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The Impact of the 2005 CAP First Pillar Reform 

as a Multivalued Treatment Effect 

Alternative Estimation Approaches 

 

Abstract 

This paper aims at evaluating the impact of the 2003/2005 CAP reform on farm production choices. 

The outcome of “market orientation” is measured by considering both the short-term production 

choices and the long-term investment decisions. The Treatment Effect (TE) is estimated through recent 

alternative multiple/continuous TEs estimators based on the Generalized Propensity Score (GPS). 

Instead of looking at non-treated counterfactuals these approaches take advantage of the different 

intensity with which the first pillar support is delivered to treated units. These alternative estimators are 

implemented and their statistical robustness assessed and results compared. Results show that the 

2003/2005 reform of the first pillar of the CAP actually had an impact more in (ri)orienting short-term 

farm production choices then investment decisions and this effect is significantly more evident for farms 

with a limited contribution of the CAP on their own Gross Production Value. 
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1. INTRODUCTION: OBJECTIVES OF THE PAPER  

In the last decade the empirical research on policy evaluation has paid increasing attention to the so-

called Treatment-Effects (TE) literature (Imbens and Wooldridge, 2009). A rich toolkit allowing the 

estimation of these TEs under different and complex circumstances has progressively taken form. 

Nonetheless, though equipped with this powerful toolkit, practitioners often encounters serious 

problems in adapting it to the peculiar real-world circumstances into which policy measures have been 

actually implemented. As a consequence, the recent empirical literature has also focused on assessing 

the robustness of the estimated policy impacts to identify those that are strongly dependent on the 

specific limitations of the adopted methods with respect to the real context under study (Chabé-Ferret, 

2010).    

In the case of the quantitative evaluation of Common Agricultural Policy (CAP) measures and reforms, 

these two apparently contrasting tendencies of an increasingly powerful toolkit and the need of 

robustness of results clearly emerge.  On the one hand, the growing interest in such approaches is 

evident for the second pillar of the CAP (the Rural Development Policy, RDP) whose measures seem 

particularly suitable for these empirical methodologies (European Commission, 2006; EENRD, 2010; 

Pufahl and Weiss, 2009; Lukesch and Schuh, 2010; Salvioni and Sciulli, 2011; Michalek, 2012; Chabé-

Ferret and Subervie, 2013). On the other hand, it is widely agreed that the same does not hold true for 

the first pillar of the CAP (still the largest part of CAP budget) as the way it is designed and delivered 

makes these methods not particularly helpful, or simply useless, to achieve a proper impact evaluation 

(Esposti, 2014).   

The objective of this paper is to critically re-consider the apparent infeasibility of the TE econometrics’ 

toolkit  in the case of the First Pillar of the CAP by pursuing the evaluation of the impact of its 2005 

Reform (FPR henceforth).1 In this respect, the paper adopts an alternative empirical strategy to indentify 

and estimate the TE compared to that usually followed in the evaluation of second pillar’s measures. 

This strategy does not look for non-treated units (or counterfactuals)2 but takes advantage of the 

                                                 
1 Though approved in 2003, the FPR implementation actually started in 2005. In addition, for some productions  (cotton, hop, 

olive oil, tobacco, sugar, fruits and vegetables, wine) the decoupling of the support formerly delivered through the individual 

OCMs  was actually approved and accomplished in the following years (2004-2008) (OECD, 2011, pp.64-65). For the sake of 

simplicity, we refer here to all these reform steps as the “2005 First Pillar Reform” or FPR (see also section 4).   
2 Within observational datasets counterfactuals are analogous to control units of randomized experiments. However, aassessing 

treatment effects within experimental or quasi-experimental situations presents substantially different methodological issues 

and solutions (Duflo et al., 2006). 
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multivalued nature of the first pillar support. It is based on the concept of Generalized Propensity Score 

Matching (GPSM) where matching is performed among farms with different treatment intensity. This 

seems particularly appropriate for the first pillar of the CAP where most farms receive the treatment 

(the payment) but its intensity largely varies. In recent years, several alternative estimators have been 

developed for the case of multivalued or continuous treatments3 (Hirano and Imbens, 2004; Bia and 

Mattei, 2008; Cattaneo, 2010; Cattaneo et al., 2013). They will be implemented here to compare results 

and assess their robustness.  

This approach is here applied to a balanced panel of Italian FADN farms observed over years 2003-

2007. Therefore, these farms are observed before and after the FPR, whose implementation, in Italy, 

actually started in 2005, and the period under analysis is symmetric with respect to the treatment. 

2. THE CONCEPTUAL BACKGROUND: WHY EVALUATING THE IMPACT OF THE FPR IS DIFFICULT?  

In 2003 the first pillar of the CAP underwent what can be considered the most radical reform of its half-

century history; the so-called Fischler Reform (Sorrentino et al., 2011). With decoupling the FPR 

substantially changed the way support is delivered to farms. One of the purposes of decoupling was 

(ri)orientation to market, that is, to eliminate the distorting effect on production decisions of the 

precedent coupled support and leave the farmers free to produce what they consider more profitable in 

the market. Therefore, an ex post evaluation of the effectiveness of the FPR should assess whether and 

to what extent the decoupling of first pillar’s support really oriented farmers to market. Despite the wide 

empirical literature produced on the impact of the FPR at both the farm and several aggregate levels 

(OECD, 2011; Sorrentino et al., 2011), such evaluation has never been performed using the rich toolkit 

of TE econometrics, mainly because it is considered unsuited, or of too difficult adaptation, to this case. 

One possible limitation of the FPR when considered as a “treatment” is that it should be associated to a 

clearly recognized ex-ante target, i.e. an outcome variable with respect to which the treatment/policy 

impact can be evaluated. Although we may agree that the main objective of the FPR was to reorient 

farms’ choices towards the market, it remains questionable whether and how this objective can be 

univocally expressed by a single variable, a target/outcome variable, that eventually expresses the effect 

of the reform. Such outcome variable should measure to what extent farms have changed their 

production orientation (e.g., their production mix) after the FPR, but computing such variable isn’t easy 

for production units that naturally are multi-output and, therefore, systematically change their 

production mix on a yearly basis. 

More importantly, a second limitation really represents the key limitation that apparently prevents the 

application of TE methods to the evaluation of the FPR. To apply the TE logic counterfactual 

observations must exist; that is, observations where the outcome variable(s) is (are) observed without 

the treatment (counterfactuals). In the case of the FPR, however, finding a proper strategy to identify 

counterfactuals and compare them to treated units represents an often unsolved research challenge. On 

the one hand, the non-treated units (that is, farms receiving no support under the first pillar of the CAP 

and, therefore, not involved by the FPR) are relatively few compared to the treated ones and this 

represents a problem for a proper matching. On the other hand, they are not treated just because of their 

peculiar production and managerial choices. Even though a non-treated sample can be observed, it can 

be hardly considered a proper counterfactual sample because of this peculiarity, that is, those 

unobserved characteristics that affect, at the same time, the outcome and the treatment assignment. In 

the TE jargon, the specificity of the FPR as a treatment makes almost impossible to get rid of the 

selection-on-unobservables bias.  

One final issue is that the treatment under study must be clearly identified and observable. Apparently, 

the FPR itself has substantially increased the clarity and the identifiability of the treatment associated to 

the first pillar of the CAP. Many and heterogeneous coupled payments (associated to about 30 Common 

Market Organizations, CMOs) have been transformed into a unique and decoupled Single Farm 

Payment (SFP) directly delivered to the farmer (European Commission, 2011; OECD, 2011). This 

makes the FPR treatment easily measurable as the amount of money that, at the farm level, have been 

                                                 
3 Some texts refer to this case as “multilevel treatment” while with “multivalued treatment” it is designated the case of more 

than one treatment simultaneously administered to the same units (StataCorp, 2013). Here, following the prevailing 

terminology in the TE literature (Imbens and Wooldridge, 2009; Cattaneo, 2010) the former case is called “multivalued 

treatment”, the latter  “multiple treatment”. 
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transformed from several coupled payments into a decoupled SFP. However, still a complication arises 

in considering the FPR as a “treatment” because, unlike other typical policy program evaluations (e.g., 

job training programs), the treatment associated to the FPR is not a binary treatment, (i.e., expressed as 

a dichotomous variable: 1=treated, 0=not treated). The FPR is a continuous treatment (multivalued 

treatment; Cattaneo, 2010) where only few units (farms) are not treated, while most units are treated but 

with different intensity. Therefore, in the case of the FPR the TE reasonably depends on the treatment 

intensity and not only on being treated or not. Nonetheless, the multivalued nature of the treatment, 

rather than being a limitation, actually represents the key opportunity to identify and estimate the TE of 

the FPR.   

3. THE METHODOLOGICAL APPROACH: MULTIVALUED TREATMENT AND THE GENERALIZED 

PROPENSITY SCORE MATCHING (GPS)  

Consider a sample of N observations (farms). Let iY  indicate the outcome variable observed in the 

generic i-th farm (unit), i = 1,…, N (where N is the sample size) and T=0,1 the binary policy treatment 

(T=0 if not treated, T=1 if treated). Let’s assume that the attribution of a given treatment to the i-th farm 

does not affect the TE on the j-th farm, Nij ,...,0=≠∀ . This assumption is called stable-unit-

treatment-value assumption (SUTVA). It seems plausible whenever micro data are used and the 

treatment assignment to single units may hardly have aggregate (or macro) effects (e.g., on partial and 

general equilibrium market adjustments) (OECD, 2011). In the present case, however, the SUTVA also 

implies the absence of diffusion or spillover effects like, for instance, imitation.
4
  

By Average Treatment Effect (ATE) we intend the following expected value:
5
 

(1) ( ) NiYYEATE
iiIi

,...,1,
0

=∀−=   

ATE expresses the difference that would be observed in the outcome in a purely experimental (or 

randomization) situation, that is, if the i-th farm were observed, in sequence, under treatment and non-

treatment. In practice, with observational (or non-experimental) data, we really observe only the 

outcome under one of the possible states. The outcome in all other cases is, in fact, hypothetical or 

potential (Rubin, 1974). 

In the case of binary treatment matching has become a popular approach to estimate ATE on treated 

units (or Average Treatment Effect on the Treated, ATT) (Imbens and Wooldridge, 2009). But, as 

mentioned, matching requires counterfactuals (non-treated units) to be compared with the treated units 

under the assumption that, once we control for all relevant and observable confounding factors (or 

covariates) X, the different outcome between the two groups only depend on the treatment. Such 

assumption is known as Conditional Independence Assumption (CIA) or Unconfoundedness 

Assumption. Vector X is expected to contain all the pre-treatment variables that affect, at the same time, 

the treatment assignment and to the outcome variable. Basically, it is the validity of the CIA that is 

seriously questioned when we apply conventional matching TE estimation to the FPR evaluation. 

As shown in Esposti (2014), applying binary TE estimation to the FPR impact evaluation may raise 

severe objections since matching estimation can only ensure against the selection-on-observables bias 

but, evidently, can do nothing against the selection-on-unobservables bias. Evidently, these variables 

being unobservable, the presence of the bias they generate can not be tested: it is an hidden bias. At the 

same time, however, if there are unobserved variables that affect assignment to treatment and the 

outcome variable simultaneously, the respective hidden bias would make matching estimators not 

robust. As a consequence, checking the robustness and sensitivity of the matching estimates has become 

                                                 
4 As the FPR concerns farms’ market orientation, excluding such spillover effects of the treatment may seem a relevant 

assumption. Nonetheless, it is still hardly testable. Chabé-Ferret and Subervie (2013) actually suggest that a test on this 

assumption’s validity can be still attempted by looking at neighboring farmers’ outcome variable dynamics before and after the 

treatment. Such kind of statistical test, however, would imply making the spatial dimension explicit within the adopted panel 

sample, that is, to introduce spatial econometrics techniques. This solution seems computationally demanding when micro data 

are used (6542 units in the present case) and is here ignored. However, it may represent an interesting direction for future 

research.   
5 If i indexes a randomly drawn unit in the population we can also write iATEATE = , where ATE  is also called Population Average 

Treatment Effect (PATE). In the sample, ATE  is calculated averaging iATE  across the sample units and it is also called Sample Average 

Treatment Effect  (SATE) (Abadie et al., 2004). In the present application, whenever the ATE has to be intended as SATE, for simplicity, we 

drop the i index in the notation.  
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an increasingly important topic in the applied evaluation literature as a sort of indirect evidence of the 

presence of this hidden bias. Beside any helpful sensitivity analysis, it remains true that the major 

drawback of the matching methods consist in the possible and not testable presence of hidden biases 

caused by unobservable covariates. In particular, in the case of the FPR the treatment is applied to a 

large majority of farms, therefore it is a non-selective generalized policy. Farms not involved by this 

policy are very peculiar and, therefore, represent a self-selected exception, thus apparently not suitable 

counterfactuals in matching estimation. 

One possible alternative consists in the Difference-In-Difference (DID) estimation approach (Smith and 

Todd, 2005) where the selection-on-unobservables bias is apparently circumvented by considering, as 

suitable counterfactuals, the same treated units observed before the treatment. After all, any treated unit 

can be compared with itself observed before the treatment (the FPR). In fact, the DID approach 

(conditional or not) still needs a control group of farms, that is a sample of non-treated farms to perform 

the ATT estimation. Therefore, it does not really solve the basic problem underlying matching 

estimation in the present case. Existing studies show that the application of the DID estimation to the 

FPR case shows little robustness across different before and after-treatment periods (Esposti, 2014). 

This may indicate that time strongly affects the outcome variables here considered and this effect of 

time is evidently not controlled by the set of covariates and differs between treated and non-treated 

units. In practice, this lack of robustness could be interpreted as an evidence against the validity, in the 

present case, of the Conditional mean-Independence of Increments Assumption (CIIA) (i.e., the key 

assumption underlying this estimation approach) due to the year-by-year strongly unpredictable and 

highly differentiated (across crops, territories, types of farm and farming) variations in market and 

environmental (e.g., weather) conditions. In addition, as emphasized by Chabé-Ferret and Subervie 

(2013), the apparent violation of the CIIA can be rather attributed to the elusive timing of the response 

to the treatment, that is, to the presence of anticipation effects (potentially occurring before the 

treatment) or of lagged effects (potentially occurring after the treatment).   

Despite these challenging issues, however, an alternative approach to these binary-treatment estimators 

can be adopted any time the treatment is not binary ( 1,0=T ), but behaves as a multivalued (either 

discrete or continuous) variable ( +
∈ RN orT ) and the response of the outcome variable (Y) to the 

treatment is itself continuous. In such circumstance, the intensity of the treatment can be correlated to 

the magnitude of this response and this allows the identification and estimation of the TE without using 

the non-treated units. In fact, these latter are no more needed to observe how the Y varies with T|X. Any 

treated unit can behave as a counterfactual case for units with a different treatment intensity.   

The case of the FPR seems particularly suitable for a multivalued treatment approach. In Italy the SFP 

has been established on a historical basis (Povellato and Velazquez, 2005; Frascarelli, 2008), therefore 

the amount of support shifting from coupled to decoupled payment varies across treated units (farms) 

and this treatment clearly behaves as a continuous variable. We can here reasonably assume that for a 

farm with given characteristics (that is, conditional on X) the larger the coupled (thus constraining the 

production choices) support then converted into the SFP, the larger the expected change in the 

production mix (market reorientation). Nonetheless, whenever we have a multivalued treatment the 

critical issue shifts from finding appropriate counterfactuals to properly define the functional 

relationship between Y and T|X.        

3.1. The Hirano-Imbens approach: GPS and the Dose-Response Function (DRF)  

The approach that follows this intuition has been originally proposed by Hirano and Imbens (2004) and 

it is based on the concept of Generalized Propensity Score (GPS). In a broad sense, it can be considered 

a generalization of the conventional binary-case matching estimation based on the Propensity Score 

(PSM) (Becker and Ichino, 2002). The Hirano-Imbens approach  can be described as sequence of three 

steps.  

For any treated unit i = 1, …, N , we observe the covariates Xi, the treatment level Ti , the outcome 

variable Yi . We define, ∀i, a set of potential outcomes ( ){ }
Ξ∈Ti

TY  where Ξ  is the set of potential 

treatment levels and ( )TY
i

 is a random variable that maps, for the i-th unit, a particular potential 

treatment, T, to a potential outcome. Evidently, of these potential outcomes only one is observed, that 

associated with the actual treatment Ti. Hirano and Imbens (2004) refer to ( )TY
i

 as the unit-level Dose-
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Response Function (uDRF). In fact, we are interested in the average Dose-Response Function (aDRF), 

( )[ ]TYETaDRF ()( = .  

The first step of the Hirano-Imbens approach consists in the estimation of the univariate variable GPS. 

Hirano and Imbens (2004) define the GPSi as the probability that the i-th unit is assigned the treatment 

level T given its observed characteristics Xi: ( )
iii

TrGPS X,= , where ( )X,Tr  is the propensity function, 

i.e., the conditional density of the actual treatment given the observed covariates. For the GPS to be 

meaningful in the calculation of the ATE, the following condition must be satisfied within the sample: 

units with statistically equivalent values of X are expected to show, around a given interval of GPS, 

both treatment levels lower and higher than a given level T. This is the balancing condition in the 

continuous treatment case.6 Hirano and Imbens (2004) demonstrates that if this condition is respected, 

and CIA assumed, the assignment to treatment is unconfounded, given the estimated GPS.
7
 Therefore, 

the different Y observed across units showing the same estimated GPS|X can be fully attributed to the 

different treatment level T. Once the propensity function is estimated and the balancing condition is 

met, the second methodological step consists in estimating the conditional expectation of the potential 

outcome as a function of two scalar variables, the estimated GPS and T: [ ]TSPGYETSPGg ,ˆ),ˆ( = . 

The third step estimates the aDRF as ( )[ ]TgETaDRF ˆ()( = , Ξ∈T , that is, by averaging the estimated 

conditional expectation ),ˆ(ˆ TSPGg over the GPS at any level of the treatment we are interested in.  

The estimation steps imply arbitrary specification assumptions whose validity can be only assessed ex 

post by checking for the robustness of results. The complexity of the overall estimation procedure 

together with this arbitrariness may explain why, though originally proposed some years ago by Hirano 

and Imbens (2004), this approach has been only recently applied to the evaluation of multivalued 

program or policies (Bia and Mattei, 2007, 2012; Flores and Mitnik, 2009; Kluve et al., 2012; Magrini 

et al., 2013) and never to the evaluation of the FPR.    

The first arbitrary assumption implied by the method is the specification of the distribution of Ti  
conditional on Xi  to compute its conditional density. The common practical implementation of the 

methodology, also followed here, assumes a normal distribution for the treatment given the covariates: 

 (2) ( )
iiii

TTr XX =, ~ ( )2,σ
i

N Xβ′  

where β  is a vector of unknown parameters and X  is the matrix of covariates. Therefore, the 

assumption is that the propensity function is linear in unknown parameters that can be thus estimated by 

OLS. Evidently, it is possible to assume other distributions, to adopt different (even non-parametric) 

specifications other than the linear regression and to estimate the GPS by other methods such as MLE.
8
 

In fact, while the normality assumption can be tested, the empirical specification of (2) remains 

arbitrary. In particular, it seems questionable here to assume a linear relationship between T and some 

set of conditioning variables X. Nonetheless, this problem can  be prevented by using X  instead if X , 

where X  includes transformations (e.g., polynomial terms) of X  and/or interactions terms across 

variables in X , in such a way that X  satisfies both the normality assumption and the balancing 

condition.  

The estimated GPS is thus calculated as: 

(3) 
( )

( )








′−−=
2

22 ˆ2

1
exp

ˆ2

1ˆ
iii

TSPG Xβ
σσπ

 

A second and, probably, more critical arbitrary assumption concerns the specification of the uDRF, 

[ ]TSPGYETSPGg ,ˆ),ˆ( = , that is, the conditional expectation of the potential outcome with respect to 

T and the estimated GPS. The often adopted specification of the conditional expectation is a fully 

                                                 
6 For more details on the balancing condition in the binary-treatment case see also Becker and Ichino (2002) and Abadie et al. 

(2004).  
7 In the multivalued treatment case, Hirano and Imbens (2004) actually call the CIA weak unconfoundedness assumption since 

it only requires conditional independence to hold for each value of the treatment, rather than joint independence of all potential 

outcomes. Such assumption is also called (weak) ignorability (Cattaneo, 2010).     
8 See next section for an Multinomial Logit specification of (2). In any case, following Bia and Mattei (2008) and also to test 

for the validity of the normality assumption, a  MLE instead of a OLS estimation of parameters β  is here performed.  
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interacted flexible function of its two arguments providing a good approximation of the underlying 

unknown relationship:  

 (4) ( ) [ ] ( ) ( ) ( ) ( )hk
K

k

H

h

kh

h
H

h

h

k
K

k

k
SPGTSPGTTSPGYETSPGg ˆˆ,ˆ,ˆ

1 111

0 ∑∑∑∑
= ===

+++== λγαα  

where 
khhk

λγαα ,,,

0
 are unknown parameters to be estimated.9 For each i-th unit, the observed Yi, Ti 

and the estimated GPSi are used to estimate the unknown parameters of (4) by OLS. Our empirical 

approach (see next sections) start with the general form (4) and then adopts the best fitting specification 

according to the usual Akaike Information Criterion (AIC). 

The final step thus consists in using these estimated parameters to compute the average potential 

outcome at a given treatment level, T. ( )[ ]TgETaDRF ˆ()( =  is estimated as: 

 (5) ( )[ ] ( ) ( ) ( ) ( )∑ ∑∑∑∑
= = ===












+++==

N

i

h

i

k
K

k

H

h

kh

h

i

H

h

h

k
K

k

k
SPGTSPGT

N
TgETaDRF

1 1 111

0
ˆˆˆˆˆˆ

1
ˆ()( λγαα  

The entire aDRF can be thus obtained by computing this average potential outcome for each level of the 

treatment, i.e. Ξ∈∀T . Bootstrap methods can be used to obtain standard errors of the estimated 

)(ˆ TFRaD  taking into account the estimation of parameters in (2) and (4) (i.e., the entire estimation 

process is bootstrapped).
10
 Eventually, the first order derivative of (5) with respect to T represents the 

ATE of the various treatment levels and as such is here estimated.  

In fact, large part of the empirical problem in properly performing policy evaluation within this 

approach consists in the limited or null knowledge about how the policy effect may vary with different 

intensity of the treatment. In the specific case of the FPR, it is reasonable to argue that the decoupling of 

the support may have led to a change in production mix but this response only partially, and not 

linearly, depends on the amount of decoupled payments. There are economic and physical limitations to 

the extent of the farm response to the treatment. When this limit is approached and reached a further 

increase of the treatment intensity (i.e., T) may be ineffective. Therefore, in this specific case it seems 

reasonable to argue that a DRF does exist but it is expected to be monotonous and non-linear with a 

decreasing slope (first order derivative). Accordingly, in the case of the FPR, the ATE is expected to be 

positive but decreasing in T. 

3.2. The Cattaneo Approach: IPW and EIF Estimation of the ATE 

Evidently, beside the normality assumption in (2), the Hirano-Imbens GPSM approach strongly 

depends on the arbitrary and non-testable specifications adopted. A feasible empirical strategy to assess 

their reliability consists in comparing respective results with those obtained using alternative 

specifications or estimation strategies. Cattaneo (2010) proposes an alternative approach to the 

estimation of the ATE under multivalued treatment. Though it shares several points in common with the 

original Hirano and Imbens (2004) estimation, the  method proposed by Cattaneo (2010) significantly 

differs in the way the treatment (and the treatment variable) enters the analysis, how functional 

relationships are specified and, eventually, how the ATE is estimated. Therefore, this novel approach 

seems particularly interesting not just to pursue an allegedly superior estimation but to investigate the 

robustness of the results, i.e. the estimated ATE, once these applicative variants are admitted.   

In fact, both approaches are based on the estimation of the GPS and on the consequent estimation of the 

potential outcome given the treatment. However, Cattaneo (2010) does not estimate a parametric DRF 

but look for a non-parametric identification and estimation of some parameter (e.g., the mean) of the 

statistical distribution of the potential outcome. While the Hirano and Imbens (2004) approach applies 

to continuous treatment, Cattaneo (2010) estimation implies multiple but discrete treatment levels. 

Thus, continuous treatment variables must be converted in advance into a categorical variable. Though 

both approaches share the parametric GPS estimation, therefore, the different nature of the treatment 

variable (continuous vs. categorical variables) makes the specification of the propensity function differ: 

                                                 
9 Hirano and Imbens (2004) emphasize that there is no direct meaning (i.e., economic interpretation) of the estimated 

coefficients in (2), except that testing whether all coefficients involving the GPS are equal to zero can be interpreted as a test of 

whether the covariates introduce any bias.   
10 As shown in Hirano and Imbens (2004), in principle, it is possible to derive the analytical calculation of the asymptotic 

standard errors of the estimated DRF. In practice, it may be unaffordable or highly computationally demanding.   
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a Multinomial Logit Model (MLM) in Cattaneo (2010) instead of a linear regression as in (2). 

Moreover, the Cattaneo (2010) approach is a three-step semi-parametric estimation where the first step 

(the parametric GPS estimation) is followed by two semi-parametric stages estimating the conditional 

distribution of the potential outcome given the treatment.  

Cattaneo (2010) actually proposes two semiparametric-efficient estimation procedures and derives their 

large-sample properties: the Efficient-Influence-Function (EIF) and the Inverse-Probability Weigthed 

(IPW) estimators.11 To shortly describe how these two estimations proceed, let’s assume that there are J 

possible treatment levels  j = 0, ... , J; therefore, it is Ti = j. Also define a new indicator variable di(j) 

taking either value 1 if the i-th unit has received the j-th treatment or value 0 otherwise. It is thus 

possible to define the J potential outcomes Yi(j), ∀j∈J. FY(j)(Y) is the distribution function of the 

potential outcome Y(j), j = 0, 1, . . . , J, that is, the distribution of the outcome variable that would occur 

if individuals were administered the treatment level j. The only observed outcome variable, however, is 

given by Yi = di(0)Yi(0) + di(1)Yi(1) + ··· + di(J)Yi(J)
12 where ( ) ( ) ( ){ }′JYYY

iii
...,,1,0 is an independent and 

identically distributed draw from ( ) ( ) ( ){ }′JYYY ...,,1,0 for each i-th individual in the sample. The 

estimation method proposed by Cattaneo (2010) allows to estimate several parameters of the 

distribution function FY(j)(Y). In particular, the interest here is in estimating the Jx1 vector of potential 

outcome means: Η=(µ0, µ1, . . . , µJ)′.
13  

Under some regularity conditions (Cattaneo 2010; Cattaneo et al., 2013), FY(j)(Y) can be identified from 

observed data and, consequently, also its parameters in Η. Assuming weak unconfoundedness, this 

identification starts from the fact that ( )( ) ( ) ( ){ } ( ) ( ){ }jTYFEYFEYF jYjYjY === ,XX
XX

, where the 

latter term is identifiable from the observed data. The estimation methods proposed by Cattaneo (2010), 

therefore, estimate Η exploiting the fact that the observed potential outcome distributions have been 

marginalized over the covariate distributions. Cattaneo (2010) proposes two Z-estimators,
14
 one 

constructed using an inverse-probability weighting scheme and the other constructed using the full 

functional form of the EIF. Both estimators are shown to be consistent, asymptotically normal, and 

semiparametric efficient under appropriate conditions. Therefore, the two estimators are asymptotically 

equivalent. 

The IPW estimation extends the idea of inverse-probability weighting, widely used in the case of binary 

treatment, to a multivalued treatment context. The estimator is based on a set of moment conditions 

implied by the analysis above and by the weak unconfoundedness assumption. In this sense, it can be 

considered a sort of GMM estimation. These moment conditions are all motivated by the fact that for 

each treatment level j, the following holds true: 
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where ( )Xjp  is the conditional probability function expressing the probability of receiving the j-th 

treatment conditional on X . 

From (6) it is possible to derive the following set of moment conditions based on observed data and 

from which the GMM estimation of Η can be derived (those means that make all the moment 

restrictions hold true): 

 (7) ( ){ }[ ] 0,;, =ijjijIPW pE Xz µψ  with  ( ){ }
( )
( )ij

jii
ijjijIPW

p

Yjd
p

X
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−
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11 Efficiency has to be intended with respect to the ideal case of randomized treatment: in this case, these estimators are more 

efficient estimators than the usual parametric estimators. As the weak unconfoundedness assumption and the balancing 

condition mimic the randomization case, this result can be extended to the non-experimental cases as far as such conditions are 

valid.  
12 The fundamental problem of causal inference in a multivalued treatment context. 
13 Cattaneo (2010) also presents and discusses the quantiles’ estimation.  
14 Z stands for “zero” and indicates those estimators based on some conditions imposing a function of the data and of the 

unknown parameter to be estimated to be = 0 (as (7)).  
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where ( )′′=
iiii

TY Xz ,,  simply represents the observed data (outcome variable, treatment level, 

covariates) and jµ  is the unknown element in Η to be estimated. ( )ijp X  is not observed but can be 

estimated specifying a propensity function, as ( ) ( ) ( ) ( ){ }XXXXp
J

ppp ,...,, 10=  simply is the GPS|X. 

Once the GPS is estimated, i.e. ( )Xp̂ , and provided that the balancing condition is respected, all 

elements in H can be estimated imposing restrictions in (7): 

 (8)  jIPW ,

µ̂   s.th.   ( ){ } 0ˆ,ˆ;
1

1

,, =∑
=

N

i

ijjIPWijIPW p
N

Xz µψ  

From (8), jIPW ,µ̂ can be also expressed in closed form as follows: 
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(9) clearly shows why this estimator is called IPW, as the GPS (the probability of receiving that 

treatment level) acts as a weighting factor of the observed outcome Yi.  

Compared to IPW, EIF estimation uses more information on the marginal potential-outcome 

distribution and, therefore, involves further functions to be estimated.
15
 In particular, let’s define the 

following function for each treatment level: 

(10) ( ) ( ){ } ( ){ }jTjYEjYEe iijjijjijj =−=−= ,; XXX µµµ   

The EIF estimation is then obtained by imposing the following set of moment conditions: 

(11) ( ) ( ){ }[ ] 0;,,;
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As in the case of the IPW estimator, the EIF estimator uses these moment conditions, replacing 

expectations by sample averages and unknown functions by appropriate (parametric or nonparametric) 

estimators. Beside the GPS estimation, ( )ijp X , (11) also requires the estimation of ( )ijje X;µ . This 

leads to the following estimates: 

(12)  jEIF ,

µ̂   s.th.   ( ) ( ){ } 0,ˆˆ,ˆ,ˆ;
1

1

,,, =∑
=

N

i

ijEIFjijjEIFijEIF ep
N

XXz µµψ  

that can be expressed in closed form as follows: 
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where ( )jYi
ˆ  is the outcome variable predicted value obtained regressing 

i
Y  on 

i
X  for those 

observations with ( )jd
i

=1. 

Though asymptotically equivalent, there may be reasons to prefer one of the two estimators. The EIF is 

expected to be more robust in finite samples as it enjoys the so-called double-robust property when 

viewed from a (flexible) parametric implementation perspective, while the IPW estimator does not have 

this property. On the contrary, however, the IPW estimation could be preferred to the EIF case because 

of its simplicity though, in fact, if also the jµ̂ variance-covariance matrix has to be estimated (and this 

is evidently needed for inference purposes) the IPW estimator requires implementing the same 

ingredients of the EIF estimator (Cattaneo, 2010; Cattaneo et al., 2013). 

Therefore, in practice, the implementation of both estimators is very similar and requires the same three 

steps. First of all, ( )ijp X  must be estimated. As mentioned, this corresponds to the GPS estimation of 

Hirano and Imbens (2004), the only difference being that we have here a categorical dependent 

variable. Therefore, ( )ijp X  is here estimated with a nonlinear Multinomial Logit (ML) estimation 

                                                 
15 In statistics, the influence function is a measure of the dependence of the estimator on the value of one sample point. The EIF (Efficient 
Influence Function) is a concept adopted in the estimation of semiparametric models, that is, models combining a parametric form for some 

component of the data generating process with weak nonparametric restrictions on the remainder of the model.  
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approach. Nonlinearity comes from the fact that as independent variables of the ML model we use 
i

X , 

that is, a flexible fully interacted polynomial of the covariates. This ML model is estimated via MLE. 

The second step requires the estimation ( )ijje X,µ . Even in this case, estimation is obtained by 

specifying a flexible fully interacted polynomial (i.e., a parametric function) then estimated with OLS. 

In both cases, ( )ijp X  and ( )ijje X,µ , the actual adopted specification is selected among all possible 

forms following the usual AIC.
16
  

The final step consists in computing the ATE that can be easily obtained as: 

(14)  ( )1,,,
ˆˆ

−
−= jIPWjIPWjIPWATE µµ  and ( ) JjATE jEIFjEIFjEIF ,...,1,ˆˆ

1,,, =∀−=
−

µµ  

To perform inference on these estimated ATEs the estimated standard errors of jIPW ,

µ̂  and jEIF ,

µ̂  are 

obtained through bootstrapping of the whole estimation process. 

4. THE SAMPLE, THE TREATMENT AND THE OUTCOME VARIABLE 

A suitable sample to apply the estimation methods discussed in the previous section must be observed 

over a period including both pre and post-treatment observations (years). In other words, the sample 

must be a balanced panel and must contain all the needed information about the outcome variables, the 

treatments and the confounding variables (covariates X ). As the objective here is to assess the impact 

of the FPR on (Italian) farm’s production choices, these conditions are met by extracting a constant 

sample of Italian Farm Accountancy Data Network (FADN/RICA) farms yearly observed over a period 

including the pre and post-FPR years. The numerosity of the FADN database allows for a quite large 

balanced panel.  

For the selection of the time period covered by this panel, the choice is here made to avoid years that 

are progressively far from the moment of the treatment (2005). Moreover, it seems appropriate to select 

a period of analysis that is symmetric with respect to the treatment (FPR) and contains most, if not all, 

of its effects while excluding other possibly overlapping effects due to other policy treatments (or other 

confounding factors) and that could occur before 2003 and after 2007. For instance, adding years 2000-

2003 in the pre-treatment period can be troublesome as they may still incorporate some effects of the 

previous CAP reform (Agenda 2000) (Esposti, 2007). At the same time, the post-2007 years could raise 

the same kind of problem due the implementation of the so-called Health Check Reform (HC) (Esposti, 

2011). In addition, the considerable price turbulence observed in agricultural markets in years 2008, 

2009 and 2010 (Esposti and Listorti, 2013), then accompanied by the negative effects on agriculture of 

the general economic crisis (De Filippis and Romano, 2010), suggests particular caution in adding these 

years to the post-treatment period.  

For this reason, the balanced sample is here limited to the 2003-2007 interval. 6542 farms are observed 

over these five years. This balanced panel constitutes the sample on which the present analysis is 

performed. It is worth noticing that the FADN sample is not fully representative of the whole national 

agriculture. The reference population from which the FADN sample is ideally drawn, in fact, excludes a 

significant (at least in terms of numerosity) amount of Italian farms (those with Economic Size<4 ESU, 

that is, less than 4800 Euro of Standard Goss Margin).
17
 In this respect, the FADN sample is only 

representative of a sub-population of Italian farms, those farms that can be here refereed as professional 

or commercial farms (Cagliero et al., 2010; Sotte, 2006). Nonetheless, these 6542 farms are quite 

homogeneously distributed across the national territory, and the scattering of farms across the Italian 

macro-regions (North-West, North-East, Centre, South and Islands) well represents the pretty diverse 

agricultural conditions and structures of these different parts of the country.   

                                                 
16  It may seem now more clear why the IPW and EIF estimations of the ATE are considered a semiparametric estimation 

compared to the fully parametric estimation of Hirano-Imbens. While the underlying estimation theory is grounded in 

nonparametric estimation, in practice, they still imply (though not strictly necessary) some parametric specifications. 
17 According to 2000 Census data, more than 82% of Italian agricultural holdings had an economic size smaller than 8 ESU but 

they accounted for just 27% of total Italian agricultural area (Sotte, 2006). According to 2010 Census data, about 67% of 

Italian agricultural holdings has an economic size smaller than 18 ESU but they account for just 17% of total Italian 

agricultural area (Sotte and Arzeni, 2013). 
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The treatment is the FPR, that is, the change of first pillar support from coupled to decoupled payments. 

Evidently, the participation to the treatment is not voluntary. It depends, in Italy, on the history of the 

individual farm and on the respective support it received in the 2000-2002 period; farms can not decide 

to remain in the old regime, as this is not admitted. Therefore, the treated units (T = 1) are those farms 

that received the first pillar CAP support in the form of coupled payment before the reform and then in 

the form of SFP. According to such interpretation, the treatment consists in the change of the form of 

support and not in its amount as in Italy the conversion from coupled to decoupled payments has been 

defined on a purely historical basis. It is still possible to find farms that did not receive any CAP 

support in the old regime (for whatever reason mostly due to peculiar production and managerial 

choices). For them, the change in regime did not occur simply because they remain in a no-policy 

situation both before and after 2005, and no CAP first pillar support has been received over the entire 

2003-2007 period. Therefore, they are not treated (control) units (T = 0) simply because they 

experience no change in the form of support.
18
 

Among treated farms, the treatment level is here measured in terms of treatment intensity (TI). To take 

into account the different economic size of farms, TI is computed as the amount of first pillar support 

received by a given farm divided by its Gross Production Value (GPV). For both values, the yearly 

average over the whole 2003-2007 period is computed. Here, the multivalued treatment case only 

considers the treated units while non-treated units are excluded from the analysis under the assumption 

that, as already discussed in the case of the FPR, the selection-on-unobservables bias can not be ruled 

out. Therefore, TI is here always greater than 0.
19
  

The distribution of the TI within the sample is displayed in Figure 1. If we exclude the 1124 (17%) non-

treated units (for which T = 0), the TI across the 5430 treated units (for which T = 1) tends to 

concentrate in the [0-10%[ interval (52% of treated units); the mode is, in fact, around 5%. For only 8% 

of treated units TI is equal or greater than 30%, while for only 1% TI is equal or greater than 50%. The 

maximum TI observed within the sample amounts to about 72%. Therefore, the continuous variable TI 

has a truncated distribution starting at 0, finding a peak at about 5% and then regularly declining up the 

maximum value. It is clearly a non-normal distribution. To restore normality, therefore, the TI variable 

must be properly transformed.
20
  

At this micro-level, the FPR is expected to affect production decisions by (ri)orienting farmers’ to 

market. The hypothesis is that decoupling leaves farmers free to adjust and reorient their production 

decisions given their individual characteristics and market conditions (i.e., prices).
21
 Therefore, a proper 

outcome variable should express the degree of change in production orientation or mix. Finding a 

synthetic variable expressing such change in farm production choices, however, is not trivial. Within 

typically multioutput activities, production decisions are expressed by an output vector rather than by a 

scalar variable. For any element of this vector, the change in production choices can take a different 

form: to start producing a new (for the farm) agricultural product but also (in the case of a product that 

is already part of the farm’s supply) to increase or reduce the amount of production of that particular 

good, to improve or not its quality level and so on. Moreover, whatever this change eventually is, its 

timing may be different. The introduction of a new perennial crop in the farm output vector (for 

instance, wine production) implies a long-term horizon; in such case, what we observe in the short-

term, is just an investment decision. On the contrary, the introduction (or a larger production) of an 

annual crop (for instance, durum wheat) operates in a short-term horizon and can be directly observed 

in terms of higher cultivated area or higher revenue or higher input expenditure related to that specific 

crop.  

To take this multiple nature of the farm-level production response to FPR into account, different 

outcome variables are considered. We can divide them in two typologies. The first type of outcome 

variable is a synthetic (scalar) measure of the change in the supply vector (that is, in the shorter-term 

                                                 
18 This panel excludes farms that are strongly specialized in crops whose CMOs have been reformed only starting in 2008. 

Therefore, farms of typologies with an high revenue share of vegetable or wine production higher are excluded from the 

sample (see also Esposti, 2014).   
19 See Bia and Mattei (2008, p. 362) for more details.  
20 When needed, the Box-Cox transformation is here adopted to restore a distribution that passes the statistical test of 

normality. See Bia and Mattei (2008, p. 362) for more details. 
21 In more technical terms, the most significant impact expected from the FPR is to improve farm’s allocative efficiency. See  

Moro and Sckokai (2011) for an exhaustive theoretical background on this aspect.  
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production decisions) between two years or periods. The second type considers the investment 

behaviour, that is, production decisions oriented towards a longer-term programming horizon.  

In the first typology, the outcome variable expresses the distance between two output vectors. This 

distance is computed using two different metrics:  
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where k=1,….,K indexes the k-th product within the vector of potential production activities, 
ik
s  

expresses the share of the k-th commodity on the total revenue of the i-th farm, 
ik

d  is a dummy variable 

taking value 1(0) if the k-th product is (is not) produced by i-th farm. Finally, indexes A and B express 

the two points in time when these variables are observed. Typically, A = pre-treatment year, B = post-

treatment year. 1

i
y  and 2

iy are just distance variables: the former is an Euclidean distance, the latter is a 

variant of a conventional similarity index.  

10 ≤≤
ik
s , 1

i
y  varies between 0 and 2, with the lower value taken by farms whose revenue distribution 

across potential products remains the same between the two years/periods. In such case, no change in 

production decision is observed over time. The maximum value, on the contrary, is taken by those 

farms that concentrate all revenue in only one product and this unique product changed between the two 

periods. Therefore, this outcome variable not only accounts for the change in production decisions 

between the two years/periods but also for the degree of specialization of the given farm.  

As  
ik

d  is a dummy variable, it is 10
2
≤≤

i
y . Even in this case, the outcome variable increases the more 

the output vector changes. The 0 value is taken by farms for which all productions observed in A are 

confirmed in B and no other activity is added. In this case, however, specialization does not tend to 

increase the value of the outcome variable as, on the contrary, an higher value is observed for those 

farms that change their production activities over a large range of products. It must be also noticed that 

this second outcome variable does not take into account the different relevance (share) of a given k-th 

production in the i-th farm revenue. Therefore, it is not able to take into account changes in production 

decisions that take the form of an extension (reduction) of an activity over a continuous domain.  

Apparently, therefore, 2

i
y  is a less accurate measure of the treatment outcome than 1

i
y . This latter, 

however, may encounter a major drawback because revenue shares 
ik
s  does not only depend on 

farmer’s production decisions but also on market prices. Prices may not only be independent on the 

treatment but may be even unpredicted by producers. Under remarkable price volatility, therefore, the 

former outcome variable may overestimate the response of farmers to treatment by attributing to it an 

exogenous movement of prices.  

Finally, we may also argue that, under market reorientation, the response of a farm’s production choices 

measured with 1

i
y  is higher than the response of the same farm measured with 2

i
y . First of all, as 

mentioned, the former can take into account also a change in the production decisions that give more 

relevance to activities with higher market convenience even if no new activities is really added 

(therefore, 1

i
y  can be >0 even when 2

i
y =0). Secondly, the latter simply counts the addition or 

substitution of production activities. Under market reorientation these new activities are expected to 

show more market convenience (for instance due to a temporary positive price dynamics) than those 

they replace or the preexisting ones, therefore this addition/replacement impacts more on 1

i
y  than on 

2

i
y . According to this interpretation, a positive TE of the FPR is expected to be revealed, in treated 

farms, not only by a response of both 1

i
y  and 2

i
y , but also by an higher response of 1

i
y  than 2

i
y .             

The second typology of outcome variable consists of a scalar measure expressing the investment 

decisions taken in response to the FPR. The idea simply is that the treatment may induce extra (more 

than “business-as-usual”) investments allowing the farm to activate (extend) new (existing) activities in 

the longer-term. Therefore, the outcome measuring such effect is simply the change in investment 
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expenditures of the i-th farm (
i
I ) between years/periods A and B. This change is here measured in two 

different ways:   
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3

i
y  merely is the difference between the yearly total investment expenditure. 4

i
y  expresses this 

difference not in absolute terms but in relative terms, that is, as investment rate given by the ratio 

between total investment expenditure and the respective farm value added.22 This latter outcome 

variable may better capture the real investment effort of the i-th farm and get rid of the wide size 

heterogeneity among farms both in physical and economic terms. In doing this, however, 4

i
y  may 

partially sterilize the effect of the treatment on investment decisions over the whole sample. In fact, a 

real increase in investments concentrated in larger farms may be entirely compensated by a decline in 

investment rates in smaller farms. 

In practice, all these four outcome variables present pros and cons. The first typology only partially 

captures the farms’ production response to the treatment. At the same time, as already mentioned, one 

possible problem in using investment decisions as outcome variable in the present case is that both 

anticipation and lagged effects may occur. For instance, a pre-treatment year/period could already 

contain some anticipated investments response of the farmers to the FPR and this makes the 

identification and estimation of the TE more complex and, consequently, results less reliable and robust. 

Therefore, all outcome variables (15)-(18) represent a relevant but incomplete dimension of the 

production response to the FPR. Actually, they are more complements than alternatives in providing a 

comprehensive picture of the reorientation to market. For these reasons, all the four outcome variables 

will be used throughout the present empirical study.   

Table 1 reports some descriptive statistics by treatment group for the four outcome variables. It may be 

easily appreciated that, comparing the two extreme years 2003-2007,  for all outcome variables the 

average values tend to increase moving from the non-treated (or control) group to the treatment group. 

Moreover, within the treatment group, farmers also receiving second pillar payments show an additional 

positive impulse. Nonetheless, if we look at comparisons between other couples of years, the picture 

becomes less clear. While 
1

i
y  and 

2

i
y  tend to confirm higher values, more mixed evidence emerges for 

3

i
y  and 

4

i
y  especially when years considered are those around the treatment year (2005). This can be 

explained by the presence of anticipation and/or lagged effects, but another explanation could simply be 

that the observed differences in outcome variables are not caused by the FPR.  

In fact, the most relevant evidence emerging in Table 1 is the high variability of all outcome variables 

in the whole sample, as well as in treatment groups. In practice, if we constructed a conventional 95% 

confidence interval around the sample averages we would notice that these intervals are largely 

overlapping across the groups for all outcome variables. More generally, though these differences in 

outcome variables are mostly consistent with the expectations in terms of policy TE, these simple 

statistics can not be conclusive on the fact that such differences across groups can be indisputably 

attributable to FPR. 

A further issue in the proper definition of the outcome variable, concerns the selection of 

observations/years A and B. In principle, several couples of years/periods could be compared to 

compute the outcome variables in (15)-(18). Years 2003 and 2004 unquestionably represent before-

reform (thus, before-treatment) years as the implementation of the reform started in 2005 in Italy. At the 

same time, years 2005, 2006 and 2007 can be considered as after-reform (after-treatment) years. As a 

consequence, the following pairs of years can be candidate for a before and after-treatment comparison: 

2004-2005, 2004-2006, 2004-2007, 2003-2005, 2003-2006 and 2003-2007. However, the choice here is 

to consider years that are symmetric with respect to the treatment year (2005) and are far enough from it 

                                                 
22 The value added rather the value of production is here considered because the former can be more properly considered a 

proxy of farm profits, that is, of the capacity to generate surplus from which further investments can be undertaken.   
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to exclude (or minimize) anticipated or lagged responses. For this reasons, the outcome variables are 

here computed assuming A=2003 and B=2007.23 

Finally, Table 1 also reports the (sub)sample averages of the covariates considered in the present 

analysis. The covariates (or confounding factors) here considered are those pre-treatment variables 

(covariates X)
24
 expected to incorporate all the relevant aspects that may affect the production choices 

before the treatment (thus, affecting the outcome regardless the treatment itself) as well as the treatment 

assignment. We selected these variables to capture, with the minimum redundancy, three different types 

of factors (Table 3). 

First of all, we consider the relevant individual characteristics of the farmer (AGE) and of the farm 

(Altitude - ALT). Secondly, the economic (ES, FC)25 and physical (AWU, HP, UAA and, at least 

partially, LU) size of the farm clearly matters. All these variables evidently affect the outcomes but 

presumably are not directly correlated with the treatment assignment. Still, they are definitely linked to 

production choices and, since pre-treatment production choices are unquestionably correlated with the 

treatment assignment, this correlation indirectly occurs even with respect to these first two categories of 

covariates.  

The third typology of confounding factors, in fact, consists of those variables (TF and, in part, LU) that 

directly express the production specialization of the farm. The linkage between these covariates and the 

treatment assignment is evident as this actually concerns those farms that were interested by specific 

OCM measures while, on the contrary, farms not involved in first pillar are those whose production 

specialization was less (or not at all) targeted by specific policy measures. To express farm production 

specialization, the 4-digit “Type of Farm” (TF) FADN classification is adopted (2000 classification).26  

Even for these covariates the dominating evidence concerns the large variability observed in both the 

whole sample and in treatment groups, and this prevents from clear-cut statements about structural 

differences across the groups. Only for few variables a difference between treatment groups’ clearly 

emerges. In particular, non-treated units tend to show some peculiarities compared to the treated ones 

while the difference between the treated units with and without second pillar payments seems mostly 

negligible. Non-treated units show a smaller physical size (UAA) but this is not necessarily true if we 

consider the economic size (ES). Moreover, as expected, the production specialization of the non-

treated group is evidently less dependent on first pillar support (TF_R), it practically excludes livestock 

activities (LU) while it favours activities mostly run in flat areas (ALT). The immediate interpretation is 

that most of these non-treated units are farms with small area and high output values strongly 

specialized in a certain kind of production (e.g., horticulture) largely disregarded by coupled first pillar 

payments. This reinforces the idea that these farms might not be reliable as control units in identifying 

and estimating the TE of the FPR.  

 

 

 

 

 

                                                 
23 As stressed by Esposti (2014), the choice of the years A and B to compute the outcome variable may raise significant 

measurement issues. Not only the presence of possible anticipated and lagged response of farmers can create problems. Other 

highly time-varying external (e.g., price dynamics) and internal (e.g., rotation practices) factors can make the measurement of 

the outcome variable sensitive to the chosen years. The choice here made to consider years (2003 and 2007) that are symmetric 

with respect to the treatment year (2005) and far enough from it to exclude (or minimize) anticipated or lagged responses is 

expected to minimize these measurement problems. Nonetheless, other years (or averages of years) has been alternatively 

considered and estimations consequently performed. Results are qualitatively not different from those here presented though, 

in general terms, of lower statistical quality. They are available upon request.    
24 Pre-treatment variables have been observed in 2003, the only exceptions being FC, for which the 2003-2004 average has 

been considered since this variable may largely vary on a yearly base. 
25 The relative (with respect to net value added) amount of fixed costs expresses the importance of fixed factors (especially 

labour and physical capital) within the farm and, therefore, it is a proxy of the scale of the farm business itself.   
26 By itself, however, this qualitative variable is not suitable in this empirical exercise as it has not a monotonous linkage with 

the treatment assignment. For instance, class 4210 (beef production) is more dependent on first pillar support than classes 2022 

(flowers’ production) and 6010 (horticulture); therefore, farms belonging to the former class are more likely to be assigned to 

the treatment than farms of the latter classes. To overcome this problem, the official TF classification has been reclassified by 

assigning to any 4-digit class a number (ranging from 1 to 7) expressing its dependency on first pillar CAP support. This 

number expresses a qualitative monotonous variable (TF_R) that increases as the dependency on CAP support declines.  
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Table 1. Descriptive statistics over treatment groups: sample averages of the outcome and pre-treatment 

variables (standard deviation in parenthesis) 

Treatment group: Not treated Treated Whole Sample 

Outcome variables:    

1
y  (distance index)    

2007 vs. 2003 
0.169 

(0.435) 

0.594 

(0.739) 

0.522  

(0.688) 

2004 vs. 2003 
0.084  

(0.322) 

0.562 

(0.778) 

0.481  

(0.700) 

2007 vs. 2006 
0.054  

(0.249) 

0.119 

(0.304) 

0.108 

 (0.294) 

2
y  (distance index)    

2007 vs. 2003 
0.006 

(0.014) 

0.017  

(0.020) 

0.015  

(0.019) 

2004 vs. 2003 
0.003  

(0.009) 

0.011  

(0.017) 

0.010  

(0.016) 

2007 vs. 2006 
0.007  

(0.012) 

0.020  

(0.017) 

0.018  

(0.016) 

3
y  (in €)    

2007 vs. 2003 
-20477 

(179122) 
-5596 

(136912) 

-8126 

(171088) 

2004 vs. 2003 
-8862 

 (163765) 
2008 

(104365) 
 

160  

(141463) 

2007 vs. 2006 
-4048  

(35240) 

-4019  

(110414) 

-4024  

(103035) 

4
y  (in €)    

2007 vs. 2003 
-0.401 

(1.533) 

-0.272 

(1.870) 

-0.294 

(2.083) 

2004 vs. 2003 
-0.101  

(1.193) 

-0.0250 

(1.768) 

-0.038  

(1.883) 

2007 vs. 2006 
-0.128  

(0.958) 

-0.213 

(2.651) 

-0.199  

(2.903) 

Pre-treatment variables:    

AGE (of the holder) (years) 
51.85 

(13.84) 

52.68  

(14.89) 

52.54 

(14.71) 

Altitude (ALT) (m) 
154.28 

(192.11) 

290.38 

(290.52) 

267.24 

(273.79) 

Annual Working Units (AWU) 
2.79 

(6.22) 

2.06 

(3.06) 

2.18 

(3.60) 

Economic Size (ES) (classes) 
6.41 

(2.19) 

6.12 

(2.31) 

6.17 

(2.29) 

Fixed Costs (on Net Value Added) (FC) 
2.79 

(36.41) 

1.81 

(16.64) 

1.98 

(20.00) 

Horse Power (HP) 
93.23 

(129.58) 

187.52 

(235.09) 

171.49 

(217.15) 

Livestock Units (LU)  
5.73 

(50.53) 
46.69 

(255.24) 
39.73 

(220.44) 

Utilized Agricultural Area (UAA) (ha) 
7.50 

(24.34) 
37.89 

(76.86) 
32.72 

(67.93) 

Type of Farm (TF) (4-digits)*  (fruits) (arable crops) (arable crops) 

Type of Farm (reclassified) (TF_R) 
5.07 

(1.67) 
3.37 

(1.65) 
3.66 

(1.65) 

* In this case the Table reports the higher frequency class 

5. ESTIMATION RESULTS 

5.1. GPS estimates 

The initial stage that is common to the two multivalued estimation methodologies here considered 

consists in the GPS estimation. Nonetheless, the specification of the GPS function, ( )
iii

TrGPS X,=  is 

necessarily different in the two cases. In the Hirano-Imbens approach, T (i.e., the TI) is a continuous 

variable and, therefore, ( )
ii

Tr X,  is specified as a linear flexible functional forms, i.e., a fully interacted 
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polynomial in both arguments, 
i
T  and 

i
X . In the Cattaneo approach, on the contrary, T (TI) is a 

categorical variable thus ( )
ii

Tr X,  necessarily takes a multinomial specification. A Multinomial Logit 

Model (MLM) is here adopted. Even for this MLM a fully interacted polynomial specification in both 

arguments of the MLM is adopted. In both cases, however, the functional forms actually estimated are 

the best fitting specifications selected according to the AIC starting from a fully interacted second-order 

polynomial (quadratic specification).  

Table 2 reports the GPS function estimates in the continuous (linear regression) case. It emerges that 

most estimated parameters are significantly different from 0, the only exceptions being those 

concerning variables ALT and FC. A higher generalized propensity (that is, a higher probability to 

receive a higher TI) is associated to larger size (in both economic and physical terms) farms and older 

farmers while, on the contrary, a lower propensity is associated to farms with higher labour intensity 

and specialization in less supported activity included a higher presence of livestock activities.  

These results are consistent with the expectation given the well-known distribution of first pillar’s 

coupled payments in Italy (Povellato and Velazquez, 2005) and with what observed in the binary 

treatment case. The reliability of these results can be assessed by testing the balancing condition over 

the space of the estimated GPS and distinguishing the TI in the abovementioned 7 intervals. The 

balancing tests on the common support accept the balancing condition at the 95% confidence level: for 

no regressor and in no treatment level we observe a mean difference between the units belonging to that 

treatment group and the respective average that is statistically different from 0.27  

 

Table 2. GPS estimation: linear regression of the continuous treatment on the covariates (standard errors 

in parenthesis)
a
  

AGE (of the holder) (years) 
0.0132* 

   (0.0019) 
Horse Power (HP) 

0.0004* 

(0.0002) 

Altitude (ALT) (m) 
-0.0000  

  (0.0001) 
Livestock Units (LU)  

-0.0003* 

  (0.0001) 

Annual Working Units (AWU) 
-0.1882* 

(0.0123) 
Utilized Agricultural Area (UAA) (ha) 

0.0067* 

(0.0005) 

Economic Size (ES) (classes) 
0.0405* 

(0.0130) 
Type of Farm (reclassified) (TF_R) 

-0.5639* 

(0.0188) 

Fixed Costs (on Net Value Added) (FC) 
-0.0018 

(0.0013) 
Constant term 

4.365* 

(0.1620) 
aThe BoxCox transformation of the treatment variable is used; the assumption of Normality is statistically satisfied at .05 level 
*Statistically significant at 0.05 level  

 

Moreover, indirectly, the robustness of these results is also confirmed by the other GPS function, i.e., 

the MLE estimation of the MLM implied by the Cattaneo (2010) approach.28 In this latter case, a further 

difference with respect to the continuous case consists in the exclusion of the categorical independent 

variables (ES, TF_R) as they would prevent the MLE estimation of the MLM to reach convergence. 

Parameter estimation of the MLM actually refer to the different TI levels and, as well known (Cattaneo 

et al., 2013.), can not be directly interpreted as marginal effects passing from one treatment level to the 

subsequent.29 Nonetheless, also these results indicate that a higher TI is associated with larger farms (in 

physical and economic terms), lower labour intensity and older farmers, while on the contrary lower TI 

is associated with flat-areas agriculture and more labour-intense activities included livestock 

productions.   

As a matter of fact, these estimates of the GPS function’s parameters do not provide any particular 

novel evidence compared to expectations and to what already emerges from a simple descriptive 

analysis. Nonetheless, this is just the first necessary step to achieve the multivalued ATE estimation 

pursued here and its reliability and robustness is needed to make ATE estimation itself reliable. 

                                                 
27 Due to space limitations the balancing tests are not reported here; they are available upon request. More details on these 

aspects can be found in Bia and Mattei (2008, p. 368-369; 2012) and Flores and Mitnik (2008). Bia and Mattei (2012) and Bia 

et al. (2013) also put forward some first attempts to perform a sensitivity analysis assessing for the validity of the weak 

unconfoundedness under multivalued treatments.   
28 Due to space limitations, these estimates are reported in the Annex.  
29 Estimated marginal effects are available upon request.  
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5.2. The Hirano-Imbens approach: DRF estimates 

Table 3 reports the results of the second estimation step in the Hirano-Imbens approach for the four 

outcome variables under consideration here. It consists of the estimation of uDRF, 

[ ]TSPGYETSPGg
iiii
,ˆ),ˆ( = . Again, the empirical parametric specification of the estimand function 

started from a fully-interacted quadratic form in both arguments 
i

SPG ˆ  and T (see (4)), where 
i

SPG ˆ  is 

the GPS estimated in the first stage (Table 2). Then, the best fitting specification, according to the AIC, 

has been adopted. As evident in Table 3, this adopted specification includes both the quadratic terms 

and the interaction term of the two arguments. It is well emphasized in this empirical literature (Hirano 

and Imbens, 2004; Bia and Mattei, 2008) that these estimates can not be given any direct economic 

interpretation and are just intermediate results. However, they are needed to achieve the final estimation 

step providing the estimation of ( )[ ]TgETaDRF ˆ()( =  in (5) and, consequently, of the ATE we are 

mainly interested in.  

Estimation results are of good quality for the first outcome variables, 
1
y , where parameters of most 

terms are statistically significant expressing a complex relationship among iSPG
ˆ , T  and the uDRF. 

Starting with the second outcome variable (
2

y ), however, results become statistically weaker and the 

treatment level significantly affect the uDRF only interacting with the estimated GPS: the DRF comes 

more from the propensity to receive a given TI rather than by the TI itself. This is even more clear in 
3

y  

and 
4

y , where few parameters (just one for 
3

y ) are statistically significant and they all involve the 

estimated GPS, alone or in interaction with the TI. It remains true, however, that results seem 

statistically weaker passing from the first two outcome variables, dealing with the production mix, to 

those related to investment choices. Generally speaking, the fact that the impact on the DRF mostly 

comes more from the propensity to receive a given TI is a further indirect evidence of how, even in the 

multivalued case, the selection-on-observables bias may be relevant.  

Figures 2-3 display both the estimated average DRF and ATE (point estimates and confidence intervals) 

for the four outcome variables over the observed continuous domain of TI (therefore, we can also call 

the latter average TE function). Again, we may appreciate a significant different behavior of the first 

two outcomes compared to 
3

y  and 
4

y . For 
1
y  and 

2
y we observe similar results in several respect. 

First of all, in both cases DRF and TE estimates appear to be statistically robust as standard errors are 

small and, consequently, the confidence intervals thin. The response increases in the initial TI levels 

and reaches its maximum  at about TI = 10% and TI = 30%, respectively.  However, the corresponding 

TE, though positive, is declining. Once the maximum response is reached, it starts declining regularly 

and this evidently implies a negative TE. This behaviour is particular evident and relevant in the case of 
1
y  where the TE rapidly vanishes to 0, while, on the contrary, in the case of 

2
y  a positive TE is 

observed until TI levels that encompass the large part of the observed farms.  

The interpretation of this evidence seems particularly interesting. The FPR induced the farms’ response 

in terms of production mix/market reorientation, but this mostly regards those farms receiving a 

relatively limited CAP payment with respect to its GVP (i.e., a low TI). Moreover, this TE is 

particularly evident in terms of composition of the production mix; on the contrary, it is quite limited if 

this change of production mix is measured in terms of revenue composition. Evidently, the most 

responding farms are those that were already market-oriented before the FPR as demonstrated by the 

limited incidence of the CAP support on their GPV. Whenever we move towards farms strongly 

dependent on the CAP their response is weaker. Moreover, this response may be more apparent than 

substantial. It implies that new productions are activated while others are quitted and this affects 2
y . At 

the same time, this change might not provide any significant change in revenue composition, that is, in 
1
y . In practice, many farms, especially those strongly dependent on first pillar support, remain locked-

in their original rent-seeking production choices and only timidly attempt some minor changes that 

actually result in marginal adjustments in revenue composition. 

As could expected, the results emerging for the other two outcome variables, 
3

y  and 
4

y , are much less 

robust and interpretable. Expectations come from the fact that investment decisions may depend on 



17 

 

many strategic long-term aspects, not considered here, beside the decoupling of CAP support. 

Moreover, as discussed in previous sections, an investment response to the policy change may have a 

timing (anticipation and lagged effects) that makes a proper identification of the ATE in the present 

circumstance much more difficult. It is still worth noticing that the response, though with an increasing 

statistical variability, linearly increases over the observed TI domain. This occurs in both cases thus 

suggesting that farm size (that is, what really makes the difference between 
3

y  and 
4

y ) does not 

qualitatively influence the response.   

 

Table 3. DRF coefficient estimates (GPS=estimated Generalised Propensity Score; T=treatment level)
 a
 

 
1
y  

2
y  

3
y  

4
y  

T 
0.0182* 

(0.0037) 

0.0001 

(0.0001) 

-729.8  

(903.9) 

-0.0103 

(0.0118) 

T
2
 

-0.0003* 

(0.0001) 

0.0000 

(0.0000) 

9.437 

(16.616) 

0.0002 

(0.0002) 

GPS 
4.921* 

(0.9162) 

-0.0575* 

(0.0261) 

107956 

(221262) 

-4.092* 

(1.879) 

GPS
2
 

-9.239* 

(3.603) 

0.2389* 

(0.1024) 

-703988 

(870085) 

17.82* 

(8.320) 

GPS*T 
-0.1378* 

(0.0168) 

0.0023* 

(0.0005) 

7411* 

(3065) 

0.0467 

(0.0529) 

Constant term 
0.2094* 

(0.0549) 

0.0165* 

(0.0016) 

-11528 

(13262) 

-0.1136 

(0.1725) 
aThe BoxCox transformation of the treatment variable is used 
*Statistically significant at 0.05 level  

 

The slight but regular and statistically significant increase of the TE across the TI can be interpreted in 

two directions. On the one hand, we can conclude that the TE is constant over the TI domain, so the 

ATE corresponds to the TE observed in any different treatment level. This seems particularly 

reasonable in the case of 
4

y , as it implies that an increase of TI has a constant positive impact on 

investment rates. On the other hand, we can conclude that, though slightly, the TE is increasing with the 

TI and this seems consistent with the decoupling of support: the higher the TI, the higher the amount, 

relative to the farm’s GPV, of free financial resources provided by the FPR to make investments. The 

fact that these resources are free, i.e. not associated to specific production activities, may indirectly 

suggest that these investments are dedicated to other/new activities. However, this is not granted given 

the definition of the two outcome variables under question (
3

y  and 
4

y ). Even if we acknowledge that a 

positive and maybe increasing TE occurs, this does exclude that investments are made on the same 

activities carried out by the farm even before the FPR. 

5.3. EIF and IPW estimates  

The robustness of the DRF and ATE estimation obtained with the Hirano-Imbens approach can be 

hardly assessed. Once the balancing condition is confirmed in the GPS estimation stage, the remaining 

steps strongly depend on arbitrary (parametric) specification assumptions. To indirectly evaluate to 

what extent these assumptions may influence results, the Cattaneo (2010) approach can be helpful as it 

is based on a substantially different sequence of estimation steps. 

The second step of this approach consists in the estimation of ( )ijje X,µ , that is, the mean of the 

potential outcome conditional on covariates X . Again, a flexible form is initially specified and the best 

fitting specification, selected with AIC, is then adopted. Here, the selected specification is the fully 

interacted quadratic form that implies the estimation of an high number of parameters. Therefore, due to 

space limitations, these estimates are neither reported nor commented here.
30
 After all, again, this is an 

intermediary estimation step, without particular economic content, to achieve the final stage, that is, the 

                                                 
30 These estimates are available upon request.  
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estimation of the average potential outcome for any given treatment level under the two alternative 

estimation procedures ( jEIF ,µ  and jIPW ,

µ ).     

Table 4 reports the jEIF ,µ  and jIPW ,

µ  estimates for all outcome variables and respective treatment 

levels,  while Figures 4-5 display the respective variations across the treatment levels, that is, the 

estimated ATE according to (14). In general terms, results confirm what emerged within the Hirano-

Imbens approach. For both 
1
y  and 

2
y  the potential outcome increases with the treatment for the first 

TI levels, then we have the inversion in this relationship with potential outcome declining with the TI. 

This inversion comes quite soon in the case of 
1
y , i.e. when TI exceeds 10%, while it comes later for 

2
y . This implies that the estimated TE is positive in the first levels of treatment but with higher TI it 

declines to zero and then becomes negative. Compared to the DRF estimation of the Hirano-Imbens 

approach, the most evident difference consists in the fact that confidence intervals are here larger, thus 

indicating a less efficient estimate of the ATE. Nonetheless, the tests of “zero TE” reported in Table 4 

clearly indicate that such hypothesis can be excluded for both 
1
y  and 

2
y .  

 

Table 4. Average potential outcome for each treatment level: EIF and IPW estimates (standard errors in 

parenthesis)  
Outcome variable: 

 

Treatment level: 

1
y  

2
y  

3
y  

4
y  

 EIF estimates 

1 
0.6342* 

(0.0163) 

0.0141* 

(0.0004) 

-2799  

(3502) 

-0.3877* 

(0.0471) 

2 
0.8540* 

(0.0203) 

0.0175* 

(0.0006) 

-21658*  

(4360) 

-0.3551* 

(0.0480) 

3 
0.7885* 

(0.0240) 

0.0195* 

(0.0008) 

-8364  

(2945) 

-0.3540* 

(0.0617) 

4 
0.7008* 

(0.0294) 

0.0195* 

(0.0009) 

-11230*  

(9281) 

-0.3681* 

(0.0495) 

5 
0.6609* 

(0.0287) 

0.0190* 

(0.0011) 

6892  

(11470) 

-0.3234* 

(0.0729) 

6 
0.6883* 

(0.0289) 

0.0186* 

(0.0013) 

-20934* 

(9764) 

-0.2265* 

(0.1130) 

7 
0.6404* 

(0.0263) 

0.0146* 

(0.0014) 

-29781*  

(6480) 

-0.1909* 

(0.0684) 

Test of zero treatment effect
a
 126.9* 47.18* 12.23* 12.34* 

 IPW estimates 

1 
0.6155* 

(0.0187) 

0.0142* 

(0.0010) 

-5581  

(6925) 

-0.4045* 

(0.0910) 

2 
0.8289* 

(0.0219) 

0.0177* 

(0.0007) 

-27916*  

(3946) 

-0.4010* 

(0.0966) 

3 
0.6458* 

(0.0814) 

0.0194* 

(0.0076) 

-13203  

(20588) 

-0.1351 

(0.1036) 

4 
0.5324* 

(0.0550) 

0.0194* 

(0.0037) 

-11968*  

(5767) 

-0.3166*  

(0. 0901) 

5 
0.4921* 

(0.1728) 

0.0196* 

(0.0043) 

5393 

(12822) 

-0.2712 

(0.1576) 

6 
0.4849  

(0.2797) 

0.0178 

(0.0172) 

-7816  

(50054) 

-0.2381 

(0.6418) 

7 
0.4094*  

(0.4674) 

0.0171 

(0.0126) 

-8617  

(76096) 

-0.0109 

(0.9844) 

Test of zero treatment effect
a
 90.1* 41.1* 16.5* 7.5 

a
 The test distributes as a χ2  with 6 d.o.f. under the H0 that the potential outcome is equal for any treatment level   

*Statistically significant at 0.05 level  

 



19 

 

In the case of  
3

y  and 
4

y  it seems more difficult to conclude that results tend to be qualitatively 

concordant with what obtained with the Hirano-Imbens approach. In particular, confidence intervals 

around the estimated potential outcome are large such that, for some treatment levels, the it is not 

statistically different from zero. This is particularly true for 
3

y  and in the case of the IPW estimation. 

Therefore, also the consequent estimated ATE are often not statistically significant and do not 

necessarily show a regular pattern across the treatment levels. In the case of 
3

y , though we can reject 

the hypothesis of no TE, the only robustly significant ATE is that observed passing from the first to the 

second treatment level, that is, around 5% of TI. However, this effect is negative. For all other TI the 

ATE is statistically zero. Better evidence is obtained for 
4

y , as expected due to the lower statistical 

noise caused by heterogeneous size. The ATE is positive passing from the first to the second treatment 

levels than it goes to 0, but it comes back into positive territory and with an apparent increasing pattern 

after the forth treatment level. In this respect, these results confirm what obtained in the case of Hirano-

Imbens approach. The investment response to the treatment is much less clear than the production 

choice response. Nonetheless, when the investment rate, rather than the investment absolute value, is 

considered the response seems to be positive and, to a certain extent, slightly increasing with the 

increase of the TI. Higher TI, as mentioned, can be associated to an higher amount of free financial 

resources to make brand new investments.     

A further general evidence that is worth noticing concerns the comparison between EIF and IPW 

estimates. Though results are qualitatively similar, IPW estimates are clearly less efficient. Therefore, 

despite the asymptotical equivalence of these two estimators, in the finite sample and in this specific 

application, the EIF estimation appears to be generally superior. 

6. CONCLUDING REMARKS  

This paper primarily aims at showing how the TE toolkit can be successfully applied also to a peculiar 

kind of treatment, the 2005 CAP first pillar reform. With a long and large enough balanced panel and an 

appropriate definition of the outcome variable, the impact of the reform on farms’ market reorientation 

can be estimated by taking advantage of the fact that this peculiar case can be considered a multivalued  

treatment. Recent estimation approaches suitable for such circumstances have been applied.  

Results show that, as expected, the farms’ response in terms of market reorientation tends to be limited 

to short-run choices and has been declining with the treatment intensity. More surprisingly, it emerges 

that this response is significant and positive just for the lower levels of treatment intensity, that is, for 

those farms that are less dependent on first pillar support. In more dependent farms the response rapidly 

declines to 0. Moreover, this response is more evident in terms of introduction of new productions or, 

more generally, of change in the production mix. It significantly reduces when the response is measured 

in terms of change in revenue composition thus indicating that, even when present, this response 

remains fairly conservative.   

While results provide quite robust evidence about the effect of the reform, however, some steps forward 

could be proposed with respect to the present approach. The adopted estimation strategy is interesting 

and promising but also raises several practical issues. The main problems are represented by its 

complexity and by the need of many arbitrary assumptions. As a consequence, the role of possible 

misspecification of the models estimated in the intermediate steps needs to be explored. Nonetheless, 

the methodological toolkit seems rich enough not only to check for robustness of results by comparing 

different estimation approaches, but also to push the investigation further by refining these estimation 

approaches, as well as the definition of the treatment and outcome variables (as well as of the relevant 

covariates), and the construction of the balanced panel. For instance, it could be argued that some 

second pillar measures substantially interfere with production choices, thus with the FPR TE itself. In 

this respect, a more sophisticated articulation of treatment groups could be attempted. Actually, the 

analysis of multiple continuous treatments is at the forefront of the current TE econometrics literature 

(Frölich, 2004; Imbens and Wooldridge, 2009) and is well beyond the scope of the present paper. 

Nonetheless, some methodological solutions accompanied by appropriate estimation techniques could 

be proposed and attempted in future research. 
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Figure 1. Distribution of the continuous the treatment, First Pillar support on farm’s GPV (in %): 

Kernel density (K) and frequency histogram (avg. over 2003-2007 period) 
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Figure 2. Estimated average DRF and TE for outcome variables 
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Figure 3. Estimated average DRF and TE for outcome variables 
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Figure 4. Potential outcome variation across the treatment levels: EIF and IPW semi-parametric estimations of the TE for outcome variables 
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a Bootstrap standard errors (100 replications) 
b Confidence bounds at .95 % level 
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Figure 5. Potential outcome variation across the treatment levels: EIF and IPW semi-parametric estimations of the TE for outcome variables 
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ANNEX 

GPS function: MLM (Multinomial Logit Model) estimation of the discrete treatment on the covariates (standard 

errors in parenthesis) 

Treatment level = 1 (base outcome) 

Treatment level = 2 
  

Constant term -0.5545 (0.1771)* 

Altitude (ALT) (m) 0.0004 (0.0001)* 

Utilized Agricultural Area (UAA) (ha) 0.0099 (0.0013)* 

Livestock Units (LU) -0.0002 (0.0002) 

Horse Power (HP) 0.0020 ( 0.0003)* 

Fixed Costs (on Net Value Added) (FC) -0.0002 (0.0015) 

AGE (of the holder) (years) 0.0003 (0.0028) 

Annual Working Units (AWU) -0.1678 (0.0239)* 

Treatment level = 3 
  

Constant term -1.179 (0.2036)* 

Altitude (ALT) (m) 0.0000 (0.0002) 

Utilized Agricultural Area (UAA) (ha) 0.0162 (0.0014)* 

Livestock Units (LU) -0.0009 (0.0003)* 

Horse Power (HP) 0.0019 (0.0003)* 

Fixed Costs (on Net Value Added) (FC) -0.0138 (0.0107) 

AGE (of the holder) (years) 0.0094   (0.0032)* 

Annual Working Units (AWU) -0.2221 (0.0308)* 

Treatment level = 4 
  

Constant term -1.491 (0.2144)* 

Altitude (ALT) (m) 0.0000 (0.0002)* 

Utilized Agricultural Area (UAA) (ha) 0.0189 (0.0014)* 

Livestock Units (LU) -0.0031 (0.0006)* 

Horse Power (HP) 0.0027 (0.0003)* 

Fixed Costs (on Net Value Added) (FC) -0.0043 (0.0050) 

AGE (of the holder) (years) 0.0132 (0.0033)* 

Annual Working Units (AWU) -0.2856 (0.0346)* 

Treatment level = 5 
  

Constant term -2.159 (0.2623)* 

Altitude (ALT) (m) 0.0002 (0.0002) 

Utilized Agricultural Area (UAA) (ha) 0.0217 (0.0015)* 

Livestock Units (LU) -0.0057 (0.0012)* 

Horse Power (HP) 0.0034 (0.0004)* 

Fixed Costs (on Net Value Added) (FC) 0.0007 (0.0026) 

AGE (of the holder) (years) 0.0192 (0.0038)* 

Annual Working Units (AWU) -0.4235 (0.0533)* 

Treatment level = 6 
  

Constant term -2.793 (0.3204) 

Altitude (ALT) (m) 0.0003 (0.0002) 

Utilized Agricultural Area (UAA) (ha) 0.0235 (0.0015)* 

Livestock Units (LU) -0.0077 (0.0018)* 

Horse Power (HP) 0.0036 (0.0004)* 

Fixed Costs (on Net Value Added) (FC) -0.0010 (0.0045) 

AGE (of the holder) (years) 0.0191 (0.0047)* 

Annual Working Units (AWU) -0.3867 (0.0568)* 

Treatment level = 7 
  

Constant term -1.405 (0.2651)* 

Altitude (ALT) (m) 0.0004 (0.0002)* 

Utilized Agricultural Area (UAA) (ha) 0.0247 (0.0015)* 

Livestock Units (LU) -0.0168 (0.0024)* 

Horse Power (HP) 0.0049 (0.0003)* 

Fixed Costs (on Net Value Added) (FC) -0.0127 (0.0130) 

AGE (of the holder) (years) 0.0050 (0.0039) 

Annual Working Units (AWU) -0.5845 (0.0584)* 

*Statistically significant at 0.05 level  


