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1. Introduction

Although with a declining trend, Egyptian agriculture still accounts for about 17 per cent of
gross domestic product and 20 per cent of total exports and foreign-exchange revenues. In
addition, agriculture-related industries, such as processing, marketing and input supplies,
account for another 20 per cent of gross domestic product. Agriculture is therefore a key
sector in the Egyptian economy, providing the livelihood for 55 per cent of the population
(UNDP, 2011). A very important pillar for the modernization of the Egyptian agriculture
involves promoting exports of high value added products such as organic produce.

While expansion of organic farming had been quite slow until 1988, it experienced a
rapid growth in the vegetables, fruits, cereals, and cotton sectors thereafter. This rapid growth
was initiated mainly by SEKEM and some other growers in Fayum and Kalubia
governorates. Currently, organic agriculture in Egypt is expanding very fast due to public
awareness of the advantages associated to this farming practice, as well as the increasing
demands for organic food and fibers in both local and export markets. As a result, organic
farming has rapidly grown from 15 thousand hectares farmed by 460 organic farms in 2006
to 56 thousand hectares managed by 909 producers in 2009 (FiBL and IFOAM, 2011).
Almost half of the Egyptian organic farms are located in the middle Nile, in the region of El
Fayoum, 100 Km south of Cairo. Organic farms in Egypt are generally small holdings whose
size usually ranges from 4.5 to 20 hectares. A few farm enterprises are larger than 1000
Feddan (400 hectares), but they account for 20% of all organic farmland and are located in
the Nile delta and in Upper Egypt (Kledal et al., 2008).

Organic farming mainly relies on the use of less chemical inputs than conventional
agriculture. Because this restricted input use, organic practices are likely to be less productive
than conventional agriculture. This lower productivity however does not necessarily affect
farms’ profits once their product is certified organic, due to the high market price for organic
produce. During the early stages of conversion, however, farms may face economic hardships
for not being yet able to receive the organic produce price premium.

Technical efficiency (TE) is a prerequisite for economic efficiency, which in turn is a
necessary condition for the economic viability and sustainability of a firm (Tzouvelekas et
al., 2001). Knowledge about productivity and efficiency differences between conventional
and organic farms is a relevant tool for economic agents considering alternatives to improve
the performance of organic agriculture, and designing suitable policies to support the
expansion of organic agriculture within Egypt. Using robust methodologies for TE analysis is
important to derive unbiased efficiency estimates that allow monitoring the impacts of policy
and better targeting policy measures. Despite the relevant growth of organic agriculture in
Egypt, up to date there is no study that assesses the performance of organic farms in this
country. Unlike previous mainstream literature on organic farming TE, which has widely
relied on either the Stochastic Frontier Analysis (SFA) or the Data Envelopment Analysis
(DEA) to derive TE estimates, we use a new methodology recently introduced by Kumbakhar
et al. (2007) based on local maximum likelihood techniques. In order to achieve the
aforementioned objective, a survey was conducted for a sample of organic and conventional
farms mainly specialized in horticulture and cereal production and located in the Upper Egypt
area. More specifically, the survey was conducted in Suhag, Assiut and Fayum governorates.

The rest of the paper is organized as follows. In the next section, a literature review
and the contribution of this work to previous literature is presented. Then, we describe the
methodology used in our empirical application. The fourth section presents the data and
results of the empirical implementation. Finally, the paper ends with some concluding
remarks.



2. Literature review

While analyses on the adoption of organic farming practices have proliferated (Fairweather,
1999; Lohr and Salomonson, 2000; Pietola and Oude Lansink, 2001; Acs et al., 2007, Padel,
2001; Parra et al., 2007; Radwan et al., 2011), the literature on TE performance of organic
farming is still small, which may be due to the scarcity of organic farming data necessary to
conduct such analyses (Oude Lansink et al., 2002). Parametric SFA and non-parametric DEA
methods constitute the mainstream of the efficiency literature assessing the differences in TE
between conventional and organic farms. Results are not conclusive and differ across sectors,
regions and methodologies.

Oude Lansink et al. (2002) used DEA techniques to compare organic and
conventional crop and livestock farms in Finland. They found that organic farms are more
technically efficient than conventional farms (0.96 vs. 0.72), though they tend to be less
productive. Different results were achieved by another DEA-based study by Bayramoglu and
Gundogmus (2008), who found that conventional raisin-producing farms in Turkey are more
efficient than organic producers (0.90 vs. 0.86). Tzouvelekas et al. (2001; 2002a, b) used the
SFA approach to assess the TE performance of Greek organic and conventional farms. They
suggested that organic farmers are operating closer to their frontier than their conventional
counterparts. In contrast, Madau (2007) applied a SFA model and found that Italian
conventional cereal farms tend to be more efficient than organic farms (0.90 vs. 0.83). In
another SFA-based study, Guesmi el al. (2012) suggested that the Catalan organic grape
producers are more efficient than conventional growers (0.80 vs. 0.64, respectively).

Although both SFA and DEA methods entail several methodological advantages, they
are also criticized for their shortcomings that may conduct to biased efficiency estimates. The
main difference between these two approaches is that the SFA accounts for the stochastic
component of production and measurement errors and that these are separated from the
inefficiency effects. In contrast, DEA methods do not allow disentangling inefficiency from
stochastic effects (Sharma et al., 1999; Wadud and White, 2000). Further, SFA permits
conducting conventional statistical tests of hypotheses. SFA, however, relies on restrictive
assumptions regarding the functional form representing the production frontier, as well as the
distributional assumption for the random noise and inefficiency error components. DEA, in
contrast does not require specification of any functional form. TE estimates have been shown
to be sensitive to estimation techniques and functional form specifications (Ferrier and
Lovell, 1990; Coelli and Perelman, 1999; Ruggiero and Vitaliano, 1999; Chakraborty et al.,
2001). Both functional form and error distribution misspecifications, as well as ignoring
stochastic component of production can lead to inaccurate efficiency estimates (Kumbhakar
et al., 2007; Martins-Filho and Yao 2007; Serra and Goodwin, 2009).

To overcome the shortcomings of both methods without foregoing their advantages,
Kumbhakar et al. (2007) recently developed a new methodological approach based on local
modeling techniques. This model allows the parameters representing both production and
error distribution to be localized with respect to the covariates. Hence, in contrast to standard
SFA models, parameters representing production characteristics are allowed to change from
firm to firm according to each firm particularities. In addition, as opposed to nonparametric
techniques, this approach allows for stochastic variables and variable measurement errors
when deriving TE scores. Furthermore, an important feature of this method is that it
addresses heteroscedasticity by estimating observation-specific variances of the inefficiency
and noise components of the error term (Serra and Goodwin, 2009). The local modeling
approach proposed by Kumbhakar et al. (2007) relies upon LML principles (Fan and Gijbels,
1996).



In spite of the relevant features of LML techniques, there are few empirical studies in
the literature (Kumbhakar et al., 2007; Martins-Filho and Yao 2007; Serra and Goodwin,
2009) relying on these methods. Only Serra and Goodwin (2009) have used LML to compare
the efficiency performance of organic and conventional arable crop farming in Spain. Our
work contributes to the efficiency literature as it constitutes the first study that compares TE
levels for organic and conventional farms in Egypt. Productivity differences between the two
farm types are also studied by determining the output elasticity of different inputs used in the
production process.

3. Methodology

TE studies can constitute a useful tool to improve a firm’s economic performance. For such
purpose, it is necessary to choose a robust method that produces unbiased efficiency
estimates. In this regard, LML approach has been chosen to consistently estimate TE. As
noted above, LML methods overcome the most relevant limitations that have been attributed
to DEA and SFA methods, without undergoing their advantages. LML techniques are used to
compare the TE with which Egyptian organic and conventional farms operate.

Aigner et al. (1977) and Meeusen and Van den Broeck (1977) specified the general

stochastic frontier model as follows Y, = B, + 8" X, —u, +V;, where Y; represents the observed
output level produced by firm i=1..,N, X, eJ¢ is a vector of input quantities used in the
production process, the betas are unknown parameters to be estimated, u, >0 is a non-
negative inefficiency term and v, is a random noise term. The parametric estimation of
stochastic frontier models is usually based on maximum likelihood techniques. The joint pdf
of (Y, X) is decomposed into a marginal pdf for X, pdf (x)=p(x) and a conditional pdf for
Y given x, pdf(y|x)= g(y,&(x)), where 6(x)ell“ is the vector of parameters to be

estimated.
Based on the parametric model developed by Aigner et al. (1977), the conditional pdf

for Y given X =x can be defined as:Y = r(X)—u +V, where r(x) is the production frontier,
u|X =x0|N(0,67(x))}, vIX=x0N(0,07(x)), and u and v are assumed to be
independently distributed, conditional on X . Following Kumbhakar et al.” (2007) approach,
the 3-dimensional local parameter vector is defined as e(x)z(r(x),oj(x),af(x))Tand is
derived using local polynomials. The conditional log-likelihood  function
L(&)zziillogg(\(i,e(xi)) is locally approximated by the following mth order local
polynomial function:

N

L, (490,491,...,9m):Zq(\(i,eo+¢91(xi —X)+..+6, (X, —x)m)KH (X, =X), (1)

i=1

where x represents a fixed interior point in the support of p(x), q=Ilogg, 6, =(6’jl,...,0jk )T

for j=01,...m, and K, (u)=|H|"K(H™u), where K represents a multivariate kernel
function and H is assumed to be a positive definite and symmetric bandwidth matrix. The
local polynomial estimator is determined by é(x) =0, (x) where

(éo(x),...,é (x)):argamag Ly (65,6,,-,6,). )

.......



To empirically derive the LML estimator, Kumbhakar et al. (2007) propose using a local
linear technique. The random noise and inefficiency terms are assumed to be distributed
following a local normal and a half normal distribution, respectively, and the conditional
probability density function of £ =v—u is expressed as:

where o?(x)=0;(X)+0o;(X), A(X)=0,(x)/o,(x) and ¢(.) and ®@(.) represent the
probability and the cumulative distribution functions of a standard normal variable,

respectively. The local linear parameter is given by H(X)I(r(X),O'Z(X),l(X))T and the
conditional pdf of Y given X is specified as:

9(y:0(x)) - G(ZX)(/{V;{X()X )}D[—(y—r(x))%g @

The conditional local log-likelihood function is defined as:

oci Eogaz(x wﬂogq{—(ﬂ—r(xi))MJ (5)

&2 2 o7(X,) o (X)

In the present study, we use a local linear model for the frontier r(xi) and a local constant
model for the parameters of the error term. As a result, expression (5) is rewritten as:

L, (6,6, ocz “loga? -~ 2 Iog(D

(vrorJ<xX>)i]KH<x.x> (6)

?
\l 0y

where 6, = (ro,a§,/10)T and ©, =r," . The local linear estimator of the model is given by éo:

(éo(x),...,él(x)):argrgro\%i( Ly (6,,0,) (")

Jondrow et al. (1982) proposed to obtain the efficiency measure for a particular
sample observation as follows:

18 ()A )] 2(HEODA/B (X)) 4(X,) Ay (X) ®
LX) | @(-2(X)A(X)/6 (X)) (X)) |

where &(X;) =Y, —f (X;). When variables are measured in logs, the efficiency level is given

by eff, =exp(—4; ) [0,1]. The maximization problem in (7) is resolved by specifying starting
values following Kumbhakar et al. (2007). We start with the local linear least squares
estimator of f,(x) and f,(x)and the global ML estimators of 6° and 4. By using the
parametric Modified Ordinary Least Squares (MOLS) estimator, the local intercept f (x) IS
corrected. For this purpose we follow Kumbhakar et al. (2007) and we use the following



specification £Y° (x)=Ff,(x)++/262 /7 , where 7 = &222/(1+ 22). Hence, starting values

AT
for solving (7) are derived from 6, = (fOMOLS : 62,/1) and @, =, (x)" .
Regarding the multivariate kernel, we choose the following expression
h HL: K(h‘l(xj )) where K{(.) is the Epanechnikov Kernel and d represents the number

of covariates. The bandwidth is defined as: h=h,__s N¥*, where s, represents the vector of

empirical standard deviations of the covariates and N represents the number of observations.
The cross validation criterion (CV) proposed by Kumbhakar et al. (2007) is used to obtain the

optimal value for h_,. The CV, for a given value ofh,,, is defined by minimizing the
following expression:

CV (hae) :%i[(\q (7 (x)—ufi)))}z, ©)

i=1

base

where fo“) and ui(i) are the leave-one-out versions of the local linear estimators defined
above.

4. Empirical application and results

The empirical analysis uses cross sectional, farm-level data collected from a survey designed
and conducted in Upper Egypt, specifically in Suhag, EI Fayum and Assiut Governorates
during the year 2010. These three governorates concentrate almost half of the organic area in
Egypt (Kledal et al., 2008). Data were collected by face-to-face questionnaires during the
period from March to June 2010 in these three governorates. The identification of the main
organic production areas was based on a list of certified organic farmers obtained from
COAE. Our sample consists of 30 organic farmers and 30 neighboring conventional farms
mainly specialized in cereal and horticulture production. The neighboring criteria allowed
obtaining a relatively analogous composition of the two subsamples of organic and
conventional farms (Tzouvelekas et al., 2001; Madau, 2007).The reduced number of
observations makes it advisable to pool organic and conventional data for the empirical
application. The resulting heterogeneity of the sample makes it specially useful to use LML
techniques.

For the purpose of our efficiency analysis, we define the following variables. Farm

output (Y;) is expressed in currency units, Egyptian Pounds (equivalent to 1/8 €), and
represents total farm income. Among the inputs considered is crop land (X ) measured in
Fedden (equivalent to 0.42 hectares). Total labor input (X,) is expressed in Egyptian Pounds
and includes both family and hired labor. Chemical inputs ( X;) represent the expenditures (in

Egyptian pounds) in fertilizers and pesticides. Other inputs (X,) include energy, fuel and seed

expenses and are also measured in monetary units. Table 1 provides summary statistics for
the variables used in the analysis. With the exception of labor input, organic and conventional
farms differ in terms of both inputs used and outputs produced. Conventional farms’
cultivated area more than triples the area planted by organic farms. Also, the average value of
conventional farm output (217,935 Egyptian Pounds) more than doubles the average output
of their organic counterparts (90,553 Egyptian Pounds). This is in line with previous
literature that has generally shown that conventional farms are usually larger than organic
farms (Oude Lansink et al., 2002; Serra and Goodwin, 2009; Guesmi el al., 2012). Yields,
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however, are superior in organic farms, which is mainly due to the organic produce price
premium. This finding is in line with previous studies (Offermann and Nieberg, 2000; Oude
Lansink et al., 2002; Oude Lansink and Jensma, 2003).

Table 1. Summary statistics for the variables of interest

Organic Conventional T-te_st of mean

Variable (n=30) (n=30) difference
) . Significance
Mean Std. Dev. Mean Std. Dev. level?

ggltﬂ]' d‘;“tp“t (Egyptian 5455333 0689805 217,935.00  182,193.39 0.001*
Land (Feddan) 4.76 8.18 16.22 16.77 0.002*
Labor (Egyptian Pound) 841333 533272  11,516.67  13,610.72 0.252
Chemical inputs 471500 3,869.64  47,188.33  56,946.76 0.000*
(Egyptian Pound)
Other inputs (Egyptian 15 595 10 1499262  65179.33  84,149.82 0.002*
Pound)
Statistics on a per Feddan basis
Total output (EQyptian o9 954 44 1337232 2049963  11,483.83 0.012*
Pound / Feddan)
Labor (Egyptian Pound 341318  2,459.82 1,132.03 1,204.08 0.000*
/ Feddan)
Chemical inputs (Egyptian
ound f Fotan) 1,021.80  2,252.02 3,813.39 2.353.50 0.003*
Other inputs (Egyptian 408827 3.009.86  5046.22 2.931.66 0.221

Pound / Feddan)

'Std Dev: standard deviation. > * indicates statistical significance at the 5%.

Conventional (organic) farms spend 11,517 (8,413) Egyptian Pounds annually in
labor input. On a per unit of land, organic farms are much more labor intensive than
conventional farms (3,413 vs. 1,132 Egyptian Pounds per Feddan). Given the restrictions
faced by organic farms regarding the use of chemical inputs, labor becomes much more
relevant in these farms. To ensure immunity against pests and diseases, conventional farms
spend quite a lot of money relative to organic farms (47,188 Egyptian Pounds vs. only 4,715
Egyptian Pounds). On a per Feddan basis, these expenses show that conventional farms are
much more intensive in fertilizers and crop protection applications (3,813 Egyptian Pounds
per Feddan) than organic farms (1,921 Egyptian Pounds per Feddan). This is not surprising
given the legal regulations that substantially restrict the use of chemical inputs by Egyptian
organic farms. Expenses in other inputs are rather low in organic farms compared to their
conventional counterparts (12,598 Egyptian Pounds vs. 65,179 Egyptian Pounds). On a per
Feddan basis, organic farms are less intensive in energy, fuel and seed use (4,088 Egyptian
Pounds per Feddan) than conventional farms (5,046 Egyptian Pounds per Feddan).

Using the aforementioned variables and based on Kumbhakar et al.’s (2007)
approach, the parametric frontier model is specified as a Cobb-Douglas function:

logY =4, + B logx, + S, log X, + S, log X, + 3, log X, —u +Vv (10)



It is worth noting that estimating the frontier for each observation in the sample allows
overcoming any functional form misspecification. It also provides enough flexibility to
capture the differences in production behavior across sample farms. The CV procedure
defined above is used to select the bandwidth parameter required to derive the LML estimator

of (10). Final results indicate that the bandwidths h, h,, h, and h, take values of 4.45, 8.50,

5.12 and 5.65, respectively. Once the adequate bandwidth for our data is selected, the local
parameter estimates are derived.

Table 2 shows the descriptive statistics for the variation in the local estimates of o
and . These statistics support the presence of heterogeneity in the sample indicating an
important degree of variability among observations regarding the proportion of the
inefficiency term to the noise term (A =0’ /7).

Table 2. Summary statistics for the local estimates of o7 , ¢ and 2

Local estimates o’ o )

Maximum (100%) 0.183 0.093 30.117
Third quartile (75%) 4.895E-04 0.086 0.075
Median (50%) 7.610E-05 0.083 0.031
First quartile (25%) 1.130E-05 0.075 0.012
Minimum (0%) 1.458E-06  2.004E-04  0.004

Figures 1 and 2 illustrate the variation of the estimates of the input coefficients for
conventional and organic farms, respectively. Since a Cobb—Douglas functional form is
assumed for our model, the coefficients represent input elasticities. The variation in the
localized estimates supports that it is not reliable assuming the same input elasticities for all
observations. For conventional farms, variation is especially important for land, with an
elasticity that ranges from 16% to 75%, followed by chemical inputs, labor and other inputs,
that have an elasticity fluctuating from 10% to 50%, 15% to 45% and 10% to 40%,
respectively. In the case of organic farms, variation is relevant for land with an elasticity that
ranges from 20% to 43%, followed by other inputs (20% to 40%), labor (20% to 38%) and
chemical inputs (3% to 18%). Input elasticities indicate that both conventional and organic
farms operate under decreasing returns to scale with a mean scale elasticity equal to 0.835
and 0.749, respectively (table 3). Hence, it is not recommendable to increase farm size for the
purpose of increasing productivity.

Table 3. Distribution of production and scale elasticities for conventional
and organic Egyptian Farms

Elasticities Conventional Organic
Estimate Std. Dev Estimate Std. Dev
Land 0.239 0.158 0.237 0.048
Labor 0.271 0.117 0.202 0.091
Chemical inputs 0.161 0.094 0.062 0.044
Other inputs 0.164 0.108 0.248 0.068
Returns to scale 0.835 0.086 0.749 0.055
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The localized elasticity estimates for both types of farms have the expected positive
sign. On average, production elasticity estimates indicate that labor is the most productive
input in conventional farming, followed by land, fertilizers and crop protection products. In
organic farming, other inputs present the highest contribution to output increases followed by
land, labor and crop protection inputs. The restrictions faced by organic farmers regarding the
use of conventional inputs may be behind the low productivity of crop protection inputs, i.e.,
the authorized crop protection inputs may not be as productive as conventional ones. The fact
that labor is more productive in conventional than in organic farming is compatible with the
more restrictive use that conventional farms make of this input. Further, the low intensity
with which organic farms use other inputs also explains the higher productivity of this input
in organic produce.

The distribution of the localized efficiency estimates is shown in Table 4. Our
empirical findings suggest high and similar TE performance for both farm types. Organic
farmers, on average, are slightly more efficient than their conventional counterparts (97.5%
and 96.4%, respectively), indicating that organic (conventional) farmers achieve 97.5%
(96.4%) of their maximum potential output. High TE performance contributes to the firm’s
economic viability. This high level of efficiency is motivated by the scarcity of agricultural
resources such as land and water which compels farmers to optimize their use. It also
indicates that there is small scope, for both types of farms, to improve their economic results
by reducing input use. Hence, in light of increasing input costs, both types of farms are likely
to face reduced economic profits: organic (conventional) farms would only be able to
increase their output by 2.5% (3.6%) if they were in the efficient frontier (i.e., by holding
input level constant).

Serra and Goodwin (2009) found that organic arable crop farming in Spain has
efficiency levels slightly below conventional farms (0.94 vs. 0.97). In any case, average
efficiencies are close to the ones derived in our work. Comparison with other studies that use
different methodologies can be conducted to provide a reference for our findings. Guesmi et
al. (2012) used SFA and obtained TE scores of 0.80 and 0.64 for organic and conventional
grape farms in Catalonia, respectively. These efficiency scores are very distant from ours and
are likely due to heterogeneity in the sample. In another study, Oude Lansink et al. (2002)
used DEA to compare organic and conventional crop and livestock farms in Finland and
found that organic crop producers have higher efficiency than conventional farms 0.96 and
0.72, respectively. Our findings are also consistent with Tzouvelekas et al.’s results (2001;
2002a, b), who used the SFA approach to evaluate the TE levels achieved by Greek organic
and conventional farms. They found organic producers to be more efficient than conventional
ones for five types of farms, namely, wheat, olives, raisins, grapes and cotton (0.84 vs. 0.79,
0.69 vs. 0.54, 0.76 vs. 0.70, 0.68 vs. 0.62 and 0.75 vs. 0.71, respectively). However, our
results are different from those derived by Bayramoglu and Gundogmus (2008), who
assessed the efficiency of the Turkish grape sector using DEA techniques and suggested that
conventional farms operate closer to their frontier than organic producers (0.90 vs. 0.86). In
contrast with our findings, Madau (2007) used a SFA model and concluded that Italian
conventional cereal farms are more efficient than organic farms (0.90 vs. 0.83). Differences
in TE estimates found in the literature of productive efficiency of organic farming can be
attributed to either the use of different methodologies or different production systems.

Technical efficiencies range from a minimum of 69% (81%) to a maximum of 100%
(100%) for conventional (organic) farmers, indicating important heterogeneity within sample
farms. However, a lower dispersion is found among organic farms: almost two thirds of
organic farmers have efficiency ratings between 99% and 100%, whereas one half of
conventional farmers display these high performance levels. This result is expected as the
organic Egyptian farms are rather homogeneous regarding managing practices and area
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cultivated, while conventional farms are more diverse ranging from very small farms to huge
commercial ones.

Table 4. Frequency distribution of technical efficiency scores

TE (%) Conventional Organic
<90 3 4
90-95 2 0
95-99 10 5
99-100 15 21
Mean 0.964 0.975
Standard deviation 0.075 0.045
Minimum 0.694 0.811
Maximum 0.998 0.999

5. Concluding remarks

Despite the relevant growth in organic farming in Egypt, there is no study that focuses on the
performance of organic farming in this country. Ours contributes to the scarce literature by
conducting a comparative study of technical efficiency ratings for organic and conventional
farms in Egypt. As well known, both parametric SFA and nonparametric DEA approaches
present some shortcomings that may conduct to derive biased efficiency estimates. A new
approach recently introduced by Kumbhakar et al. (2007) based on LML techniques allows to
overcome these drawbacks by locally estimating the parameters of the deterministic and
stochastic components of the frontier. Since using a robust methodology is important for
sound decision making, LML methods are used in this article.

Our analysis is based on farm-level data which consists of 60 organic and
conventional farms in Egypt. Empirical findings indicate substantial variation in efficiency
estimates across observations. Results suggest that our sample farms operate with high mean
efficiency scores and that organic farmers, on average, achieve higher technical efficiency
levels than their conventional counterparts (0.97 and 0.96, respectively).

Our results allow deriving some interesting policy implications. Since high technical
efficiency is a prerequisite for economic viability, knowledge that organic farms are at least
as efficient as conventional farms may encourage more farmers to adopt organic practices.
Higher organic yields in monetary units could further be improved by increased access to
foreign and national markets offering attractive organic price premiums (Lohr and
Salomonson, 2000). Finally, the low productivity of authorized organic fertilizers and crop
protection inputs in organic farming, may be attributed to the lack of necessary information
on how to adequately use these inputs. Specialized extension and training services providing
technical assistance could improve production performance.

Our research can be extended in different ways. Given the increasing relevance of the

environmental impacts of agriculture, correcting the technical efficiency estimates with
environmental considerations would provide very useful information. Also, increasing the
sample size by collecting more data can improve the reliability and the number of farms
represented by our results. Consideration of risk issues in our efficiency analysis may refine
research results. As is well known, agriculture is affected by both output and price risks that
usually determine production decisions, which in turn can affect production efficiency.

11



References

Acs S., Berentsen P.B.M., Huirine R.B.M., 2007. Conversion to organic arable farming in the
Netherlands: A dynamic linear programming analysis. Agricultural Systems 94, 405-415.

Aigner D., Lovell C.AK., Schmidt P., 1977. Formulation and estimation of stochastic
frontier production functions models. Journal of Econometrics 6, 21-37.

Bayramoglu Z., Gundogmus E., 2008. Cost Efficiency on organic farming: A comparison
between organic and conventional raisin-producing households in Turkey. Spanish Journal
of Agricultural Research 6, 3-11.

Chakraborty K., Biswas B., Lewis W.C., 2001. Measurement of technical efficiency in public
education: A stochastic and non-stochastic production function approach. Southern
Economic Journal 67, 889-905.

Coelli T.J., Perelman S., 1999. A comparison of parametric and non-parametric distance
functions: With application to European railways. European Journal of Operational
Research 117, 326-3309.

Fairweather J.R., 1999. Understanding how farmers choose between organic and
conventional production: Results from New Zealand and policy implications. Agriculture
and Human Values 16, 51-63.

Fan J., Gijbels 1., 1996. Local polynomial modeling and its applications. Chapman and Hall,
London, UK.

Ferrier R.S., Lovell C.A.K., 1990. Measuring cost efficiency in banking: An econometric and
linear programming evidence. Journal of Econometrics 46, 229-245.

FiBL and IFOAM, 2011. The World of Organic Agriculture, statistics & emerging trends
2011. Research Institute of Organic Agriculture (FiBL), Ackerstrasse, Switzerland and
International Federation of Organic Agriculture Movements (IFOAM), Bonn, Germany.

Guesmi B., Serra T., Kallas Z., Gil J.M, 2012. The productive efficiency of organic farming:
the case of grape sector in Catalonia. Spanish Journal of Agricultural Research 10, 552-
566.

Jondrow J., Lovell C.A.K., Materov I.S., Schmidt P. 1982. On the estimation of technical
inefficiency in stochastic frontier production models. Journal of Econometrics 19, 233-
238.

Kledal P.R, ElI-Araby A., Salem S.G., 2008. Country report: Organic food and farming in
Egypt. Mediterranean region. The World of Organic Agriculture, statistics & emerging
trends 2008. Research Institute of Organic Agriculture (FiBL), Ackerstrasse, Switzerland
and International Federation of Organic Agriculture Movements (IFOAM), Bonn,
Germany.

Kumbhakar S.C., Byeong U.P., Simar L., Tsionas E.G., 2007. Nonparametric stochastic
frontiers: A local maximum likelihood approach. Journal of Econometrics 137, 1-27.

Lohr L., Salomonson L., 2000. Conversion subsidies for organic production: Results from
Sweden and lessons for the United States. Agricultural Economics 22, 133-146.

Madau F.A., 2007. Technical efficiency in organic and conventional farming: Evidence form
Italian cereal farms. Agricultural Economics Review 8, 5-21.

Martins-Filho C., Yao F., 2007. Nonparametric frontier estimation via local linear regression.
Journal of Econometrics 141, 283-319.

Meeusen W., Van Den Broek J., 1977. Efficiency estimation from Cobb-Douglas production
functions with composed error. International Economic Review 18, 435-444.

Offermann F., Nieberg H., 2000. Economic performance of organic farms in Europe. Organic
Farming in Europe. Economics and Policy 5, 1-198.

12



Oude Lansink A., Pietola K.S., Backman, S., 2002. Efficiency and productivity of
conventional and organic farms in Finland 1994-1997. European Review of Agricultural
Economics 29, 51-65.

Oude Lansink A., Jensma K., 2003. Analysing profits and economic behaviour of organic and
conventional Dutch arable farms. Agricultural Economics Review 4, 19-31.

Padel S., 2001. Conversion to organic farming: A typical example of the diffusion of an
innovation. Socialogia Ruralis 4, 40-61.

Parra Lopez C., De Haro Giminez T., Calatrava Requena J., 2007. Diffusion and adoption of
organic farming in the Southern Spanish olive groves. Journal of Sustainable Agriculture
30, 105-152.

Pietola K.S., Oude Lansink A., 2001. Farmer response to policies promoting organic farming
technologies in Finland. European Review Agricultural Economics 28, 1-15.

Radwan A., Gil J.M., Diab Y. A. A., AboNahoul M., 2011. Determinants of the adoption of
organic agriculture in Egypt using a duration analysis technique. Paper presented at the
85th Annual Conference, Warwick University, Coventry, UK, April 18-20.

Ruggiero J.,Vitaliano D., 1999. Assessing the efficiency of public schools using data
envelopment analysis and frontier regression. Contemporary Economic Policy 17, 321-
331.

SEKEM Organization. http://www.sekem.com.

Serra T., Goodwin B.K., 2009. The efficiency of Spanish arable crop organic farms, a local
maximum likelihood approach. Journal of Productivity Analysis 3, 113-124.

Sharma K.R., Leung P., Zaleski H.M., 1999. Technical, allocative and economic efficiencies
in swine production in Hawaii: A comparison of parametric and nonparametric
approaches. Agricultural Economics 20, 23-35.

Tzouvelekas V, Pantzios CJ, Fotopoulos C, 2001. Technical efficiency of alternative farming
systems: the case of Greek organic and conventional olive-growing farms. Food Policy 26,
549-569.

Tzouvelekas V, Pantzios CJ, Fotopoulos C, 2002a. Empirical evidence of technical efficiency
levels in Greek organic and conventional farms. Agricultural Economics Review 3, 49-60.

Tzouvelekas V, Pantzios CJ, Fotopoulos C, 2002b. Measuring multiple and single factor
technical efficiency in organic farming: the case of Greek wheat farms. British Food
Journal 104, 591-6009.

UNDP, 2011. Country Evaluation Egypt.

Wadud A., White B., 2000. Farm household efficiency in Bangladesh: A comparison of
stochastic frontier and DEA methods. Applied Economics 32, 165-73.

13


http://ageconsearch.umn.edu/handle/108248

