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Abstract

A major concern with TEPs is that stochastic permit prices may reduce �rm incentive to

invest in abatement capital or technologies relative to other policies such as a �xed emissions

charge. However, under eÆcient permit trading, the price uncertainty is caused by abatement cost

uncertainties which a�ect investment under both permit and charge policies. We develop a rational

expectations general equilibrium model of permit trading to show how cost uncertainty a�ects

investment. Di�erences between the two policies can be decomposed into a general equilibrium

e�ect and a price-vs-quantity e�ect. Except for the curvature of the payo� functions, uncertainties

reduce both e�ects so that tradable permits in fact help maintain �rms' investment incentive under

uncertainty. (JEL: Q20)



1 Introduction

Tradable emission permits (TEPs) are gaining popularity in environmental regulation as manifested

by the successful sulfur trading in the U.S. and the global carbon trading proposed in the Kyoto

Protocol. Among the often-cited advantages of TEPs is the argument that it provides more incentive

for �rms to invest in abatement technologies or capital than the command and control policies (i.e.

standards). In the short run it provides as much incentive as an emissions tax. In the long run,

a constant emissions tax would provide more incentive than grandfathered permits because the

marginal abatement costs go down as �rms invest, reducing permit price as well as the bene�ts

of investment. These �ndings have been discussed in Magat (1978), Milliman and Prince (1989),

and Jung, Krutilla and Boyd (1996). However, even in the long run, Parry (1997) showed that the

incentive o�ered by permits would be close to that by a tax for many pollutants.

Despite these �ndings, there is a serious concern that TEPs may reduce a �rm's incentive to

invest because permit prices are typically random and the investment is to a great extent irreversible

(Xepapadeas (1999) and Chao and Wilson (1993)).1 In contrast, other policies such as standards or

taxes do not introduce this additional uncertainty. Consequently, in a stochastic world, investment

incentive under permits may be smaller. These studies typically assume exogenous and random

permit price processes (Xepapadeas (1999)) or exogenous and random demand function for permits

(Chao and Wilson (1993)). In Baldursson and von der Fher (1999), uncertainty is due to the entry

and exit of polluting �rms.

These studies point out an important possibility. However, since permit price is directly de-

termined by �rms' abatement costs through (eÆcient) permit trading, a major force behind price

randomness is the cost uncertainties.2 Such cost uncertainties will a�ect the investment decisions

1That irreversibility and uncertainty (and future learning) reduces investment is a standard conclusion of real
option theory (Arrow and Fisher (1974) and Dixit and Pindyck (1994)).

2Throughout this paper, we will maintain the eÆcient permit trading hypothesis. This hypothesis is con�rmed in
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under other policies as well. TEPs do not create uncertainties in its own right, but rather \transmit"

cost uncertainties into permit prices. Thus the relevant question is, compared with other policies,

whether cost uncertainties reduce the investment incentive by a larger amount under TEPs when

the permit price is endogenously determined by abatement costs through permit trading.

In this paper, we introduce a general equilibrium model of permit trading by price taking �rms

with stochastic abatement costs and rational expectations about permit prices. In each period, the

government grandfathers a �xed number of emission permits. The only exogenous factors in the

model are abatement cost shocks. Given the (marginal) costs, eÆcient permit trading endogenously

determines the equilibrium permit price. A �rm can invest in capital or technology to reduce its

abatement cost. The investment is irreversible. The aggregate investment behavior of the �rms

(together with the cost shocks) determine the time path of the permit price.

Thus, our model di�ers from the literature in that price uncertainty is endogenously determined

by abatement cost uncertainties in the general equilibrium. In particular, cost shocks change

the price instantaneously through permit trading and overtime through capital or technological

investment. Our model captures several salient features of a TEP system. First, (arguably) the

most important determinant of permit price is the �rms' abatement costs. Firms' input, output and

entry/exit decisions do a�ect permit price, but mainly indirectly through altering the abatement

costs. For example, railway deregulation in the U.S. raised the use of low sulfur coal by the utility

companies, contributing to the lower-than-expected SO2 permit price (Burtraw (1996)). Here the

regulatory change reduced permit price through lowering the (marginal) abatement costs. We

model the cost shocks without restricting them to be from a particular source. Second, a TEP

system is in essence similar to a pure exchange economy with �xed endowment of permits. There

are no exogenous permit demand or supply functions. Rather, �rms choose to be permit suppliers

one of the best known TEP systems, the SO2 trading in the U.S. (Joskow, Schmalensee and Bailey (1998)).
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or buyers through investment. Finally, capital or technological investments are diÆcult to reverse.

For example, a utility company will �nd it costly to get rid of a scrubber it has installed.

We use our model to study how �rms' investment incentive responds to industry and �rm speci�c

abatement cost uncertainties. There is a sizeable literature on investment decisions under uncer-

tainty and irreversibility, such as Arrow and Fisher (1974), Henry (1974) and Kolstad (1996). In

partial equilibrium models with exogenously given price processes, they �nd that increased uncer-

tainty reduces investment incentive for risk neutral �rms. Since the investment is irreversible, �rms

may �nd it optimal to hold back their investment (i.e. wait) until the cost shocks are high enough to

justify immediate action. Introducing general equilibrium greatly complicates the analysis, mainly

because it is diÆcult to directly search for the equilibrium permit price process. Further, it is not

clear whether uncertainty, especially industry-wide uncertainty, will reduce investment. The rea-

son is that if one �rm waits, other �rms may invest and consequently drive down the permit price,

making further investment suboptimal. That is, facing industry shocks, the �rms may \compete"

for the investment opportunity, reducing the value of waiting and consequently raising the invest-

ment incentive. Leahy (1993), Caballero and Pindyck (1996) and Baldursson and Karatzas (1997)

showed that this concern does not matter in models of �rms making entry and exit decisions facing

exogenous demand shocks in competitive equilibrium. The �rms may \pretend" that the price will

not be a�ected by other �rms' investment, and uncertainty still reduces investment. Our model is

di�erent in both the form of uncertainty and the �rm decisions. We show that their results, with

some modi�cation, still apply to our case.

We then consider �rms' investment strategies facing an emissions charge/subsidy that is con-

stant overtime. Following the tradition of Milliman and Prince (1989) and Jung et al. (1996), we

choose the charge policy to be \comparable" to the permit policy in that they lead to the same

abatement levels in the current period. In a deterministic model, future abatement levels will di-
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verge under the tax and permit policies since the policies lead to di�erent investment paths. This

policy di�erence is the general equilibrium e�ect of permits where equilibrium permit price goes

down as �rms invest. When abatement costs are stochastic, abatement levels can diverge even

without the general equilibrium e�ect since tax is a price tool and permit is a quantity tool (Weitz-

man (1974)). We call this policy di�erence the price-vs-quantity e�ect. We will separate the two

e�ects in comparing �rm investment incentive under the two policies. We �nd that uncertainty

reduces, but does not eliminate, the general equilibrium e�ect: the investment paths under the two

policies converge as uncertainty level increases. Except for the curvature of the payo� functions,

uncertainty also reduces the price-vs-quantity e�ect. Thus TEPs help maintain �rms' investment

incentive under uncertainty relative to charges.

Like many papers on abatement capital or technological investment, such as Magat (1978),

Milliman and Prince (1989), Jung et al. (1996), Farzin, Huisman and Kort (1998) and Farzin and

Kort (2000), we only address the positive question of \what happens" under di�erent policies when

there is cost uncertainty and investment irreversibility. We do not tackle the normative issue of

what constitutes an optimal policy. In fact, we take a rather static view of the policies themselves:

the permit and tax levels are �xed throughout time, regardless of �rms' investment and cost shocks.

These policies are likely to be ineÆcient, but may resemble the real world better than policies that

adjust frequently to investment and cost shocks.

There seems to be a long-standing consensus among (at least) environmental economists that

an eÆcient environmental policy should encourage �rms, in the long run, to invest in abatement

capital or technology (see, for example, Kneese and Schultze (1975) and Kemp and Soete (1990)).

From a purely theoretical standpoint, investment decisions and policy eÆciency do not have to be

related. After all, it is the environmental externality that the policy is trying to correct. If the

policy successfully does so and if there is no distortion in other sectors of the economy, investment
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decisions should be left to the �rms themselves and should be determined by market forces. That

is, environmental policy should not even attempt to in
uence �rms' investment incentive.

To the best of our knowledge, there does not exist a formal investigation into why environ-

mental policies should encourage such investment. There are, however, some peripheral evidence

that points to possible explanations. If traditionally environmental externalities have been \under-

regulated" in the sense that the policies have corrected only part of the externalities, more invest-

ment helps reduce the \ineÆciency" of these policies by ameliorating the environmental problem

and the need for strict regulation.3 That is, in the long run, (lax) environmental regulation that

encourages more investment should be more eÆcient. Another possibility is that regulators may

be subject to \hold-up" by �rms who anticipate less strict regulation if they do not invest and thus

keep their abatement expensive (Gersbach and Glazer (1999)). In this case, policies that encourage

investment help reduce this hold-up problem, and tend to be more eÆcient. Further, there may be

information spillover from adopters of new technologies to potential adopters, so there is less than

socially optimal adoption. Empirically, �rms have been perceived not to be willing to invest up to

the socially optimal level, leading in part to the introduction of \technology-forcing" regulation in

certain cases (such as mobile source air pollution). The relevance of our paper for policy analysis

should be viewed in this broad context of regulation that targets the environmental externality

itself and (indirectly) the long-run investment incentive.

The paper is organized as follows. We construct the general equilibriummodel of permit trading

in Section 2. We solve for the �rms' optimal investment strategies under permits in Section 3, and

under an equivalent charge policy in Section 4. We discuss the generality of our model in Section 5,

and conclude the paper in Section 6.

3While people may disagree about whether we have too much or too little regulation, the fact that many environ-
mental problems are getting worse over time and new regulations are constantly being introduced does point to the
possibility of insuÆcient regulation.
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2 Model Setup: Investment Under Permits

Irreversible investment models under uncertainty can quickly become intractable, even without the

added diÆculty of handling a rational expectations general equilibrium. We will assume special

functional forms in order to obtain analytical results. We will discuss the implications of these

assumptions in Section 5, showing that they are not likely to change our major conclusions. But

at the beginning, we work with more general functions to de�ne and characterize the competitive

equilibrium.

Consider a tradable emissions permit market consisting of N price taking �rms with rational

expectations about permit prices. We focus on emissions trading and ignore �rms' output de-

cisions.4 Let the total abatement cost (TAC) of �rm n be C(an;Kn; n; �n; �0), where an is the

abatement level, Kn the stock of abatement capital or technology, �n the �rm speci�c shock, and

�0 the industry shock a�ecting every �rm in the TEP market. By allowing TAC to depend on n,

we account for the heterogeneity of the �rms, a major advantage of tradable permits. We assume

that the cost is increasing and convex in the abatement level: Ca > 0 and Caa > 0. Capital or

technological stock reduces the cost, but at a decreasing rate: CK < 0 and CKK > 0. Positive

�rm and industry shocks increase the cost, but also make capital or technological investment more

worthwhile: C�n > 0, CKn�n < 0, C�0 > 0, and CKn�0 < 0.5

We consider �rm decisions in continuous time over [0;1). We assume that �rm speci�c and

industry shocks follow independent generalized Brownian motions:

d�n = �n(�n; t)dt+ �n(�n; t)dzn(t); n = 0; 1; : : : ; N; (1)

where dzn(t) is the incremental Wiener process, with E(dzn(t)) = 0, var(dzn(t)) = dt, and

4Firms may be in di�erent industries and produce di�erent kinds of outputs. Requate (1998) studies speci�cally
the relationship between output choice and permit trading decisions.

5This last assumption is not critical for our general results. Since a random shock can be equally high or low, the
e�ects of cost uncertainty on investment will not change even if we reverse one or more conditions in this assumption.
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cov(dzn; dzm) = 0 whenever n 6= m. Random change in �0 represents the industry shock and

that in �n represents �rm n's speci�c shock, for n = 1; : : : ; N . The term �n is the trend of �n, and

can be either positive, zero or negative. The term �n measures the degree of uncertainty of future

�n values. Firm speci�c shocks may be caused by the randomness in a �rm's internal production

process, and industry shocks may be due to the prices of some common inputs used by all the �rms.

We assume that these shocks are independent of each other.

At any moment t, �rm n observes Kn(t), �n(t), and �0(t) and thus knows its own TAC function.

Based on the TAC functions, or the marginal abatement cost (MAC) functions, �rms trade permits

until the MACs are equalized across all �rms. (We assume that the trading is eÆcient.) The

equilibrium permit price depends only on the total number of permits and not on their distribution

across �rms. Let �e be the total number of permits distributed by the government, �en be �rm n's

free permits, and e0n �rm n's emission without abatement, all constant overtime. Then

X
n

an(t) =
X
n

�
e0n � �en

�
=
X
n

e0n � �e � �a 8t � 0; (2)

where �a is the total industry abatement. Note that there is a one-to-one correspondence between

�e and �a, so that we can use �a to represent the government's permit policy. Firm n's total cost

(including TAC and permit cost) is given by

D(p;Kn; n; �n; �0) = C(an(p;Kn; n; �n; �0);Kn; n; �n; �0) + p(e0n � an(p;Kn; n; �n; �0)� �en): (3)

The equilibrium permit price equals �rms' MACs, and can be written as

p = p�(fKn; �ng
N
n=1; �0; �a): (4)

Firm n can invest in capital or technology to increase its stockKn. The investment cost function

is linear in the investment level, with the unit cost given by �. Linearity implies that the stock

can be non-di�erentiable (although continuous) in time: if the current stock is too low, �rm n can
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instantaneously adjust the stock to its desired level.

In addition to the instantaneous permit market equilibrium, we need to specify the inter-

temporal competitive equilibrium of capital or technological investment. Suppose there is a permit

price process fp(t); t � 0g, and further fp(t);Kn(t); �n(t); �0(t)g contains all of the information

about the future that a�ects �rm n's payo�. A suÆcient condition for the latter condition to hold

is that fp(t);Kn(t); t � 0g is Markovian, which we will con�rm later. Assuming the �rm is risk

neutral,6 its optimal decision on investment is given by

V (p(t);Kn(t); �n(t); �0(t)) �

max�E

Z 1

t
D(p(�);Kn(�); n; �n(�); �0(�))e

�r(��t)d� �
X
w

�(Kn(w
+)�Kn(w

�))e�r(w�t); (5)

subject to (1), the price process p(t0); t0 � t, and Kn(w
+) > Kn(w

�). The discount rate is r, and

w's are the instants when investment occurs, with w� and w+ representing the instants just before

and after the investment.

Given K0, the optimization problem generates the optimal investment strategies

K�
n(t) = K�

n(p(t);Kn(t); �n(t); �0(t)); n = 1; : : : ; N: (6)

It measures the optimal level of stock in period t given the information available. From (4), the

rational expectations competitive equilibrium price is given by

p(t) = p�(fK�
n(t); �n(t)g

N
n=1; �0; �a): (7)

Equations (6) and (7) completely characterize the competitive equilibrium. Since �n(t) and �0(t)

are Markovian, we know the resulting fp(t);Kn(t)g is also Markovian.

Directly solving the competitive equilibrium proves to be too hard a problem. Instead, we

6Our result does not depend on the assumption of risk neutrality. When the �rms are risk averse, we can either
use the risk adjusted discount rate or use risk neutral probabilities and the riskless discount rate if there are traded
assets that can span the risks.
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rely on the equivalence between the competitive equilibrium and a \social planner's problem" of

maximizing the total �rm payo�s subject to the shocks and permit policy (Lucas and Prescott

(1971) and Baldursson and Karatzas (1997)). We have to qualify that the social planner is not

maximizing the social welfare, which would include the pollution damage (or even the choice of an

appropriate policy). Rather, we introduce the social planner only as a convenient way of solving

the competitive equilibrium, and consequently restrict the planner to maximize the �rm payo�s

only.

2.1 The Social Planner's Problem

From (2) and (3), we know
P

nD(p;Kn; n; �n; �0) =
P

nC(an;Kn; n; �n; �0). That is, when all

permits �e are freely distributed by the government, the social planner can simply minimize the total

expected abatement cost:7

max
K;a

�E

Z 1

0

X
n

C(an(t);Kn(t); n; �n(t); �0(t))e
�rtdt�

X
w

X
n

�(Kn(w
+)�Kn(w

�))e�rw

subject to
X
n

an(t) = �a; equation (1); Kn(w
+) � Kn(w

�):

(8)

The vector K = fK1; : : : ;KNg describes the �rms' stocks and a = fa1; : : : ; aNg represent the

�rms' abatement levels. Time indices w's are the instants at which at least one �rm invests.

Again, the optimization involves two steps. First, at each moment t, the planner needs to

allocate �a permits among the N �rms, given K, � = f�1; : : : ; �Ng, and �0. The resulting minimal

social abatement cost is

S(K; �; �0; �a) = min
a

(X
n

C(an;Kn; n; �n; �0); s:t:
X
n

an = �a

)
: (9)

To facilitate the following dynamic optimization problem, we impose the condition that S(�) is

7If some of the permits are auctioned at the market price, the equivalent social planner's objective function must
include the cost of purchasing these permits. The analysis becomes more complicated because the marginal abatement
cost enters the objective function directly (representing the permit price).
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convex in K; note that C(�) is convex in Kn. In the second step, we rewrite the problem in (8) by

substituting in the optimal permit allocation:

J(K(t); �(t); �0(t); �a; �) �

max
K

�E

Z 1

t
S(K(�); �(�); �0(�); �a)e

�r(��t)d� �
X
w

X
n

�(Kn(w
+)�Kn(w

�))e�r(w�t)
(10)

subject to equation (1) and Kn(w
+) � Kn(w

�). We solve the problem following Dixit and Pindyck

(1994). To reduce clutter, we ignore �a and � in J(�) whenever it is convenient. Appendix A shows

that

Proposition 1 The optimal stock K 0 satis�es the following complementary slackness condition:

JK0

n
(K 0; �; �0)� � � 0; K 0

n �Kn � 0;
�
JK0

n
(K 0; �; �0)� �

� �
K 0

n �Kn

�
= 0; 8n: (11)

The proposition states that whenever JKn > �, more abatement capital is needed (because its

marginal value exceeds its marginal cost �), and �rm n should instantaneously invest until the new

stock K 0
n satis�es JK0

n
(K 0; �; �0) = �; note that J(�) is concave in Kn (Appendix A), thus higher

Kn reduces JKn . If JKn < �, irreversibility means that the stock will not be changed. As shocks

� and �0 change JKn overtime, JKn(K; �; �0) = � acts as a barrier to capital adjustment: JKn can

never exceed � for a positive length of time. Whenever the shocks raise JKn above �, instantaneous

investments are undertaken to restore the equality. Since �(t) and �0(t) are not di�erentiable, the

resulting Kn(t) is not di�erentiable whenever �rm n invests.

The remaining task is to determine the function J(�). Suppose the state (K; �; �0) is such that

no investment is needed for any �rm (the continuation region). The Bellman equation is

J(K; �; �0) = �S(K; �; �0; �a)dt+ e�rdt fE[J(K ; �+ d�; �0 + d�0)]g :

Applying Ito's lemma and using the fact that the shocks are independent, we obtain the following
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partial di�erential equation

NX
n=0

�
1

2
�n(�n; t)

2J�n�n(K; �; �0) + �n(�n; t)J�n(K; �; �0)� rJ(K; �; �0)

�
� S(K; �; �0; �a) = 0: (12)

The optimality conditions in (11) imply the following boundary conditions:

(Value-matching) JKn(K; �; �0) = �; n = 1; : : : ; N; (13)

(Smooth-pasting) JKn�m(K; �; �0) = 0; n = 1; : : : ; N; m = 0; 1; : : : ; N; (14)

whereK is evaluated at the investment barrierKb(�; �0) to be determined jointly with the function

J(�). (In particular, Kb is given by JKn(K
b; �; �0) = �, 8n.) The social planner's optimal solution

is completely characterized by (12) - (14).

2.2 Special Functional Forms

To solve (12) - (14) analytically, we make speci�c assumptions about the stochastic processes of �

and �0 and the cost function C(�). For the balance of the paper, we assume that � and �0 follow

geometric Brownian motions. That is,

�n(�n(t); t) = �n�n(t); �n(�n(t); t) = �n�n(t): (15)

To make the problem interesting, we impose �n < r, n = 0; 1; : : : ; N . Otherwise, the cost of

abatement would increase too quickly to allow any capital or technological investment. We assume

that �rm n's abatement cost is quadratic in the following form:

C(an;Kn; n; �n; �0) =
1

2
c(Kn; n)�0a

2
n + d(Kn; n)�n; n = 1; : : : ; N; (16)

with cKn < 0, cKnKn > 0, dKn < 0 and dKnKn > 0. c(Kn; n)�0 is the unit marginal abatement

cost, and d(Kn; n)�n is the �xed cost of abatement. The industry shock a�ects both the total and

marginal costs of abatement, while the �rm speci�c shock only a�ects the total cost. As we show

later on, not allowing �n to a�ect the marginal abatement cost enables us to obtain a clean and
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intuitive solution to the optimization problem.

Substituting (16) into (9), we know cost minimization requires

c(Kn; n)an = c(Km;m)am =
p

�0
; m; n = 1; � � � ; N ;

X
n

an = �a; (17)

where p is the shadow value of total abatement �a, which is also the equilibrium permit price.

Further, we can rewrite the social cost as

S(K; �; �0; �a) = L(K; �a)�0 +

NX
n=1

d(Kn; n)�n; (18)

where L(K; �a) =
P

n
1
2c(Kn; n)an(K; �a)2. Since d(Kn; n) is convex in Kn, to guarantee that S(�)

is convex in K, we impose the suÆcient condition that L(�) is convex in K. Appendix B shows

other characteristics of L(�).

3 Optimal Investment Under TEPs

We solve for the social planner's (and then the �rms') optimal investment strategies based on the

special functional forms. To gradually build up the intuition, we �rst study the e�ects of industry

shock alone, and then reintroduce the �rm speci�c shocks.

3.1 Industry Shock Alone

In this section, we assume that there are no �rm speci�c shocks, in particular, �n = 1, n = 1; : : : ; N .

Appendix C shows that in the socially optimal solution, the investment barrier for �rm n is

�b0;n(K) = O1
0(r � �0)

�+ dKn(Kn; n)=r

�@L(K; �a)=@Kn
; (19)

where O1
0 =

�1
0

�1
0
�1
, with �10 > 1 being a constant decreasing in �20 . Thus O1

0 increases in �20 .

Further, O1
0 = 1 if �20 = 0 and lim�2

0
!1O1

0 = 1. Note that we de�ned the barrier inversely as

the industry shock �0 being a function of K. The barrier has several features. First, �b0;n(K) > 0
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Instantaneous Investment

No Investment

�0(t)

O Kn

�b
0;n(K)

Figure 1: Barrier Control Policy for Firm n

since � >
�dKn (Kn;n)

r (otherwise, the �xed abatement cost alone would justify the investment). We

can also show (Appendix C) that
@�b

0;n(K)

@Km
> 0 for m 6= n. That is, if other �rms already have

high stocks, the social planner would have less incentive to let �rm n invest when positive shock

occurs. The reason is that �rm n is abating less due to its low stock (or high unit cost). The cost

saving from investing would then be lower. Appendix C also shows that
@�b

0;n(K)

@Kn
> 0, i.e. �rm n's

investment barrier increases in its own stock.

Thus (19) says that givenK, �rm n should invest to achieve JKn = � if and only if �0 > �b0;n(K).

In other words, if positive shocks occur such that �0(t) > �b0;n(K), instantaneous investment should

be undertaken to raise �b0;n(K) to �0(t). Higher shock �0 calls for more investment because as �0

increases, the marginal value of investment (the marginal reduction in total abatement cost) also

increases. However, the barrier is higher as Kn increases because of the declining returns of the

stock: LKnKn > 0 and dKnKn > 0. Figure 1 shows the barrier and the barrier control policy for

�rm n, holding other �rms' stocks �xed.

Equation (19) has an intuitive interpretation. If O1
0 = 1, the equation simply says that the

marginal cost of investment, �, should equal the marginal bene�t, which is the reduction in all

13



future costs of abatement, equal to the sum of ��0@L=@Kn

r��0
, the reduction in the variable cost, and

�dKn

r , the reduction in the �xed cost. The term O1
0 > 1 measures the option value e�ect: for �rm

n to invest, the needed cost shock is higher by the factor O1
0 . Since O1

0 increases in �0, we know

that higher uncertainty raises the barrier to invest.

Now we move from the social planner's problem to those of individual �rms. The investment

barrier for �rm n in (19) still applies in the competitive equilibrium, but it is expressed as a

function of the stocks of all �rms. This is natural for a social planner with information on all

�rms. But an individual �rm typically only observes its own stock, its own abatement level (i.e. its

trading of the permit) and the market price of permits. The investment barrier in the competitive

equilibrium should re
ect this information constraint. Based on (19), Appendix C derives the

following investment barrier for �rm n in terms of the permit price in the competitive equilibrium:

pb0(Kn; an) = O1
0(r � �0)

2
�
�Kn � �dKn

d(Kn; n)=r
�

�cKn
an

; (20)

where �cKn
= �cKnKn=c > 0 is the elasticity of the abatement cost coeÆcient with respect to the

stock, and �dKn
= �dKnKn=d > 0 is that of the �xed abatement cost. Appendix C shows that

under rather general (and appealing) conditions, pb0 is increasing in Kn (after accounting for Kn's

e�ect on an).

At any moment, the permit price is determined in (17) through eÆcient permit trading. When

a new industry shock occurs, and before the �rms invest, permit price p changes in proportion to

the change in �0 (cf. (33) in Appendix B). The investment rule in (20) says that if there is a positive

shock in �0 such that p rises above p
b
0(Kn; an), �rm n will invest immediately until pb0(Kn; an) equals

the permit price.8 Intuitively, investment allows a �rm to abate more and sell more (or buying

fewer) permits, thus the �rm is more willing to invest if the permit price is high. It is clear from

8Of course, if many �rms invest, the industry marginal abatement cost decreases, lowering p. This general
equilibrium e�ect reduces the investment needed of the �rms.
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(20) that

Proposition 2 Facing only the industry-wide shock, an individual �rm is less likely to invest the

higher the cost of capital �, the current stock Kn, and the level of uncertainty about the shock.

Investment is more likely the higher the permit price, the �rm's abatement quantity, the elasticities

of marginal and �xed cost reduction from investment, and the �rm's �xed abatement cost.

It is obvious that a �rm has more incentive to invest if the investment is cheaper, if it is more

e�ective in reducing the abatement cost, or if the �rm's abatement cost is already high. A �rm's

abatement cost is increasing in its abatement level (cf. (16)). Investment is thus more e�ective

in cost reduction as abatement level is higher. Consequently, �rms which are undertaking more

abatement have higher incentive to invest.

The industry-wide uncertainty reduces a �rm's incentive to invest. There are three forces

underlying the option value coeÆcient O1
0. Investment irreversibility and evolution of �0 provide

the �rm with incentive to wait for suÆciently high cost shock to actually invest. As we discussed

earlier, �rms do not want to delay investment for too long because other �rms may grab the

investment opportunity and drive down the permit price. \Competition" for investment raises

the �rm's investment incentive. The third factor is the general equilibrium e�ect: Given a large

positive shock to �0, many �rms will invest and the permit price will decrease. Anticipating the price

reduction, each individual �rm's incentive to invest goes down. It turns out that the second and

third factors cancel each other out. As we will show in Section 4, the barrier in (20) is equivalent

to one where the �rm \pretends" that the price is exogenously given and is proportional to �0

(equals a constant times �0, cf. (17)). That is, in determining its investment strategy, the �rm

can simply ignore the competition for investment opportunity and the general equilibrium e�ect.

This observation is consistent with the �ndings of Leahy (1993), Caballero and Pindyck (1996) and
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Baldursson and Karatzas (1997) except that the \exogenous price" is itself random.9

3.2 Firm Speci�c and Industry Shocks

Suppose now that there is no industry shock, with �0 = 1, while �rm speci�c shocks are given in

(1) and (15). Appendix D shows that the social planner's optimal decision is given by the following

investment barrier for �rm n, n = 1; � � � ; N :

�bs;n(K) = O1
n(r � �n)

(�+ LKn=r)

�dKn

; (21)

whereO1
n = �1n

�1n�1
and is increasing in �2n. Firm n should invest whenever its speci�c shock �n exceeds

�bs;n(K). Without uncertainty, O1
n = 1. Equation (21) can then be rewritten as �

�bs;n(K)dKn

r��n
�

LKn

r =

�; which simply says that the expected marginal reduction in the present value of abatement cost

from investment should equal the marginal investment cost.

Repeating the same procedure of going from (19) to (20), we obtain �rm n's optimal investment

barrier in the competitive equilibrium:

�bn(Kn; p; an) = O1
n(r � �n)

�Kn �
1
2�

c
Kn

pan=r

�dKn
d

: (22)

In this equation, we have e�ectively \separated" the investment barriers of di�erent individual

�rms: even though the �rms interact with each other in the competitive equilibrium, the critical

value of �n for �rm n to invest is independent of the shocks of other �rms. This simplifying result

is due to the independence among the �rm speci�c shocks and the assumption that these shocks

only a�ect �xed abatement costs (see Appendix D for more discussion).

Comparing (20) and (22), we see that under the industry or �rm speci�c shocks, a �rm's invest-

ment barrier responds to the same in
uencing factors in the same direction. The only di�erence

9We choose not to decompose the three e�ects analytically in this paper. These e�ects are important, but are not
our focus. They have been dealt with in the literature under various situations, and most of the intuition applies in
our model. We thus refer readers to the cited literature for the analytical decomposition.
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Investment Region

Inaction Region

p(t)

O �n(t)

fb(p; �n) = �Kn

Figure 2: Firm Investment Barrier Facing Both Shocks

lies in the functional forms and the magnitude of the responses. Further, the industry and �rm

shocks a�ect the investment barriers in similar fashions. The barrier is raised by O1
n, for n = 0

or n = 1; : : : ; N . In particular, if the �rm and industry shocks follow identical and independent

processes, i.e. �0 = �n and �0 = �n, n = 1; : : : ; N , then the shocks raise the investment barriers by

the same proportion.

Now we reintroduce the industry shock. Given its stock and abatement level, a �rm makes

its investment decision based on the observed values of both the permit price (incorporating the

industry shock) and its own �rm speci�c shock. Investment may be necessary when one of the

shocks is suÆciently high, even if the other is relatively low. Through similar procedures to those

in deriving pb0(�) and �bn(�), we obtain the following barrier function:

f b(p; �n) = �Kn;

where f b(p; �n) =
1

O1
0

1

2(r � �0)
�cKn

anp+
1

O1
n

1

r � �n
�dKn

d(Kn; n)�n:

(23)

That is, whenever positive industry and/or �rm shocks occur so that f b(p; �n) > �Kn, instantaneous

investment is undertaken to restore the equality. No investment occurs when f b(p; �n) < �Kn.

Figure 2 depicts the investment barrier.
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We can verify that the investment barriers pb0(�) in (20) and �bn(�) in (22) are special cases of

(23). In particular, if there is only the industry shock, with �n = 1, �n = 0 and O1
n = 1, we obtain

pb0(�) from (23). If there are only �rm speci�c shocks, with �0 = 1, �0 = 0 and O1
0 = 1, (23) reduces

to (22). We noted that under either the industry or the �rm speci�c shocks, the investment barrier

for a �rm is in
uenced by the same factors in similar fashions. The qualitative e�ects of these

factors are preserved when both shocks are present:

Proposition 3 When there are both industry and �rm speci�c shocks, an individual �rm's incen-

tive to invest is decreasing in the cost of capital �, the current stock Kn, and the uncertainty levels

of both the industry and its own shocks. It is increasing in the permit price level, the �rm speci�c

shock, the �rm's current abatement level, the elasticity of cost reduction to investment, and the

�rm's �xed abatement cost.

4 Optimal Investment Under Emission Charges

In this section, we turn to the policy of an emission tax (or equivalently an abatement subsidy)

that remains constant over time and compare �rms' investment incentive under the tax and per-

mit policies. Under the tax/subsidy system, each �rm's abatement and investment decisions are

independent of those of other �rms, since the payo� from abatement (through reduced charges) is

determined by the �xed tax rate. The model is simpler without the general equilibrium requirement:

we only need to study how a representative �rm n responds to the shocks �0 and �n.

Let � be the rate of emission tax or abatement subsidy. In each period, given its capital or

technological stock Kn, �rm n's decision on abatement level is

max
an

�
1

2
c(Kn; n)�0a

2
n � d(Kn; n)�n + �an; (24)

which implies that a�n = �
c(Kn;n)�0

. To make the tax comparable to the permit policy, we set
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� = p�(K(0); �0(0); �a): given the current stocks and shocks, the two policies lead to the same

abatement level.

Since � is �xed, a shock in �0 would change the abatement level even without a�ecting the

stock Kn. However, we noted in (17) that under the permit policy, an industry shock leads to

a proportional permit price change and does not a�ect the abatement level prior to the �rm's

investment. The di�erence arises because tax is a price tool and permit is a quantity tool, and the

case has been analyzed in a more general setting in Weitzman (1974). To facilitate our analysis, we

decompose the di�erences in �rm investment strategies into two parts: the general equilibrium e�ect

and the price-vs-quantity e�ect. In particular, we consider a tax policy where the tax rate would


uctuate directly with the industry shock: s = b�0 with b = �=�0(0). The constant b represents the

\real" tax (or subsidy) the �rms face: it �xes the \real" marginal cost of each �rm, regardless of

the industry shock. We will show that the di�erence between policies s and �a captures the general

equilibrium e�ect and that between s and � captures the price-vs-quantity e�ect.

4.1 The General Equilibrium E�ect

Substituting a�n =
b

c(Kn;n)
into (24), we obtain the �rm's per period payo� as

Sn(Kn; �n; �0; b) =
1

2

b2

c(Kn; n)
�0 � d(Kn; n)�n: (25)

The payo� increases in �0: higher industry shock raises the subsidy rate s the �rms receive. Adopt-

ing the same approach as the social planner's problem in the last section, we get the �rm's invest-

ment barrier

f b(s; �n) = �Kn; (26)

where f b(�) is given in (23), and is increasing in both of its arguments. Thus, if either an industry

or a �rm speci�c shock occurs so that f b(b�0; �
b
n) > �Kn, �rm n will invest to restore the equality.
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The �rm's investment strategy under 
uctuating tax is the same as that under permits. This

observation con�rms our earlier discussion that under permits, the �rm can \pretend" that the

permit price is exogenously set at a level proportional to �0 and ignore the general equilibrium

e�ect. However, identical investment strategies do not necessarily lead to the same investment

levels under the two policies. Under TEPs, when some or all �rms invest, permit price p decreases,

reducing f b(p; �n) and the required investment. Under the 
uctuating tax policy, the tax rate

s = b�0 remains �xed. This general equilibrium e�ect under permits is the only source of di�erence

between the investment paths under the two policies. If abatement costs are constant over time

(i.e. no uncertainty), the coeÆcients O1
i = 1 and �i = 0, for i = 0; n. Then the di�erence between

(23) and (26) corresponds precisely to the deterministic analysis in Milliman and Prince (1989) and

Jung et al. (1996). Our interest is to investigate how this di�erence depends on the uncertainty

levels of �0 and �n.

It is informative to start with special cases. Suppose there is no industry shock with �0 = 1 so

that s = b. Then (26) is reduced to (22) with p replaced by s. That is, given K, the minimum

shock to �n required for �rm n to invest is the same under equivalent 
uctuating tax and permit

policies (i.e. when s = p). Since the �rm speci�c shocks are independent, at each instant there

is a strictly positive probability that some other �rms will invest (as long as K < 1). Strictly

speaking, the probability of investment by any other �rm is

Pr
n
�i(t) > �bi ; for some i 6= n

o
= 1�

Y
i6=n

Pr
n
�i(t) � �bi

o
> 0: (27)

That is, if �n changes such that �rm n decides to invest, it is possible that other �rms also invest,

reducing the permit price p. Then the investment level of �rm n will be smaller under permits than

under the 
uctuating tax policy with strictly positive probability. The di�erence of course is due

to the general equilibrium e�ect under permits.
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Suppose the uncertainty level �2i increases for all i = 1; : : : ; N . Then �bi increases, but as Sarkar

(2000) and Dixit and Pindyck (1994) showed, Prf�i(t) > �big may actually increase in some cases.

That is, if �i becomes more volatile, the barrier may be \hit" more frequently even though the

barrier itself is higher, increasing the expected investment. Whether or not this scenario arises in

abatement investment is an empirical issue. Our paper is motivated by the concern that uncertainty

reduces investment, and we therefore assume that this probability is decreasing in �2i . That is, as

�rm speci�c shocks become more volatile, it is less likely that other �rms will invest or permit

price p will decrease. Then �rm n's (expected) investment level under permits will be closer to

that under 
uctuating tax. In the extreme, if �2i ! 1, no �rm will invest and the investment

paths are identical under the two policies. Uncertainty reduces, but does not eliminate, the general

equilibrium e�ect discussed in Milliman and Prince (1989) and Jung et al. (1996).

Now we consider the special case of industry-wide shock alone. With �n = 1, (26) is simpli�ed

to (20). When an industry shock occurs so that p = s > pb(Kn; an), �rm n invests under both

policies. If there are other �rms which also want to invest, i.e. if p = s > pb(Ki; ai) for some i 6= n,

permit price p decreases, reducing the magnitude of �rm n's investment under permits. Again, as

uncertainty �20 increases, the investment barrier pb(Ki; ai) increases and we only consider the case

where the probability that �rm i invests decreases. As the industry shock becomes more volatile,

it is less likely that other �rms also invest or price p decreases. Then �rm n's investment increases

and is closer to that under the 
uctuating tax policy. Uncertainty in �0 again reduces, but does not

eliminate, the di�erence between investment levels under the permit and 
uctuating tax policies.

In summary,

Proposition 4 Investment levels tend to be higher under the 
uctuating tax s than under the

permits �a. In the case where uncertainty reduces the probability of investment, the di�erence in

investment levels is reduced, but not eliminated, by both the industry and �rm-speci�c cost uncer-
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tainties.

4.2 The Price-vs-Quantity E�ect

Given �rm n's stock Kn, the tax rate � �xes the marginal abatement cost, i.e. a price tool, and the


uctuating rate s �xes the abatement level, i.e. a quantity tool. Firms do not interact with each

other, thus the only di�erence between � and s is due to the price-vs-quantity e�ect.

Substituting a�n =
�

c(Kn;n)�0
into (24), we know �rm n's instantaneous payo� rate is

Tn(Kn; �n; �0; �) =
1

2

�2

c(Kn; n)�0
� d(Kn; n)�n: (28)

In contrast to policy s, the payo� is decreasing and convex in the industry shock. Further, higher

industry shock �0 reduces the e�ectiveness of investment in increasing the payo�. Appendix E shows

that �rm n's investment barrier is

gb(�0; �n) = �Kn;

with gb(p; �n) =
O2
0

2(r � �20 + �0)

�2

c(Kn; n)

1

�0
�cKn

+
1

O1
n

1

r � �n
�dKn

d(Kn; n)�n;

(29)

where O2
0 =

�2
0
+1

�2
0

> 0 is the option value coeÆcient. That is, whenever negative industry and/or

positive �rm shocks occur so that gb(�0; �n) > �Kn, instantaneous investment is undertaken to

restore the equality.

For the problem to be interesting (in particular for investment to be �nite), we impose the

condition that r > �20 ��0 (Appendix E). Then we can show that �20 < �1 and is increasing in �20 .

That is, 0 < O2
0 < 1 and is decreasing in �20 . From (29), we know

Proposition 5 Under the constant emissions charge � , a �rm is more likely to invest when the

industry shock �0 is low and/or the �rm shock �n is high. Its investment incentive is decreasing

in the cost of capital �, the current stock Kn, and the uncertainties in both the industry and �rm

shocks. The incentive is increasing in the tax level � , and the e�ectiveness of investment in reducing
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�0(t)

O �n(t)

gb(�0; �n) = �Kn

Figure 3: Investment Barrier Under Tax �

the costs.

Comparing Propositions 3 and 5 and equations (23) and (29) indicates that the investment

incentive under permits �a and charges � is subject to similar exogenous in
uencing factors in similar

fashions. The only di�erence is that under charges, it is the negative, instead of the positive,

industry shock that causes more investment. The reason is that higher �0 actually reduces the

marginal bene�t of stock Kn (cf. (28)). Figure 3 graphs the investment barrier under � : investment

occurs when �0 is low or �n is high.

The price-vs-quantity e�ect is fully re
ected by the di�erence in the investment barriers under

s and t, i.e. the di�erence between (26) and (29). Since �rm shock �n does not a�ect the abatement

level, its impact on the investment incentive is the same in (26) and (29), and the price-vs-quantity

e�ect does not exist for �n. To streamline our analysis, we focus on the industry shock and assume

�n = 1. Let En = 2(�Kn � �dKn
d(Kn; n)=r)c(Kn; n)=�

c
Kn

, which is independent of �20 . From (26)
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and (29), we can rewrite the barriers under s and � as

�s0 = EnO
1
0

r � �0
b2

(30)

��0 =
�2

En

O2
0

r � �20 + �0
: (31)

We know �s0 increases and ��0 decreases in �20 .

To investigate how uncertainty changes the (expected) investment level under the two policies,

we need to �nd out how uncertainty a�ects the barriers �s0 and ��0 , as well as the probabilities that

these barriers are exceeded by �0 as in (27). Similar to the arguments leading to Proposition 4, we

only consider cases where uncertainty reduces the expected investment, and impose the condition

that the expected investment is reduced whenever the barrier is raised. Then we study only the

e�ects of �20 on the barriers, and consider one policy to be more sensitive to uncertainty if its

associated investment barrier tightens more when �20 increases.

De�ne the elasticities of the two barriers to �20 as �s0 =
@�s

0

@�2
0

�2
0

�s
0

and ��0 = �
@��

0

@�2
0

�2
0

��
0

. Similarly

de�ne the elasticities of the two option value terms O1
0 and O2

0 as �10 =
@O1

0

@�2
0

�2
0

O1

0

and �20 = �
@O2

0

@�2
0

�2
0

O2

0

.

From (30) and (31), we know

�s0 = �10 ; ��0 = �20 �
�20

r � �20 + �0
: (32)

Thus the sensitivity of the investment barrier under the variable charge s depends entirely on

the sensitivity of its option value coeÆcient O1
0, independent of the current shock, the capital or

technology stock, or the abatement cost. This result is natural: the only reason that a risk neutral

�rm cares about the cost uncertainty under s is the existence of the option value of delaying the

investment. For policy � , there is an added e�ect due to the \curvature" of the payo� function: it

is convex in �0.
10 Thus higher uncertainty raises a �rm's investment payo� through this curvature

e�ect, o�setting (partially) the option value e�ect.

10In particular, the objective function is increasing in 1

�0
, which is rising at the expected rate �20��0 (Appendix E).
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Figure 4: Elasticities: \|" under s; \- - -" under �

Firms are reluctant to invest under the two policies for exactly opposite reasons: fearing that

future values of �0 may be too low under s and too high under � . As a result, the pure option

value e�ects �10 and �20 are di�erent under the two policies. It is diÆcult to compare �10 and

�20 analytically, even though we know their functional forms. Numerical examples indicate that

�10 < �20 , especially when uncertainty level is high. Figure 4 shows the four elasticity measures

responding to uncertainty for the case of r = :085 and �0 = :02. Panel (a) shows the comparison

of �10 and �20 . Thus, based solely on option values, uncertainty reduces the investment incentive

proportionally more under �xed tax � than under variable tax s.

Under � , the curvature factor encourages investment, and reduces the e�ects of uncertainty in

retarding investment. This factor is decreasing in r and �0 and increasing in �20. Since we imposed

a limit on the uncertainty level (i.e. r > �20��0), the curvature factor cannot fully o�set the option

value e�ect. But as r and �0 decreases and uncertainty increases, the curvature factor becomes

more important. In summary, we know

Proposition 6 The price-vs-quantity e�ect exists only for the industry shock. The sensitivity of

the investment barrier under variable tax s depends only on the option value coeÆcient, while

that under �xed tax � depends also on the curvature e�ect. Based on the option value e�ect,
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increased uncertainty reduces the investment incentive proportionally more under � than under

s. The curvature e�ect becomes more signi�cant as the uncertainty level increases and r or �0

decreases.

5 Generality of the Model

There are a number of assumptions that helped us obtain the analytical results but also made

our model somewhat special. In this section, we show that these assumptions do not change our

major conclusions. One may argue that we did not explicitly model the decisions and shocks on

the output side. However, we can interpret the abatement cost function C(an;Kn; n; �n; �0) as a

reduced form that already incorporated the optimal output decisions and shocks. For example,

given output price and production function, the optimal output level is uniquely determined by

the arguments of C(�). Then C(�) is the \net" cost that includes the cost of production, net of

the revenue. If all �rms face the same random output price, this random process is included in �0,

and if the random output price a�ects individual �rms, its process is incorporated in �n. Similarly,

any other factors directly or indirectly a�ecting �rms' abatement decisions (such as certain policy

shocks) can be incorporated in the cost function one way or another. In this sense, our model is

rather general.

Another special feature of our model concerns how the shocks a�ect the variable and �xed

parts of the abatement cost, shown in (16). We can easily extend the model to let the industry

shock a�ect the �xed cost as well. We apply the same method of deriving the e�ects of �n and

obtain a similar investment barrier to (23). In fact, if there is perfect correlation among �0 and �n,

n = 1; : : : ; N , (23) describes the barrier for �rm n facing the industry shock alone that a�ects both

its variable and �xed cost. We assumed away the �xed cost e�ect of the industry shock mainly to
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reduce clutter.

The model becomes much more complicated if we let the �rm speci�c shock to a�ect the

variable and marginal abatement costs. The social planner's problem becomes impossible to solve.

We can apply the �ndings of Leahy (1993) and Caballero and Pindyck (1996), and solve the �rm's

investment strategy pretending that the price is exogenous. Then we obtain an investment barrier

similar to (23), except that now the uncertainty's e�ect on the investment level becomes ambiguous.

In addition to the option value e�ect captured by the option value coeÆcient, there is also the price-

vs-quantity e�ect because each �rm takes the permit price as a constant independent of the �rm

speci�c shock. If the option value e�ect dominates the price-vs-quantity e�ect, our major results

still hold. By assuming away the �rm shocks from the variable cost, we are able to eliminate the

price-vs-quantity e�ect, and highlight the interaction of the option value and the general equilibrium

e�ects.

The variable and marginal abatement costs are assumed to be linear in the industry uncertainty.

This assumption in
uences the price-vs-quantity e�ect in comparing the �xed and variable tax

policies, since an important part of the e�ect is driven by the \curvature" of the payo� function.

For example, if the payo� function under variable charge s is convex in the industry shock �0,

investment will decrease less as uncertainty rises. Therefore, the curvature factor in the price-vs-

quantity e�ect is not a general result, even though the option value factor can be extended to other

functional forms.

We assumed linear investment cost and no capital or technological depreciation. Introducing

depreciation complicates the derivation, since even with independent shocks, the optimal strategy

will be characterized by a partial di�erential equation with free boundaries, which is notoriously

diÆcult to solve analytically. It will not change our major results, since depreciation will not remove

the existence of option values (Abel and Eberly (1997)). Linear investment cost is responsible for
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the barrier control strategy, and the investment path would be di�erentiable in time if a convex

investment cost function is assumed. Our chief result, however, is not the barrier control strategy

itself. Our interest is in the impacts of uncertainty on investment level under di�erent policies.

These results are not likely to change even if we assume more general cost functions. For example,

Abel and Eberly (1994) showed in a partial equilibrium model with a general adjustment cost

function that uncertainty reduces investment.

6 Conclusion

A major concern with tradable emission permits is whether uncertainties in permit prices retard

�rms' incentive to invest in abatement capital or technology. But when the permit market works ef-

�ciently, permit price uncertainty can only be caused by stochastic abatement costs. We developed

a rational expectations general equilibrium model where price taking �rms undertake irreversible

capital or technological investments in response to the cost shocks and the consequent price un-

certainties. Cost uncertainties determine price uncertainties both through instantaneous permit

trading and by a�ecting investment. We showed that both industry and �rm speci�c cost uncer-

tainties reduce the investment incentive in the equilibrium.

However, these uncertainties also reduce the investment incentive under an emissions charge

policy. The relative magnitude of investment decrease under the two policies can be decomposed

into two e�ects: the general equilibrium e�ect as identi�ed in Magat (1978), Milliman and Prince

(1989), and Jung et al. (1996), and the price-vs-quantity e�ect similar to Weitzman (1974), which

in turn is decomposed into the option value and curvature e�ects. Higher uncertainty reduces both

the general equilibrium e�ect and the option value e�ect, implying that the investment incentive

is reduced less by uncertainty under permits than under charges. In this sense, tradable permits in
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fact helps maintain �rms' investment incentive under uncertainty. The curvature e�ect implies that

uncertainty helps investment incentive under �xed charges, since in our model the payo� function

is convex in the industry shock under charges while linear under permits. This particular e�ect will

change if the functional forms are altered, and as such, does not represent a general conclusion.

Following the tradition of the real options literature, we have represented the �rms' investment

incentive by investment barriers: investment is undertaken only when a barrier is exceeded. We

did not translate the barriers into expected investment, but instead drew conclusions based on the

barriers only. For this reason, whenever possible, we have used the term \investment incentive"

instead of \investment level." More research is needed to formally extend our results to those based

on the expected investment.

If the permit trading itself is imperfect and is subject to signi�cant random shocks, investment

incentive will be adversely a�ected under tradable permits. This e�ect is over and above that

of abatement cost uncertainty that we have identi�ed in this paper. It is an interesting and

important empirical question to determine, for particular emissions and permit markets, the relative

magnitude of the various sources of shocks.

We have ignored the normative issue of optimal policy design, taking the (most likely ineÆcient)

�xed permits or �xed charge policies as given. Therefore, a policy that encourages investment

incentive is not necessarily the more eÆcient policy. Of course, if there is no distortion in the

capital and R&D sectors, the permit policy is eÆcient if the damage function of the emissions

increases from suÆciently low levels to suÆciently high levels at the permit amount �e. The charge

policy is eÆcient if the marginal damage is constant at the charge level � . An interesting extension

of our model is to investigate the optimal policies when the damage function is of a more general

form.
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Appendix: Model Details

A Proof of Proposition 1

Suppose at state fK; �; �0g, at least one �rm needs to increase its stock. Applying Bellman's

Principle of Optimality to (10), we get

J(K; �; �0) = max
K

0

�S(K; �; �0; �a)dt+ e�rdt

(
E[J(K 0; �+ d�; �0 + d�0)]� �

X
n

(K 0
n �Kn)

)
;

where the expectation E is conditional on � and �0. Since S(�) is convex in K (cf. equation (9)),

or �S(�) is concave in K, we can show that J(�) is concave in K.11 Thus the necessary and

suÆcient condition for the maximization problem on the right hand side is given by the following

Kuhn-Tucker conditions:

E[JK0

n
(K 0; �+ d�; �0 + d�0)]� � � 0; K 0

n �Kn � 0;

�
E[JK0

n
(K 0; �+ d�; �0 + d�0)]� �

� �
K 0

n �Kn

�
= 0;

n = 1; : : : ; N

As dt ! 0, d� ! 0 and d�0 ! 0 with probability one. Thus we can remove the expectation

operation and obtain (11).

B Characteristics of Function L(K; �a)

Applying the envelope theorem to the minimization problem in (9), we know

p(K; �0; �a) =
@S(K ; �; �0; �a)

@�a
=

@L(K; �a)

@�a
�0: (33)

11Chapter 11 of Dixit and Pindyck (1994) showed this point for the case of N = 1. Their approach can be directly
generalized to N > 1. Theorem 9.8 of Stokey and Lucas (1989) strictly proved a case of N = 1 for discrete time
optimization. Again, their proof can be generalized to N > 1 and continuous time.
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Thus industry shocks a�ect the permit price directly: without any capital adjustment, price p is

aÆne in �0. Similarly, from the envelope theorem, @S
@Kn

= CKn = 1
2cKna

2
n�0+dKn�n. But from (18),

@S
@Kn

= LKn�0 + dKn�n. Thus

@L(K; �a)

@Kn
=

1

2
cKn(Kn; n)an(K; �a)2: (34)

C Investment Barrier Facing Industry Shock Alone

Based on (15), we can verify that the homogeneous part of the di�erential equation (12) has the

following solution:

Jh(K; �; �0) =

NX
n=0

h
B1
n(K)�n

�1n +B2
n(K)�n

�2n
i
; (35)

where Bi
n(K), i = 1; 2, n = 0; : : : ; N; are constants of integration to be determined by the boundary

conditions, and �1n > 1 and �2n < 0 are the roots of the fundamental quadratic

1

2
�2n�(� � 1) + �n� � r = 0: (36)

We can show that @�1n=@�n < 0.

When �n = 1, n = 1; : : : ; N , the only random variable is �0, the industry shock. Given the

function form in (18), and using (35), we can verify that the general solution to (12) is

J(K; �0) = B1
0(K)�

�1
0

0 +B2
0(K)�

�2
0

0 �
L(K; �a)�0
r � �0

�

P
n d(Kn; n)

r
: (37)

If �0 = 0, the variable abatement cost is zero (cf. (16)). The bene�t of investment in reducing the

�xed abatement cost is deterministic. All abatement investment occurs at time zero. Afterwards,

no investment is needed and we are in the continuation region. Thus (37) applies when �0 = 0.

Further, the total abatement cost is simply the present value of the total �xed cost. That is,

J(K; 0) = �
P

n d(Kn;n)
r . Since �20 < 0, lim�0!0 �

�2
0

0 =1. Thus B2
0(K) = 0. Then (37) is simpli�ed
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as

J(K; �0) = B1
0(K)�

�1
0

0 �
L(K; �a)�0
r � �0

�

P
n d(Kn; n)

r
: (38)

The second and third terms on the right hand side measure the present value of expected total

cost of abatement given the current stock. The �rst term then measures the value of having the


exibility to adjust the stocks as the shocks occur.

Parameter B1
0(K) is still unknown. We determine it jointly with the investment barrierKb(�0),

using the two barrier equations (13) and (14). Substituting (38) into (13) and (14), we get

JKn =
@B1

0(K)

@Kn
�
�1
0

0 �
�0

r � �0

@L(K ; �a)

@Kn
�
1

r
dKn(Kn; n) = �

JKn�0 = �10
@B1

0(K)

@Kn
�
�1
0
�1

0 �
1

r � �0

@L(K; �a)

@Kn
= 0;

where K is evaluated at the barrier Kb. Solving the two equations for B1
0 and �0, we obtain

equation (19).

Now we study how �b0;n depends on Km, m 6= n. Only the denominator �@L=@Kn is a�ected

by Km, and from (34), we know @
@Km

�
� @L

@Kn

�
= �cKnan

@an
@Km

: EÆcient permit trading means

that @an
@Km

< 0, since as Km increases, �rm m's marginal abatement coeÆcient c(Km;m) decreases.

Thus �rm m will abate more, and consequently �rm n will abate less. Thus @
@Km

�
� @L

@Kn

�
< 0 and

@�b
0;n(K)

@Km
> 0.

Since dKnKn > 0, the numerator on the right hand side of (19) is increasing in Kn. For the

denominator, since L(�) is convex in Kn, we know
@

@Kn

�
� @L

@Kn

�
< 0. Thus,

@�b
0;n(K)

@Kn
> 0.

Next we derive (20). From (17) and (33), we know an(K; �a) = p(K;�0;�a)
c(Kn;n)�0

. Substituting an to

(34), we get

@L(K; �a)

@Kn
=

1

2

cKn(Kn; n)

c(Kn; n)2
p(K; �0; �a)

2

�20
: (39)

Substituting this expression to (19) and using the two elasticity de�nitions, we know on the invest-
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ment barrier,

�0 =
2(r � �0)

�
�Kn � �dKn

d=r
�
O1
0

�cKn
anp=�0

:

Multiplying by p=�0 on both sides, we get (20).

Now we show how pb0(Kn; an) depends on Kn. Note that

�Kn � �dKn
d=r

�cKn
an

=
�+ dKn=r

�ancKn=c
: (40)

Since dKnKn > 0, we know the numerator on the right hand side is increasing in Kn. Firm n's

optimal abatement decision is an = p
c�0

. Thus the denominator in (40) is � p
�0

cKn

c2 . Under perfect

competition, there are many �rms and a change in Kn is not likely to a�ect p. That is, we can

regard p as a constant. Since L(�) is convex in Kn and from (39), we know
cKn

c2
is increasing in Kn.

Thus the denominator in (40) decreases in Kn, which leads to
@pb

0

@Kn
> 0.

D Derivation of Equation (21)

The derivation is similar to the case of industry shock alone in Appendix C, although the existence

of multiple shocks complicates things a bit. With �0 = 1, we know S(K; �; �a) = L(K; �a) +

P
n d(Kn; n)�n. Then the general solution to (12) is

J(K; �) =

NX
n=1

�
B1
n(K)�n

�1n +B2
n(K)�n

�2n �
d(Kn; n)�n
r � �n

�
�
L(K; �a)

r
: (41)

Again, if �n = 0 for all n, the �xed abatement cost is zero and the bene�t of investment is de-

terministic. All investment should be undertaken at time zero, so that we are in the continuation

region, i.e. (41) applies. Further, the total cost is J(K ;0) = �L=r. Thus B2
n(K) = 0 for all n, and

(41) is simpli�ed as

J(K; �) =

NX
n=1

�
B1
n(K)�n

�1n �
d(Kn; n)�n
r � �n

�
�
L(K; �a)

r
: (42)
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To �gure out the investment barrier, we apply the two barrier equations (13) and (14) and get

JKn =

NX
m=1

@B1
m(K)

@Kn
�m

�1m �
dKn(Kn; n)�n

r � �n
�
LKn(K; �a)

r
= � (43)

JKn�n = �1n
@B1

n(K)

@Kn
�n

�1n�1 �
dKn(Kn; n)

r � �n
= 0 (44)

JKn�j = �1j
@B1

j (K)

@Kn
�j
�1j�1 = 0; j 6= n: (45)

for n = 1; : : : ; N , where K is evaluated at the barrier Kb.

Equation (45) indicates that
@B1

j (K)

@Kn
= 0 whenever j 6= n. That is, the parameter B1

j depends

only on �rm j's own stock. This result is due to the assumptions that the �rm speci�c shocks are

independent of each other, and that the shocks only a�ect the �xed abatement costs. (If �n enters

�rm n's variable cost part, the function L(�) would depend on �, and B1
n(�) would be a function of

K, rather than Kn only.) Thus we can replace B1
n(K) by B1

n(Kn) in (43) and (44), and solving

the two equations for �n, we obtain the investment barrier for �rm n in (21).

E Investment Barrier Under Tax �

Parallel to the derivation of (12), we obtain the following di�erential equation for �rm n's net payo�

function Jn:

1

2
�20�

2
0J

n
�0�0 +

1

2
�2n�n

2Jn�n�n + �0�0J
n
�0 + �n�nJ

n
�n � rJn + Tn = 0:

Using (28), we know the solution to this di�erential equation is

Jn =B1
0(Kn)�

�1
0

0 +B2
0(Kn)�

�2
0

0 +
1

2

�2

c(Kn; n)

1

r � (�20 � �0)

1

�0

+B1
n(Kn)�n

�1n +B2
n(Kn)�n

�2n �
d(Kn; n)�n
r � �n

;

(46)

where �'s are again the roots of the fundamental quadratic (36). We can show that �1i > 1 and

�2i < �1, for i = 0; n, as long as r � (�20 � �0) > 0 and r � �n > 0.

As �0 ! 0 and �n ! 0, the �rm faces zero �xed abatement cost but in�nite marginal cost. Then
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it undertakes no abatement and receives no subsidy. Thus its net payo� is zero: Jn ! 0. Applying

this result to (46), we know B2
0 = 0 and B1

n = 0.

The boundary conditions for Jn is given by JnKn
= �, JnKn�0

= 0, and JnKn�n
= 0. Applying (46)

to these boundary conditions, we obtain (29).

Now we show the reason for imposing the condition r > �20 � �0. Let y = 1
�0
. Applying Ito's

lemma, we know the stochastic process for y is

dy = (�20 � �0)ydt� �0ydz0:

If r � �20��0, the expected payo� to the �rm (cf. (28)) would be in�nite since part of the objective

function is increasing at a faster rate than the discount rate. Firms would have incentive to invest

without bounds. Thus we need to impose r > �20 � �0 in our model.
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