametric methods generate

significant error in welfare measurement then nonparametric bounds may have an
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important role to play in welfare analysis. Thus, we undertake a simulation exercise in an

effort to gauge the likely value of additional research on these bounds.   We use Monte

Carlo simulation techniques to explore the improvement to the bounds that additional

data points generate and also how the width of the nonparametric bounds compare to

point estimates and confidence intervals generated by traditional parametric approaches

to welfare estimation.

A Monte Carlo Study

Design of the study

The Monte Carlo experiment is designed with these three questions in mind:

• How narrow can we expect the nonparametric bounds to be?

• How much does the addition of data points improve (tighten) the bounds?

• How do the nonparametric bounds compare to welfare estimates generated by

parametric estimators?

In the previous section, the lower bound on CV was seen to exactly equal the true

CV when the two goods are perfect complements and the upper bound was exactly the

true CV when the two goods are perfect substitutes.  These results make clear that the

accuracy of the bounds are affected by the degree of substitutability between the good

whose price change is being evaluated and the numeraire.  To consider alternative

degrees of substitution possibilities easily, we employ a Constant Elasticity of

Substitution (CES) utility function which allows a wide range of substitution possibilities.

Consider the CES utility framework

                                                                                                                                           
2 Although we abstract from considering error terms here to concentrate on the fundamentals of the theory,
it may be necessary to worry about the implications of errors in consumer’s optimization behavior or
measurement error when applying the bounds.
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( ) ( ) ,)1(,
1
ρρρ αα vzzvU −+=  ,

1
1
ρ−

≡s (16)

where, as before, z is the numeraire, v is the quantity of the environmental good, and s, ρ,

and α are parameters. The CES is a convenient utility function to work with since the

single parameter, s, determines the degree of substitutability between the goods.

An error term is introduced into the CES additively via the "α" parameter:

[ ]ρρρ ηαηα
1

)()1( zvU ++−−= , (17)

where η~Uniform(-0.25,0.25).  Then, the true form of demand is given by

PP
M

v sss

s

)1()(
)1(

ηαηα
ηα

−−++
−−= . (18)

We set the parameter α=0.75 .  To examine the sensitivity of the results to the degree of

substitution, we investigate four different values of s: s=0.5,2, 5, and 20.

Using this utility function and parameter values, we generate 1,000 samples of

300 observations each.  For each observation, the simulated price is randomly drawn

from the uniform distribution on the interval (5,55).  Also, income is randomly drawn

from the uniform distribution on the interval (5000, 85000).

How Tight Are the Nonparametric Bounds and How Much Do Additional Data Points

Improve the Bounds?

As demonstrated in the theoretical sections above, bounds on welfare measures

can be constructed with a single data point, two data points, and three or more points for

each individual.  In the first part of the Monte Carlo experiment, we investigate how the

addition of data points (observations) for each individual in the sample can narrow the

bounds.   As mentioned earlier, one possible source for such additional observations is
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via contingent behavior.  Although those who are suspicious of contingent valuation as a

reliable valuation method may discount such data, some analysts may be more

comfortable with behavioral contingent data than willingness to pay questions.  For

example, Bockstael and McConnell (forthcoming) have recently argued that:

Such contingent behavior studies might not suffer from many of the problems
encountered when asking values and they would be targeted towards people who
"behave" in the context of the problem and who would presumably not find it
difficult to imagine the behavioral changes they would make when faced with
different prices, different qualities, different alternatives (page 29).

If contingent behavior is viewed as a reliable source of data and if nonparametric bounds

can be constructed from this data that are sufficiently narrow to be of practical use, there

might be a potentially compelling case for their use in place of parametric estimates.  A

Monte Carlo experiment where there is assumed to be no measurement error associated

with the data is an ideal environment to shed light on this question.  For, if the

nonparametric bounds are too wide to be of policy interest in this setting, they can almost

certainly be ruled out as a viable valuation strategy when the vagaries of real data are

considered.

To assess the gains from adding contingent behavior data to a single observed

data point for each observation (such as might be collected in a typical recreation demand

study), we compute the nonparametric bounds for each Monte Carlo sample and average

the lower and upper bounds.  This process is repeated for each of the samples.

First, the upper and lower bound on CV for a price decrease associated with a

single data point is computed.3 This is equivalent to using the information an analyst

                                               
3 Since the CV for a price decrease is identical to the EV for the inverse price increase, the values

in the tables can be interpreted as bounds on either measure; however, we will refer to it as a bound on CV
for simplicity.
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might typically have from a travel cost type recreation demand study.  For each

individual in the sample, the analyst would know only how many trips the individual took

during the time period and at what price.   In the rows marked "Point O" of Tables 1a and

1b we report the bounds generated by this procedure.  Results are presented for two

different price changes: a 25% decrease and a 80% decrease and four different values of s

(the substitutability parameter).

As can quickly be seen, the range between the lower and upper bound is

enormous in all cases and thus of no real value from an applied policy perspective.   This

is not surprising as a single data point per individual provides little information.  In the

rows marked "Point N", a second data point for each individual is used (along with the

first) to form the bounds. This point corresponds to the quantity chosen by the individual

at the "new" price, i.e., it corresponds to point "N" in Figures 1 and 2 from the theoretical

discussion.  With the introduction of this second point, the upper bound on the

compensating variation drops dramatically in all cases.

In the row  marked "Point 1", the third data point is used to raise the lower bound

and lower the upper bound as described in the theoretical section above.  The third data

point is generated by determining the quantity consumed at the midpoint price between

the initial and final price in the welfare change. Although the gains in tightening the

interval are not nearly as large as the addition of the second point, it is clear that valuable

gains are possible.  In a number of cases, the conditions necessary to raise the lower

bound are present, thus the addition of the third data point both raises the lower bound

and lowers the upper bound. However, even when the lower bound remains unchanged,
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the range between the lower and upper bound is small enough to be of use in certain

policy situations.

     In the rows marked "Point 2" and "Point 3", two additional price/quantity

combinations are used to tighten the bounds. These combinations are determined by

computing the midpoints between the point 1 price and the initial price and the final and

in initial price, respectively.  Again, the nonparametric bounds are potentially tightened

by this additional information. The gains come primarily from lowering the upper bound

on WTP.  As noted above, each new data point will necessarily lower the upper bound as

we are able to trace out the individuals demand function.  If we learn of every commodity

bundle the individual would choose for all intermediate prices, our upper bound on WTP

would be precisely the individual’s Marshallian consumer surplus.  The individual’s

consumer surplus is the best we can do in deriving an upper bound on WTP for the price

decrease in the nonparametric setting.

     Our ability to raise the lower bound hinges on the shape of the individual’s offer-

curve.  Specifically, if the offer curve is backward bending for some intermediate price

changes and we learn of commodity bundles chosen at these prices, then we may raise the

lower bound on WTP.  A backward bending offer curve is a necessary but not sufficient

condition for raising the lower bound.

These Monte Carlo results strongly suggest that with the addition of at least one

more, and possibly several, data points, nonparametric bounds can be constructed that are

narrow enough to be truly informative to a policy maker.  Next, we consider how these

bounds compare to parametric estimates generated by the same amount of information.
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How Do the Nonparametric Bounds Compare to Standard Parametric Estimates?

For purposes of this portion of the Monte Carlo study, we assume that the

researcher has access to a data set with three data points for each individual in the

sample, corresponding to points O, N, and 1 from the previous section.  Again, we have

in mind that the researcher may have undertaken a contingent behavior survey to collect

such data and we will again abstract from measurement error or other problems

potentially associated with such data.  Here we ask how well the researcher could do with

such a data set in estimating CV using the nonparametric bounds relative to employing a

parametric demand model (such as a typical travel cost type model).

For each sample, we estimate each of three parametric demand functions:

Log-linear: ( ) ( ) ( ) ,lnlnln εγβα +++= MPv

      Semi-log:  ( ) ,ln εγβα +++= MPv and (19)

Linear: ,εγβα +++= MPv

where the greek letters again correspond to parameters.  These demand functions were

chosen due to their common use in recreation demand modeling. To estimate the models,

we include all three data points for each individual that are used in constructing the

nonparametric bounds. Thus, the original point plus the "contingent behavior" data are

used in constructing both the nonparametric bounds and the parametric estimates. In this

way, the parametric and nonparametric methods are both confronted with the same

amount of information.  To incorporate the fact that the three observations for each
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individual are not independent4 (that is, E jij ij( ) , , ,ε ε ≠ =0 1 2 3  where i indexes individuals

and j indexes observations), we estimate the models in (22) using a standard Feasible

Generalized Least Square Estimators to capture this correlation.5

After estimating each model, we calculate the average estimated CV for each

functional form and do so for each of the 1000 repetitions. Next, we order the respective

averages from smallest to largest and construct empirical 95% confidence intervals for

each method.

To provide a benchmark against which to compare both the nonparametric bounds

and the parametric estimates, we compute the true compensating variation for a proposed

price decrease and average these over all individuals in the simulated samples and over

the 1000 Monte Carlo trials.  We also order the distribution of the 1000 sample average

true CV's from highest to lowest and identify the fifth and ninety-fifth percentile of that

distribution.  This provides the 95% confidence interval for the true distribution against

which the parametric confidence intervals and the nonparametric bounds can be assessed.

Tables 2a and 2b contain the point estimates, confidence intervals, nonparametric

bounds and true CV for the simulated data for a 25% and 80% price reduction,

respectively. We also report the average R2's for the parametric estimates to provide a

sense of the goodness-of-fit of the parametric models to the data (and thus how “typical”

these scenarios might be).  First note that the nonparametric bounds are always (by

construction) true bounds on the true intervals.  In contrast, the parametric bounds

(confidence intervals) are not.

                                               
4 In real data, the correlation across individuals may arise from omitted variables specific to individuals or
any number of measurement problems.  In our simulated data, correlation across individuals arises from the
fact that individuals have different true parameters values from one another.
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  In this case, there is no parametric demand function that is an exact match for the

true demand function, although the log-linear represents a special case of the CES

demand. In fact, the situation where the "true" demand functions are not an exact match

to the parametric specification strikes us as the most accurate representation of the typical

study.

Not surprisingly, there are a number of estimated confidence intervals that lie

within the true intervals (i.e., they are too narrow).  Even more strikingly, in some cases

(identified in the table in italics) the point estimates themselves lie outside of the true

interval. Thus, by using a parametric point estimate an analyst might actually be reporting

a welfare measure that is not even within the true 95% confidence interval.  This of

course is not news to applied researchers: incorrect functional forms are well known to

potentially generate welfare measures with large error.  More to the point is that an

alternative that does not require the assumption of a particular functional form exists and

generates ranges that, at least in some cases, are likely to be narrow enough for policy

making.

Nonparametric Bounds and Standard Parametric Estimators When the Population

Preference Structure is Heterogeneous.

     An even more realistic situation than one in which recreationists have random

parameters, but share the same functional form for utility is one in which the population

consists of individuals with different utility structures.  To consider this situation, we

allow the population we are sampling from to consist of individuals with both semilog

                                                                                                                                           
5 Specific details on the GLS estimator are available from the authors upon request.
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demand utility and CES utility.  Each type comprises 50% of the population. The semi-

log demand utility function is

( )
,

)ln)((
exp 





+
−−+

−
+=

v
vvzvv

U
γβ
βεαγ

γβ
γβ (17)

where, greek letters indicate parameters. The parameter values in the semilog utility

function are set at α=2, β=-0.04, and γ=-0.00002.6 The stochastic error component is

distributed N 0 2,σεc h and three different dispersion levels are examined: εσ = 0.015625,

0.0625, and 0.125.  For the CES framework the parameters are α=0.55, s=2.5 and η~U[-

0.00125,0.00125].

     Table 3 contains the results of this simulation experiment. The numbers reported

correspond to WTP for a 25% price reduction. The results are fairly striking: despite the

relatively high values of R2, the parametric model’s confidence intervals do not contain

any of the true mean values of WTP.  This is particularly interesting in the case of the

semilog demand specification where the average values estimated are quite close to the

simulated "truth", but the confidence intervals still exclude the mean.  In contrast, the

nonparametric bounds are true bounds and for this particular parameterization are quite

tight.

As a final measure of the value of the nonparametric bounds, we compute the

mean percent error associated with using the midpoint of the nonparametric bounds as an

estimate of the average WTP.   These statistics range from -10.2% to +6.2% with an

                                               
6 These parameter values were chosen because they were employed in a previous Monte Carlo study
(Kling, 1997)  and they produce "sensible" looking numbers of visits in our application.
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average of -4.4%.   We believe that these results provide a rather compelling case for

further investigation of nonparametric methods in nonmarket valuation.

Final Remarks on the Value of Nonparametric Bounds on Welfare Measures

In this paper, we have presented simple methods for constructing nonparametric

bounds on compensating or equivalent variation for price changes based on

nonparametric methods.  We began with the methods developed by Varian and derived

additional results allowing significant tightening of the bounds.  These bounds have the

potential to provide an alternative valuation method to standard parametric estimation of

recreation demand.

The ultimate usefulness of the bounds derived here will depend upon how tight

the bounds can be constructed for real data and on whether the data necessary to compute

such bounds can be obtained and deemed reliable.  In our Monte Carlo analysis, we have

demonstrated that there are situations under which the first of these conditions will hold:

bounds constructed without reference to parametric demand specifications can yield

intervals that are narrow enough for policy purposes.  However, questions concerning the

reliability of contingent behavior data or the possibilities of collecting time series data

must await the confrontation of a real data set.

As noted in the derivation of the bounds, the analyst must be sure that he knows

whether the good is inferior or normal.  This is a potential limitation of the approach,

especially given that many recreation goods for which nonmarket values are sought may

have negative income effects.  However, the issue appears to be no less troublesome for

parametric models, which generally impose and estimate a single parameter value for the

income effect on the entire sample.
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Nonparametric bounds on welfare measures are appealing in that they require no

assumptions about utility functions or error structures.  Equally importantly, they also do

not require assuming that all individuals in a sample have the same preference structures

or parameter values.  Such liberty is heartening, but comes at a cost.  Rather than being

able to report precise-sounding estimates of welfare, bounds convey uncertainty.

However, as the results of these Monte Carlo experiments suggest, the "certainty"

conveyed by point estimates from traditional parametric estimators may be misleading.

The results using nonparametric bounds developed here constitute a first look at

applying nonparametric methods to bound welfare measures for nonmarket goods.  Based

on the theoretical and simulated results presented here, we are optimistic that additional

work in this area will yield substantial returns.  The ability to provide policy makers with

tight bounds on welfare measures for nonmarket goods that are free of functional form

assumptions is an appealing proposition.
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Figure 1
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Figure 2
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Table 1a:  WTP for a 25% reduction in price: CES Preferences

s=0.5 s=2 s=5Theoretical
Bounds IL IH IL IH IL IH

Point O 7882 11450 98 11450 0.02 11450

Point N 7882 10563 98 251 0.02 0.54

Point 1 7882 10035 98 224 0.02 0.41

Point 2 7882 9730 98 210 0.02 0.35

Point 3 7882 9581 98 204 0.02 0.33

True 8040 8389 130 188 0.04 0.28

Table 1b: WTP for a 80% reduction in price: CES Preferences

s=0.5 s=2 s=5Theoretical
Bounds IL IH IL IH IL IH

Point O 25408 36882 313 36882 0.05 36882

Point N 25408 36882 313 9569 0.05 627

Point 1 25408 36882 468 4330 1.26 174

Point 2 25408 36882 468 3628 1.26 164

Point 3 25408 36379 468 3500 1.26 163

True 28115 29205 1408 1914 9.96 42



   
Table 2a:  WTP for a 25% reduction in price: CES Preferences

s=0.5 s=2 s=5
Models IL AVG IH R2 IL AVG IH R2 IL AVG IH R2

Linear 6347 6519 6674 0.67 121 160 204 0.18 0.06 0.21 0.41 0.04

Log-Linear 3786 5109 6981 0.92 70 101 160 0.25 0.02 0.06 0.11 0.21

Semi-Log 5791 5924 6038 0.82 81 99 117 0.23 0.01 0.04 0.08 0.19

Nonparametric 7687 9352 89 181 0.02 0.22

True 7839 8021 8183 118 142 167 0.03 0.10 0.19

Table 2b: WTP for an 80% reduction in price: CES Preferences

s=0.5 s=2 s=5Models
IL AVG IH R2 IL AVG IH R2 IL AVG IH R2

Linear 25864 26686 27469 0.48 2697 3640 4655 0.07 111 490 998 0.01

Log-Linear 15183 16601 18086 0.92 538 633 747 0.37 0.74 2.74 5.58 0.34

Semi-Log 19754 20214 20672 0.80 632 771 912 0.31 0.22 0.47 0.82 0.28

Nonparametric 23845 34185 450 3437 1.48 289

True 26406 26936 27453 1355 1613 1872 11.57 39.64 76.20
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 Table 3: WTP for a 25% reduction in price: Mixed Semilog, CES Preferences

σε=0.015625 σε=0.0625 σε=0.125Models
IL AVG IH R2 IL AVG IH R2 IL AVG IH R2

Linear 170.3 170.7 171.1 0.11 181.2 182.0 182.8 0.19 171.1 172.5 173.9 0.20

Log-Linear -1049 -823 -648 0.50 77.27 80.0 82.78 0.54 151.4 159.7 168.6 0.56

Semi-Log 130.3 130.6 130.8 0.49 130.9 131.2 132.9 0.49 127.9 129.8 131.6 0.54

Nonparametric 108.7 120.1 131.5 107.0 119.5 132.1 104.2 119.3 134.4

True 125.4 125.7 125.9 124.5 125.4 126.2 124.6 126.2 127.6
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