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Abstract 

This note provides two results pertaining to the pricing of agricultural revenue 

insurance contracts under joint price and yield risk. First, a weakening of the concordance 

ordering is used to sign the effect of greater dependence between the multiplicative risks 

(price and yield) on the expected indemnity payment. Second, sufficient conditions are 

found when the premium rate for revenue insurance is smaller (greater) than the premium 

for the corresponding single risk (price or yield) insurance.  

 

Keywords: concordance order, revenue insurance.



 

 

ON THE PREMIUM FOR REVENUE INSURANCE  
UNDER JOINT PRICE AND YIELD RISK 

1. Introduction 
In recent years, several revenue insurance products have become popular among U.S. 

agricultural producers (USDA 2001a). Unlike other risk management instruments that in-

sure separately against price or yield risk, a revenue insurance contract provides a joint 

coverage.1 As a result, the determination of the actuarially fair premium requires pricing 

put options on a non-traded asset such as gross farm revenue (Yin and Turvey 2003). One 

of the theoretical and empirical problems with the pricing of revenue insurance contracts is 

accounting for the dependence between the price and yield risks (e.g., USDA 2001b; 

Miller, Kahl, and Rathwell 2000). The modeling of dependencies among risks is an area of 

active research in actuarial, finance and agricultural economics literatures (e.g., Denuit, 

Dhaene, and Ribas 2001 and references therein; Hennessy, Saak, and Babcock 2003). 

However, most of the previous literature focused on the case of multiple additive risks cor-

responding to a portfolio of insurance policies held by the insurer (or the insured). 

The goal of this paper is to analyze how an increase in dependence between multipli-

cative risks affects the actuarially fair value of an individual insurance policy. The 

primary example is agricultural revenue insurance that insures gross crop revenue defined 

as the product of random price and yield, which are prone to be negatively correlated.2 

Also, premiums for revenue insurance and the corresponding yield insurance policy are 

compared. The indemnity payment under yield insurance policy is triggered by the yield 

loss that is multiplied by the predetermined (expected) price.3  

Section 2 presents a weakening of the concordance ordering that localizes the do-

main of realizations where risks become more dependent in the sense of the ordering. 

Restricting the set of possible dependence structures in this manner assures that the ex-

pectation of the indemnity function is monotone with respect to the concordance 

ordering. In Section 3, the local concordance ordering is used to ascertain how an in-
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crease in dependence between multiplicative risks affects the expected indemnity pay-

ment. If an increase in dependence involves the values of price and yield such that the 

realized revenue lies below the revenue guarantee, the premium decreases. The converse 

holds if the product of price and yield exceeds the revenue guarantee in the domain where 

the increase in the concordance order takes place. 

Section 4 provides two conditions sufficient for an unambiguous comparison of the 

premiums for revenue and yield insurances. Because in practical terms price and yield 

can be viewed as either negatively dependent or independent, the proposed conditions are 

based on evaluating the revenue premium under the “boundary” dependence structures: 

extreme negative dependence (the Frechet lower bound) and independence. The yield in-

surance is always cheaper than the revenue counterpart if the negative price-yield 

dependence, as compared to price-yield independence, is “operative” in the domain of 

price-yield realizations that are not covered by the revenue insurance. On the other hand, 

under certain restrictions on the marginal distributions and the coverage level, the reve-

nue insurance is cheaper. This is the case when the strength of the negative price-yield 

dependence is weaker relative to the Frechet lower bound in the portion of the distribu-

tion support in which there is no indemnity payment under revenue insurance. 

 

2. Local Concordance Order 
To model the strength of dependence between price and yield we use a weaker version of 

the concordance order (also known as the positive quadrant dependence order) for bivari-

ate distributions with fixed univariate marginals (Joe 1997). Let ),()( ∞= xFxFX  and 

),()( yFyFY ∞=  denote marginal probability distributions with densities Xf  and Yf  and 

( ) { : ( ) 0}.X Xsupp F x f x= >  

 

DEFINITION. A probability distribution ( , )F x y  is smaller than probability distribution 

( , )F x y′  in the local concordance order on set ( ( , )) ( ( , ))A supp F x supp F y⊆ ∞ × ∞  (de-

noted A
c≺ ) if ( , ) ( , )F x y F x y′≤  for all ( , )x y A∈  and ( , ) ( , )F x y F x y′=  for all 

( , )x y A∉ , where ,  .X X Y YF F F F′ ′= =  
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Tchen (1980) and Epstein and Tanny (1980) showed that A
cF F ′≺  is equivalent to the 

following two conditions.4 First, there exists a sequence of probability distributions 

1,..., nF F F F ′= =  such that iF  is obtained from 1iF −  by adding mass 0iε >  at some 

points ( , )x y  and ( , )x y′ ′  while subtracting mass iε  at the points ( , )x y′  and ( , )x y′  where 

x x′< , y y′< , and ( , )x y , ( , )x y′ ′ , ( , )x y′ , ( , )x y′ A∈ . We will refer to a single trans-

formation that redistributes the probability mass toward the outcomes in which the 

components are better aligned as an elementary increase in concordance (EIC), denoted 

by ( , , , , )e x x y y′ ′ ε .5 

The other characterization relies on the properties of supermodular (also known as 

superadditive) functions. The local concordance ordering adheres if ( , )E X Yϕ  

( , )E X Y′ ′≤ ϕ  for any function ϕ  that is supermodular on set A  such that the expecta-

tions exist, where random variables ,X Y  and ,X Y′ ′  have the joint probability 

distribution ( , )F x y  and ( , )F x y′ , respectively. This implies that the corresponding con-

ditional expectations are also ordered in the same manner: [ ( , ) | ( , ) ]E X Y X Y Aϕ ∈  

( , ) /(1 )
cA A

x y dF dF= ϕ −∫ ∫  ( , )
A

x y dF ′≤ ϕ∫ /(1 )
cA
dF ′− ∫ [ ( , ) | ( , ) ]E X Y X Y A′ ′ ′ ′= ϕ ∈ . The 

inequality follows because, by definition, 
A A
dF dF ′=∫ ∫ . A function φ  is called super-

modular (submodular) if for any evaluations 1 1x x′ ′′>  and 2 2x x′ ′′> , we have 1 2( , )x x′ ′φ  

1 2 ( , ) ( )x x′′ ′′+ φ ≥ ≤ (φ 1 2 1 2, ) ( , )x x x x′ ′′ ′′ ′+ φ . The supermodularity is equivalent to the “increas-

ing differences” property: 1 2 1 2( , )x xτ δ∆ ∆ φ  0≥  where 0τ > , and 0δ > , 1 1 2( , )x xτ∆ φ  

1 2 1 2( , ) ( , )x x x x= φ + τ − φ . In other words, the value of a supermodular function increases 

more with ix  when other ,jx j i≠  take on high values. One of the attractive features of 

the (local) concordance ordering is its immediate connection with a more familiar notion 

of correlation. One can easily show that A
cF F ′≺  implies that [ ( ), ( )]Cov f X g Y  

[ ( )Cov f X ′≤ ( )]g Y ′  for any functions f  and g  monotonic in the same direction given 

that the covariances exist. 

Next, we use the notion of the local concordance ordering to determine the effect of an in-

crease in price-yield dependence on the expected indemnity for a revenue insurance contract. 
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3. Premium for Revenue Insurance and Price-Yield Dependence 
The revenue insurance contract has the standard indemnity stream of the form 

 max[ [ ] ,0]E PY PYβ − , (1) 

where P  and Y  are non-negative random variables representing price and yield risks, 

respectively, with the joint probability distribution F  and density f ; (0,1]β∈  is the 

coverage level; and E  is the mathematical expectation.6 

 

PROPOSITION 1. An actuarially fair premium for revenue insurance, ( )R FΠ  

max[ tsdF= β∫ ∫  ,0]py dF− , decreases (increases) under A
cF F ′≺  ( B

cF F ′≺ )  

where A = {( , ) | ]}p y py tsdF ′≤ β∫  and {( , ) | }B p y py tsdF= ≥ β∫ . 
 

Proof. First, we consider A
cF F ′≺ . By definition, we have ( )R FΠ (

py tsdF
tsdF

≤β∫
= β∫ ∫  

)py dF− ( )
py tsdF

tsdF py dF
′≤β∫

≥ β −∫ ∫ ( )
py tsdF

tsdF py dF
′≤β∫

′ ′= β −∫ ∫  ( )
py tsdF

dF
′≤β∫

− β∫  

( )pyd F F′ −∫ ( )
py tsdF

pyd F F
′≤β∫

′+ −∫ ( ) (1 ) ( )R py tsdF
F dF pyd F F

′≤β∫
′ ′= Π + −β −∫ ∫

( )R F ′≥ Π . The first inequality is because the function ( , )p y pyϕ =  is supermodular and 

the expected value of a supermodular function is monotone in the (local) concordance 

order, pydF∫  pydF ′≤ ∫ . Then, the fact that the increase in dependence is “local” and 

takes place on set A  is used. Specifically, A
cF F ′≺  implies that 

py tsdF
dF
′≤β∫∫  

py tsdF
dF
′≤β∫

′= ∫  and ( )
py tsdF

pyd F F
′>β∫

′ −∫  0= . The last inequality follows because 1β ≤ . 

The case with B
cF F ′≺  is proved similarly. We have ( )R FΠ (

py tsdF
tsdF

≤β∫
= β∫ ∫  

)py dF− ( )
py tsdF

tsdF py dF
≤β∫

′= β −∫ ∫ ( )
py tsdF

tsdF py dF
≤β∫

′ ′≤ β −∫ ∫ (
py tsdF

tsdF
′≤β∫

′≤ β∫ ∫  

) ( )Rpy dF F′ ′− = Π . The second equality is because B
cF F ′≺  implies that F F ′=  for all 

( , )p y  such that py tsdF≤ β∫ . Both inequalities are due to tsdF tsdF ′≤∫ ∫ , which is also 

implied by B
cF F ′≺ .  
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Note that conditions in Proposition 1 do not overlap in the sense that it is impossible 

to have F F ′≤  for all ( , )p y  such that tsdF py tsdF ′β ≤ ≤ β∫ ∫  (with strict inequality for 

some ( , )p y ), and F F ′=  otherwise.7 Of course, conditions provided in Proposition 1 are 

only sufficient and provide little guidance when set A  includes the realizations of price 

and yield that are both above and below the guaranteed revenue.  

Next, we study the effect on the premium when an increase in dependence is 

“small,” although it is not restricted to any particular area of the distribution support. For 

simplicity, we consider discrete random variables with finitely many atoms: 

1 2 ... np p p< < <  and 1 2 ... my y y< < < . We examine the effect of EIC 
1 2 1 2

( , , )i i j je p p y y ε  

of distribution F on the expected value of the indemnity for revenue insurance. Let 

( , )e eP Y  denote random variables with the probability distribution eF  that is obtained 

from F  through an EIC; that is, ( , )e
i jf p y ( , )i jf p y− ij= δ  where ε∈  

1 2 2 1
(0,min[ ( , ), ( , )]]i i i if p y f p y , 1 2i i< , 1 2j j< , ijδ = ε  if 1 1,i i j j= =  or 2 2,i i j j= = , 

ijδ = −ε  if 2 1,i i j j= =  or 1 2,i i j j= = , and 0ijδ =  otherwise.  

 

PROPOSITION 2. An actuarially fair premium for revenue insurance decreases (increases) 

under an EIC of ( , )F p y  depending on whether 

 
2 2

[ ] Pr{ [ ]} (1/ Pr{ [ ]})e e e e e e
i jE P Y p y PY E P Y PY E P Y≥ ≤ β + β − ≤ β  (2) 

2 1 1 2 1 1
( )i j i j i jp y p y p y+ − , or 

 
2 2

[ ] Pr{ [ ]}e e
i jE P Y p y PY E PY≤ ≤ β  (1/ Pr{ [ ]})PY E PY+ β − ≤ β  (3) 

2 1 1 2 1 1
( )i j i j i jp y p y p y+ − . 

 

Proof. Decompose the difference as follows: ( ) ( )eF FΠ −Π M= + N , where 

,
(( ( [ ] ) )i ji j

M E PY p y p y += β + ε∆ ∆ −∑ ( [ ] ) ) ( , )i j i jE PY p y f p y+− β −  and 

2 2 1 1
(( [ ] ) ( [ ] )e e e e

i j i jN E P Y p y E P Y p y+ += ε β − + β − +−− )][(
12 ji

ee ypYPEβ  
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1 2
 ( [ ] ) )e e

i jE P Y p y +− β − , where 
,

[ ] ( , )t s t st s
E PY p y f p y=∑ , p y∆ ∆  = 

2 1
( )i ip p−  

2 1
( )j jy y− . Because 0p y∆ ∆ > , we obtain the following bounds for M: p yβε∆ ∆  

[ ],
1 ( , )e e

i j
i jp y E P Yi j

f p y
≤∑ M≥ ≥ p yβε∆ ∆ [ ],

1 ( , )
i jp y E PY i ji j

f p y≤∑ . Turning to N , we  

find that 
2 1 1 2 1 1

(min[ , ] ) 0i j i j i jN p y p y p y= ε − >  if 
2 1 1 2

min[ , ] [ ]e e
i j i jp y p y E P Y≤ β  

2 1 1 2
max[ , ]i j i jp y p y≤ , 0N p y= −ε∆ ∆ <  if 

2 2
[ ]e e

i jE P Y p yβ ≥ , and the sign of N  is inde-

terminate if 
2 1 1 2

max[ , ]i j i jp y p y <
2 2

[ ]e e
i jE P Y p yβ < . Combining these conditions with the 

bounds for M completes the proof. 

 

In general, the right-hand sides of inequalities (2) and (3) are non-monotone in the 

coverage level, β . As expected by Proposition 1, condition (2) is satisfied when an EIC 

involves the realizations of price and yield that lie below the guaranteed revenue, 
2 2i jp y  

[ ]e eE P Y≤ β , while condition (3) is satisfied when an EIC involves the realizations above 

the guaranteed revenue, 
1 1

[ ]e e
i jp y E P Y≥ β , when 1β ≤ . Proposition 1 can also be estab-

lished by repeatedly applying Proposition 2.8 In the manner of Proposition 2, it can be 

shown that the effect of an EIC on the premium rate, ˆ ( ) ( ) /F F pydFΠ = Π β∫ , is nega-

tive (positive) depending on whether  

 
2 2

[ ] ( [ ]) (1 ( [ ]))e e e e e e
i jE P Y p y L E P Y L E P Y≥ β + − β

2 1 1 2 1 1
( )i j i j i jp y p y p y+ − , or (2a) 

 
2 2

[ ] ( [ ])e e
i jE P Y p y L E PY≤ β  (1 ( [ ]))L E PY+ − β

2 1 1 2 1 1
( )i j i j i jp y p y p y+ −  (3a) 

holds, where ( ) [ | ]Pr{ }/ [ ] 1L R E PY PY R PY R E PY= ≤ ≤ ≤ . These conditions are 

analogous to conditions (2) and (3).  

We can isolate two partial effects on ( )R FΠ  induced by A
cF F ′≺ : (i) as previously 

noted, the expected revenue, and hence the guaranteed revenue coverage, [ ]E PYβ , in-

creases; and (ii) the transformation of the probability distribution of revenue, PY , has an 

effect on ( ; )R F RΠ max[ ,0]E R PY= −  as a result of A
cF F ′≺ , keeping the revenue 

guarantee, [ ]R E PY= β , fixed. Effect (ii) is ambiguous and depends on the subset of the 
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domain in which the dependence between P  and Y  increases in the sense of the local 

concordance ordering. If the insurance never pays off in the range of price and yield re-

alizations with greater dependence (set B), the expected indemnity increases because 

(obviously) effect (ii) has no impact on ( ; )R F RΠ . 

On the other hand, if the insurance always pays off in the subset of price and yield 

realizations with greater dependence, A , then the expected indemnity decreases. This is 

because the probability mass is shifted toward outcomes in which revenue is more dis-

persed such as 
1 1i jp y  and 

2 2i jp y , and away from the outcomes in which revenue is more 

stable 
1 2 1 1 2 2

( , )i j i j i jp y p y p y∈  and 
2 1 1 1 2 2

( , )i j i j i jp y p y p y∈ . Therefore, keeping the revenue 

guarantee, R , fixed, the expected payout must fall because the probability weight is 

shifted toward the outcomes with a smaller average payout, 
1 1 2 2i j i jp y p y+  

1 2 2 1i j i jp y p y> + . Furthermore, in this case effect (ii) dominates effect (i). The reason is 

that effect (ii) works through transforming the probabilities with which the indemnity 

payments occur, while effect (i) shifts the magnitude of all payouts, albeit conditional on 

the event that the revenue falls short of the revenue guarantee. Hence, the impact of effect 

(i) is scaled down by both the probability that there is an indemnity payment and the 

share of the expected revenue covered by the insurance: Pr{ [ ]}PY E P Y′ ′β ≤ β .  

As previously mentioned, Proposition 2 demonstrates that the effect of an increase in 

price-yield dependence on the expected indemnity depends on the level of coverage in a 

non-monotone manner. However, loosely speaking, the set of joint probability distribu-

tions exhibiting a greater degree of price-yield dependence that raises (lowers) the 

expected indemnity expands (contracts) when the level of insurance coverage, β , de-

creases. This is formalized in the following. 

 

COROLLARY. Let A
cF F ′≺  for some ( ( , )) ( ( , ))A supp F x supp F y⊆ ∞ × ∞ . (a) Suppose 

that ( , )sup { }p y A py∈β =  / pydF ′∫ 1< . Then the actuarially fair premium decreases, 

( , ) ( , )R RF F ′Π β ≥ Π β , for any β ≥ β ; (b) There exists ( , )min[1, inf / ]p y A py pydF∈β = ∫  

such that the premium increases, ( , )R FΠ β ( , )R F ′≤ Π β , for any β ≤ β . 



8 / Saak 

Note that conditions (a) and (b) provide a sense in which it is “more likely” that the ex-

pected indemnity increases as the strength of positive dependence between price and 

yield increases when the level of coverage is low. This is, of course, because ordinarily, 

agricultural revenue insurance covers less than 100 percent of the expected revenue. 
 

EXAMPLE 1. Let price and yield take one of three values: low (1), medium (2), or high 

(3), with equal probability (see Figure 1). Price and yield are independent random vari-

ables if 0ε =  and negatively dependent in the sense of the concordance order for 

[ 1/ 9,0)ε∈ − . Consider EIC (1,2,1,2, )e ε  that involves realizations of price and yield 

such that revenues are low, 4 [ ] [ ]py E P E Y≤ =  (see Figure 1a). The relationships be-

tween the premium rate and the strength of positive dependence for different levels of 

coverage are presented in Figure 2. In contrast, in the case of EIC (2,3,2,3, )e ε  (see Fig-

ure 1b), the premium rate increases for all 1β ≤ . 

 

Before closing this section, consider the effect of an increase in price-yield dependence 

on the premium for a revenue insurance policy with the expected indemnity equal to9 

 max[ max[ , ] ,0]CRC E EP P EY PYΠ = β − . (4) 

Using the fact that the indemnity function in equation (4) is submodular in ( , )P Y  when 

either P EP≥  or P EP≤  and [ ] [ ]PY E P E Y≤ β , we can easily obtain the following. 
 

PROPOSITION 3. Actuarially fair premium (4) decreases under 1A
cF F ′≺ 2A

c F ′′≺  or 

2A
cF F ′≺ 1A

c F ′′≺ ; i.e., ( ) ( ) ( )CRC CRC CRCF F F′ ′′Π ≥ Π ≥ Π , where 1 {( , ) :A p y=  

[ ] [ ], [ ]}py E P E Y p E P≤ β ≤  and 2 {( , ) : [ ]}A p y p E P= > .10 

 
 

a)  

9/19/19/13
9/19/19/12
9/19/19/11

321\

εε
εε

+−
−+

PY
 b)  

εε
εε

+−
−+

9/19/19/13
9/19/19/12

9/19/19/11
321\ PY

 

FIGURE 1. Probability distribution of price and yield and elementary increase in  
concordance 
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0.5β =  0.837β =  1β =  

FIGURE 2. Premium rate for revenue insurance as a function of ε  

 

Comparing conditions in Propositions 1 and 3 provides a sense in which the premium for 

insurance contract (4) is “more likely” to decrease compared with that for insurance con-

tract (1) as the strength of (negative) price-yield dependence weakens.    

 

4. Premiums for Revenue and Yield Insurance 
The expected indemnity payment under a yield insurance contract is 

 max[ ,0]Y EP EY yΠ = β − . (5) 

We will need the following notation. Let ( ) ( , )PF p F p= ∞  and ( ) ( , )YF y F y= ∞  denote 

marginal probability distributions for price and yield, respectively, with densities Pf  and 

Yf . Let 1( ) inf{ : ( )G v x G x v− = ≥ , 0 1}v< <  denote a left-continuous inverse of the uni-

variate probability distribution G . Also, let 1( ) (1 ( ))P YQ y F F y−= − , which can be 

regarded as an inverse crop demand function. When can we assuredly say that the ex-

pected indemnity for revenue insurance contract, ( , )R FΠ β , is greater (smaller) than that 

for the corresponding yield insurance contract, ( , , )Y P YF FΠ β ?  

 

PROPOSITION 4. (a) An actuarially fair premium for revenue insurance is greater than 

that for yield insurance when A
c P YF F F≺  where {( , ) : [ ] [ ]}A p y py E P E Y= ≤ β . 

(b) Suppose that (i) ( ( )) ( ) ( )P Yf Q y Q y f y y≥  for all y , and (ii) 1ˆ min[ , ( )]y EY Q EP−≤ β  

where ˆ ˆ ˆsup{ : ( ) [ ( ) ]}y y Q y y E Q Y Y= = β . Then an actuarially fair premium for revenue 

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
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18.9

19.0
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24.2

24.7
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insurance is smaller than that for yield insurance when A
L cF F≺  where ( , )LF p y  

max[0, ( ) ( ) 1]P YF p F y= + −  and {( , ) : }A p y py pydF= ≤ β∫ . 

 

Proof. Part (a): Because the function max[.,0] is convex and using Jensen’s inequality, 

we have ( , ) [ ] max[ [ ] ,0]Y P Y YF F E P E Y y dFΠ = β −∫ max[ [ ] [ ]E P E Y≤ β∫ ,0] P Ypy dF dF−  

( )R P YF F= Π . By Proposition 1, ( )R FΠ ≥ ( )R F ′Π  if A
cF F ′≺  where P YF F F′ =  and 

{( , ) : [ ] [ ]}A p y py E P E Y= ≤ β .  

Part (b): There are two steps. First, we show that conditions (i) and (ii) are sufficient 

to assure that the premium rate for yield insurance is higher than that for revenue insur-

ance when the price and yield are countermonotonic.11 Second, we apply Proposition 1. 

Step 1. The Frechet lower bound ( , ) max[0, ( ) ( ) 1]L P YF p y F p F y= + −  is the probabil-

ity distribution of 1 1( (1 ), ( ))P YF U F U− −−  where U is uniformly distributed on [0,1] , or 

( ( ), )Q Y Y , so that P  and Y  are functionally dependent. Now we show that conditions (i) 

and (ii) imply that ( )R L YFΠ ≤ Π . This inequality holds assuredly if for any y   

 [ ( ) ] ( )E Q Y Y Q y yβ ≥  implies y EY< β  and [ ( ) ] ( ) ( ).E Q Y Y Q y y EP EY yβ − ≤ β −  (6) 

Because [ ( ) ] ( )E Q Y Y EQ Y EY EPEY< = , the last inequality in (6) is satisfied if 

( )Q y EP≥ , or 1( )y Q EP−≤ . And so, relationship (6) adheres if ( )Q y y  is increasing in 

y , which is assured by condition (i), and 1ˆ min[ , ( )]y EY Q EP−≤ β  where ŷ  

ˆ ˆsup{ : ( )y Q y y= [ ( ) ]}E Q Y Y= β , which is precisely condition (ii).  

Step 2. The proof is completed by observing that, by Proposition 1, ( )R LFΠ  

( )R F≥ Π  if A
L cF F≺ where {( , ) : }A p y py pydF= ≤ ∫ . 

Part (a) follows because, by Jensen’s inequality, the premium for yield insurance is 

always smaller than the revenue counterpart when price and yield risks are independent. 

The condition in part (b) can be stated in terms of the price elasticity with the inverse 

demand given by ( )Q y . Then condition (i) is equivalent to the requirement that the price 
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elasticity is sufficiently small (in absolute value): ( ) 1yη ≥ −  where ( )yη [ ( ) / ]y Q y y= ∂ ∂  

/ ( )Q y . Using Jensen’s inequality and the functional dependence between ( )P Q Y=  and 

Y  (implied by countermonotonicity), it is easy to check that condition (ii) is satisfied 

when the inverse demand function ( )Q y  is concave, given that condition (i) holds. 

 

EXAMPLE 2. Consider the binary (bivariate Bernoulli) distribution of price and yield in 

Figure 3. The Frechet lower bound is obtained by setting 1/ 4ε = − . Then the premium 

for revenue insurance is ( ) 0.5(0.5 ( ) min[ , ])R LF p y py p y pyΠ = β + − , while the pre-

mium for yield insurance is 0.25( )(0.5 ( ) )Y p p y y yΠ = + β + − . Conditions (i) and (ii) in 

part (b) of Proposition 4 are satisfied (for any 0β > ) if p y py≤ , or / /a p p y y b= ≤ = . 

And so, if the price “dispersion” parameter, a , is smaller than the yield “dispersion” pa-

rameter, b , the premium for revenue insurance is smaller than that for yield insurance 

when the strength of the negative price-yield correlation is sufficiently high: 1/ 4ε = − . 

In contrast, if the price “dispersion” is sufficiently greater than the yield “disper-

sion,” 2 1a b> − , the relationship between the premiums is reversed if the feasible level 

of coverage is sufficiently small 2( 1 2 ) /( ( 1) 1)a b a b bβ < + − − − + . When the strength of 

the negative price-yield correlation is weaker, the effect of the level of coverage, β , on 

the difference between the premium rates for yield and revenue insurances, ˆ
YΠ  and ˆ

RΠ , 

is, generally, non-monotone as well. This is illustrated in Figure 4 where 0.025ε = − , 

1p y= = , and 2p y= = . 
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FIGURE 3. Bivariate Bernoulli distribution of price and yield 
 

 

 

 



12 / Saak 

5. Concluding Remarks 
This paper analyzes the effect of an increase in dependence among multiplicative 

risks, random price and yield, on the actuarially fair premium for revenue insurance pol-

icy. The indemnity payment under revenue insurance is equivalent to the payoff of a put 

option on revenue with the strike price equal to the revenue guarantee. Because the in-

demnity function is not supermodular in the two risks over the entire domain of possible 

realizations, the approach taken is to localize the concept of greater dependence to assure 

monotonicity. When an increase in dependence is restricted to a certain subset of the sup-

port of the joint probability distribution of price and yield, the effect on the actuarially 

fair premium for revenue insurance can be easily signed. Furthermore, circumstances un-

der which the premiums for revenue and the corresponding yield insurance can be 

unambiguously compared become more transparent. 

 

 

 
 
 
 
 
 
 

FIGURE 4. Premium rates for revenue and yield insurances as functions of β  
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Endnotes 

1. The contract details and the description of various revenue insurance policies avail-

able to agricultural producers are provided in Harwood et al. 1999. In one of the 

more popular contracts, Crop Revenue Coverage, the revenue guarantee is not fixed 

at the time when the insurance contract is purchased but depends on the realized har-

vest-time price. Other revenue insurance policies such as Revenue Assurance and 

Income Protection conform to the standard insurance contract with the revenue guar-

antee fixed when the contract is signed. 

2. The strength of price-yield correlation is likely to differ across growing regions be-

cause of the variability in the geographical concentration of production as well as 

across different crops within a region (e.g., Harwood et al. 1999). 

3. Hennessy, Babcock, and Hayes (1997) show that revenue insurance is always 

cheaper than the combination of separate price and yield insurances. The issue of 

comparing the premiums for revenue and yield insurances for a given coverage level 

is of practical significance (e.g., see Miller, Kahl, and Rathwell 2000, Turvey and 

Amanor-Boadu 1989, Turvey 1992a,b; Skees et al. 1998). Most of the agricultural 

economics literature in this area focuses on the empirically sound estimates of insur-

ance premiums (e.g., Stokes 2000; Buschena and Lee 1999; Richards and Manfredo 

2003). In addition to option pricing techniques, empirical estimates of revenue insur-

ance premiums can be obtained using a simulation approach based on imposing 

correlations through reordering of the draws (e.g., Hart, Hayes, Babcock 2003). The 

importance of accounting for the negative price-yield dependence as a determinant 

of premium subsidy levels is recently emphasized in Wang, Hanson, and Black 

2003.    

4. The concordance order studied by these authors places no restrictions on set A ; that 

is, ( ( , )) ( ( , )).A supp F x supp F y= ∞ × ∞  
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5. It is assumed throughout this paper that the EICs always act on points such that all 

four points ( , )x y , ( , )x y′ ′ , ( , )x y′ , ( , )x y′  belong to set A  as implied by the defini-

tion. This, of course, depending on the nature of set A , may significantly restrict the 

set of dependence structures under scrutiny. As demonstrated here, such restrictive-

ness is useful when dealing with functions that possess supermodularity or 

submodularity properties on a subset of the distribution support.  

6. For most insurance products, the coverage level varies between 50 and 85 percent of 

the expected revenue (or 50 to 90 percent of the expected yield in the case of yield 

insurance in Section 4). Also, it appears that in actuality the revenue guarantee is set 

without an explicit regard for price-yield correlation, i.e., it is calculated as g gP Yβ  

instead of [ ]E PYβ , where it is implicit that [ ], [ ]g gP E P Y E Y= =  (USDA 2001b). 

7. This can be shown by integrating the first inequality with respect to F  and the sec-

ond inequality with respect to F ′  over set {( , ) : }C p y tsdF py tsdF ′= β ≤ ≤ β∫ ∫  and 

using the definition of C
cF F ′≺  to obtain a contradiction. 

8. Recall that A
cF F ′≺  means that there exists a sequence of probability distributions 

1,..., nF F F F ′= =  such that iF  is obtained from 1iF −  through an EIC on set A . By 

Proposition 2, it follows that the expected indemnity decreases (increases) under 

each EIC transformation depending on the subset of the distribution support in which 

the EIC takes place. 

9. This indemnity corresponds to the Crop Revenue Coverage insurance plan (hence, 

the subscript in [4]) and provides a so-called replacement cost protection in addition 

to a revenue guarantee (e.g., Makki and Somwaru 2001). 

10. Note that sets 1A  and 2A  do not overlap.  

11. Random variables that reach the Frechet lower bound are said to be counter-

monotonic or mutually exclusive in economics, finance, and actuarial sciences 

(Dhaene and Denuit 1999). 
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