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1. Introduction 

 

Although with a declining trend, Egyptian agriculture still accounts for about 17 per cent of 

gross domestic product and 20 per cent of total exports and foreign-exchange revenues. In 

addition, agriculture-related industries, such as processing, marketing and input supplies, 

account for another 20 per cent of gross domestic product. Agriculture is therefore a key 

sector in the Egyptian economy, providing the livelihood for 55 per cent of the population 

(UNDP, 2011). A very important pillar for the modernization of the Egyptian agriculture 

involves promoting exports of high value added products such as organic produce.  

While expansion of organic farming had been quite slow until 1988, it experienced a 

rapid growth in the vegetables, fruits, cereals, and cotton sectors thereafter. This rapid growth 

was initiated mainly by SEKEM and some other growers in Fayum and Kalubia 

governorates. Currently, organic agriculture in Egypt is expanding very fast due to public 

awareness of the advantages associated to this farming practice, as well as the increasing 

demands for organic food and fibers in both local and export markets. As a result, organic 

farming has rapidly grown from 15 thousand hectares farmed by 460 organic farms in 2006 

to 56 thousand hectares managed by 909 producers in 2009 (FiBL and IFOAM, 2011). 

Almost half of the Egyptian organic farms are located in the middle Nile, in the region of El 

Fayoum, 100 Km south of Cairo. Organic farms in Egypt are generally small holdings whose 

size usually ranges from 4.5 to 20 hectares. A few farm enterprises are larger than 1000 

Feddan (400 hectares), but they account for 20% of all organic farmland and are located in 

the Nile delta and in Upper Egypt (Kledal et al., 2008). 

Organic farming mainly relies on the use of less chemical inputs than conventional 

agriculture. Because this restricted input use, organic practices are likely to be less productive 

than conventional agriculture. This lower productivity however does not necessarily affect 

farms’ profits once their product is certified organic, due to the high market price for organic 

produce. During the early stages of conversion, however, farms may face economic hardships 

for not being yet able to receive the organic produce price premium.  

Technical efficiency (TE) is a prerequisite for economic efficiency, which in turn is a 

necessary condition for the economic viability and sustainability of a firm (Tzouvelekas et 

al., 2001). Knowledge about productivity and efficiency differences between conventional 

and organic farms is a relevant tool for economic agents considering alternatives to improve 

the performance of organic agriculture, and designing suitable policies to support the 

expansion of organic agriculture within Egypt. Using robust methodologies for TE analysis is 

important to derive unbiased efficiency estimates that allow monitoring the impacts of policy 

and better targeting policy measures. Despite the relevant growth of organic agriculture in 

Egypt, up to date there is no study that assesses the performance of organic farms in this 

country. Unlike previous mainstream literature on organic farming TE, which has widely 

relied on either the Stochastic Frontier Analysis (SFA) or the Data Envelopment Analysis 

(DEA) to derive TE estimates, we use a new methodology recently introduced by Kumbakhar 

et al. (2007) based on local maximum likelihood techniques. In order to achieve the 

aforementioned objective, a survey was conducted for a sample of organic and conventional 

farms mainly specialized in horticulture and cereal production and located in the Upper Egypt 

area. More specifically, the survey was conducted in Suhag, Assiut and Fayum governorates.  

The rest of the paper is organized as follows. In the next section, a literature review 

and the contribution of this work to previous literature is presented. Then, we describe the 

methodology used in our empirical application. The fourth section presents the data and 

results of the empirical implementation. Finally, the paper ends with some concluding 

remarks. 
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2. Literature review 

 

While analyses on the adoption of organic farming practices have proliferated (Fairweather, 

1999; Lohr and Salomonson, 2000; Pietola and Oude Lansink, 2001; Acs et al., 2007, Padel, 

2001; Parra et al., 2007; Radwan et al., 2011), the literature on TE performance of organic 

farming is still small, which may be due to the scarcity of organic farming data necessary to 

conduct such analyses (Oude Lansink et al., 2002). Parametric SFA and non-parametric DEA 

methods constitute the mainstream of the efficiency literature assessing the differences in TE 

between conventional and organic farms. Results are not conclusive and differ across sectors, 

regions and methodologies. 

Oude Lansink et al. (2002) used DEA techniques to compare organic and 

conventional crop and livestock farms in Finland. They found that organic farms are more 

technically efficient than conventional farms (0.96 vs. 0.72), though they tend to be less 

productive. Different results were achieved by another DEA-based study by Bayramoglu and 

Gundogmus (2008), who found that conventional raisin-producing farms in Turkey are more 

efficient than organic producers (0.90 vs. 0.86). Tzouvelekas et al. (2001; 2002a, b) used the 

SFA approach to assess the TE performance of Greek organic and conventional farms. They 

suggested that organic farmers are operating closer to their frontier than their conventional 

counterparts. In contrast, Madau (2007) applied a SFA model and found that Italian 

conventional cereal farms tend to be more efficient than organic farms (0.90 vs. 0.83). In 

another SFA-based study, Guesmi el al. (2012) suggested that the Catalan organic grape 

producers are more efficient than conventional growers (0.80 vs. 0.64, respectively). 

Although both SFA and DEA methods entail several methodological advantages, they 

are also criticized for their shortcomings that may conduct to biased efficiency estimates. The 

main difference between these two approaches is that the SFA accounts for the stochastic 

component of production and measurement errors and that these are separated from the 

inefficiency effects. In contrast, DEA methods do not allow disentangling inefficiency from 

stochastic effects (Sharma et al., 1999; Wadud and White, 2000). Further, SFA permits 

conducting conventional statistical tests of hypotheses. SFA, however, relies on restrictive 

assumptions regarding the functional form representing the production frontier, as well as the 

distributional assumption for the random noise and inefficiency error components. DEA, in 

contrast does not require specification of any functional form. TE estimates have been shown 

to be sensitive to estimation techniques and functional form specifications (Ferrier and 

Lovell, 1990; Coelli and Perelman, 1999; Ruggiero and Vitaliano, 1999; Chakraborty et al., 

2001). Both functional form and error distribution misspecifications, as well as ignoring 

stochastic component of production can lead to inaccurate efficiency estimates (Kumbhakar 

et al., 2007; Martins-Filho and Yao 2007; Serra and Goodwin, 2009).  

To overcome the shortcomings of both methods without foregoing their advantages, 

Kumbhakar et al. (2007) recently developed a new methodological approach based on local 

modeling techniques. This model allows the parameters representing both production and 

error distribution to be localized with respect to the covariates. Hence, in contrast to standard 

SFA models, parameters representing production characteristics are allowed to change from 

firm to firm according to each firm particularities. In addition, as opposed to nonparametric 

techniques, this approach allows for stochastic variables and variable measurement errors 

when deriving TE scores. Furthermore, an important feature of this method is that it 

addresses heteroscedasticity by estimating observation-specific variances of the inefficiency 

and noise components of the error term (Serra and Goodwin, 2009). The local modeling 

approach proposed by Kumbhakar et al. (2007) relies upon LML principles (Fan and Gijbels, 

1996).  
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In spite of the relevant features of LML techniques, there are few empirical studies in 

the literature (Kumbhakar et al., 2007; Martins-Filho and Yao 2007; Serra and Goodwin, 

2009) relying on these methods. Only Serra and Goodwin (2009) have used LML to compare 

the efficiency performance of organic and conventional arable crop farming in Spain. Our 

work contributes to the efficiency literature as it constitutes the first study that compares TE 

levels for organic and conventional farms in Egypt. Productivity differences between the two 

farm types are also studied by determining the output elasticity of different inputs used in the 

production process. 

 

3. Methodology 

 

TE studies can constitute a useful tool to improve a firm’s economic performance. For such 

purpose, it is necessary to choose a robust method that produces unbiased efficiency 

estimates. In this regard, LML approach has been chosen to consistently estimate TE. As 

noted above, LML methods overcome the most relevant limitations that have been attributed 

to DEA and SFA methods, without undergoing their advantages. LML techniques are used to 

compare the TE with which Egyptian organic and conventional farms operate.  

Aigner et al. (1977) and Meeusen and Van den Broeck (1977) specified the general 

stochastic frontier model as follows 
0

T

i i i iY X u v     , where iY  represents the observed 

output level produced by firm  1,...,i N , d

iX   is a vector of input quantities used in the 

production process, the betas are unknown parameters to be estimated, 0iu   is a non-

negative inefficiency term and iv  is a random noise term. The parametric estimation of 

stochastic frontier models is usually based on maximum likelihood techniques. The joint pdf 

of  ,Y X  is decomposed into a marginal pdf for ,X   = ( )pdf x p x  and a conditional pdf for 

Y  given x ,     | ,pdf y x g y x , where   kx   is the vector of parameters to be 

estimated. 

Based on the parametric model developed by Aigner et al. (1977), the conditional pdf 

for Y  given X x  can be defined as:  Y r X u v   , where  r x is the production frontier, 

  2| 0, uu X x N x ,   2| 0, vv X x N x , and u  and v  are assumed to be  

independently distributed, conditional on X . Following Kumbhakar et al.’ (2007) approach, 

the 3-dimensional local parameter vector is defined as         2 2, ,
T

u vx r x x x   and is 

derived using local polynomials. The conditional log-likelihood function 

    
1
log ,

N

i ii
L g Y X 


  is locally approximated by the following mth order local 

polynomial function:  

        0 1 0 1

1

, ,..., , ...
N

m

N m i i m i H i

i

L q Y X x X x K X x     


       ,     (1) 

where x  represents a fixed interior point in the support of  p x , logq g ,  1,...,
T

j j jk  

for 0,1,...,j m , and    
1 1

HK u H K H u
  , where K  represents a multivariate kernel 

function  and H  is assumed to be a positive definite and symmetric bandwidth matrix. The 

local polynomial estimator is determined by    0
ˆ ˆx x  where  

      
0

0 0 1
,...,

ˆ ˆ,..., arg max , ,...,
m

m N mx x L
 

     . (2) 
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To empirically derive the LML estimator, Kumbhakar et al. (2007) propose using a local 

linear technique. The random noise and inefficiency terms are assumed to be distributed 

following a local normal and a half normal distribution, respectively, and the conditional 

probability density function of v u    is expressed as: 

 
   

 

 
2

|
x

f X x
x x x


  

  

   
         

   
 (3) 

where      2 2 2

u vx x x    ,      u vx x x    and  .  and  .  represent the 

probability and the cumulative distribution functions of a standard normal variable, 

respectively. The local linear parameter is given by         2, ,
T

x r x x x   and the 

conditional pdf of Y given X  is specified as: 

  
 

 

 
  

 

 
2

;
y r x x

g y x y r x
x x x


 

  

   
         

   
 (4) 

The conditional local log-likelihood function is defined as: 
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2

2 2
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log log

2 2

N
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i i i

i i i

Y r X X
L X Y r X
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  (5) 

In the present study, we use a local linear model for the frontier  ir x  and a local constant 

model for the parameters of the error term. As a result, expression (5) is rewritten as: 

 
  

    

2

0 12 0
0 1 0 0 12 2

1 0 0

1 1
, log log

2 2

T
N

i i T

N i i H i

i

Y r r X x
L Y r r X x K X x


 

 

   
           
 
 


 

(6) 

where  2

0 0 0 0, ,
T

r   and 
1 1

Tr  . The local linear estimator of the model is given by 0̂ : 

      
0 1

0 1 0 1
,

ˆ ˆ,..., arg max ,Nx x L


 


    (7) 

Jondrow et al. (1982) proposed to obtain the efficiency measure for a particular 

sample observation as follows: 

   

 

      
      

   

 

0 00 0 0

2
00 0 0

ˆˆˆ ˆˆ ˆˆ
ˆ

ˆ ˆ ˆ1 ˆ ˆ

i i ii i i i

i

ii i i i

X X XX X X X
u

XX X X X

      

   

 
  
   
 

,                                   (8)  

where    0
ˆ ˆ

i i iX Y r X   . When variables are measured in logs, the efficiency level is given 

by    ˆ ˆexp 0,1i ieff u   . The maximization problem in (7) is resolved by specifying starting 

values following Kumbhakar et al. (2007). We start with the local linear least squares 

estimator of  0̂r x  and  1̂r x and the global ML estimators of 2̂  and  . By using the 

parametric Modified Ordinary Least Squares (MOLS) estimator, the local intercept   0̂r x
 
is 

corrected. For this purpose we follow Kumbhakar et al. (2007) and we use the following 
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specification     2

0 0
ˆ ˆ ˆ2MOLS

ur x r x    , where  2 2 2 2ˆ ˆˆ ˆ 1 .u      Hence, starting values 

for solving (7) are derived from  2

0 0
ˆˆ ˆ, ,

T
MOLSr  

 
and  1 1̂

T
r x  . 

Regarding the multivariate kernel, we choose the following expression

  1

1

dd

jj
h K h x 


 , where  .K  is the Epanechnikov Kernel and d  represents the number 

of covariates. The bandwidth is defined as: 1 5

base xh h s N  , where xs  represents the vector of 

empirical standard deviations of the covariates and N  represents the number of observations. 

The cross validation criterion (CV) proposed by Kumbhakar et al. (2007) is used to obtain the 

optimal value for baseh . The CV, for a given value of baseh , is defined by minimizing the 

following expression: 

         
2

0

1

1
ˆ

N
i i

base i i

i

CV h Y r x u
N 

   
   ,                                                                               (9) 

where 
 

0̂

i
r  and 

 i
iu  are the leave-one-out versions of the local linear estimators defined 

above.  

   

4. Empirical application and results 

 

The empirical analysis uses cross sectional, farm-level data collected from a survey designed 

and conducted in Upper Egypt, specifically in Suhag, El Fayum and Assiut Governorates 

during the year 2010. These three governorates concentrate almost half of the organic area in 

Egypt (Kledal et al., 2008). Data were collected by face-to-face questionnaires during the 

period from March to June 2010 in these three governorates. The identification of the main 

organic production areas was based on a list of certified organic farmers obtained from 

COAE. Our sample consists of 30 organic farmers and 30 neighboring conventional farms 

mainly specialized in cereal and horticulture production. The neighboring criteria allowed 

obtaining a relatively analogous composition of the two subsamples of organic and 

conventional farms (Tzouvelekas et al., 2001; Madau, 2007).The reduced number of 

observations makes it advisable to pool organic and conventional data for the empirical 

application. The resulting heterogeneity of the sample makes it specially useful to use LML 

techniques. 

For the purpose of our efficiency analysis, we define the following variables. Farm 

output ( iy ) is expressed in currency units, Egyptian Pounds (equivalent to 1/8 €), and 

represents total farm income. Among the inputs considered is crop land ( 1x ) measured in 

Fedden (equivalent to 0.42 hectares). Total labor input ( 2x ) is expressed in Egyptian Pounds 

and includes both family and hired labor. Chemical inputs ( 3x ) represent the expenditures (in 

Egyptian pounds) in fertilizers and pesticides. Other inputs ( 4x ) include energy, fuel and seed 

expenses and are also measured in monetary units. Table 1 provides summary statistics for 

the variables used in the analysis. With the exception of labor input, organic and conventional 

farms differ in terms of both inputs used and outputs produced. Conventional farms’ 

cultivated area more than triples the area planted by organic farms. Also, the average value of 

conventional farm output (217,935 Egyptian Pounds) more than doubles the average output 

of their organic counterparts (90,553 Egyptian Pounds). This is in line with previous 

literature that has generally shown that conventional farms are usually larger than organic 

farms (Oude Lansink et al., 2002; Serra and Goodwin, 2009; Guesmi el al., 2012). Yields, 
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however, are superior in organic farms, which is mainly due to the organic produce price 

premium. This finding is in line with previous studies (Offermann and Nieberg, 2000; Oude 

Lansink et al., 2002; Oude Lansink and Jensma, 2003). 

 

Table 1. Summary statistics for the variables of interest 

Variable 

Organic  

(n=30) 

Conventional 

(n=30) 

T-test of mean 

difference 

Significance 

level
2
 Mean Std. Dev.

1
 Mean Std. Dev.

1
 

Total output (Egyptian 

Pound)   
90,553.33 96,898.95 217,935.00 182,193.39 0.001* 

Land (Feddan) 4.76 8.18 16.22 16.77 0.002* 

Labor (Egyptian Pound) 8,413.33 5,332.72 11,516.67 13,610.72 0.252 

Chemical inputs 

(Egyptian Pound) 
4,715.00 3,869.64 47,188.33 56,946.76 0.000* 

Other inputs (Egyptian 

Pound) 
12,598.10 14,992.62 65,179.33   84,149.82 0.002* 

Statistics on a per Feddan basis 

Total output (Egyptian 

Pound / Feddan) 
28,954.44 13,372.32 20,499.63 11,483.83 0.012* 

Labor (Egyptian Pound 

/ Feddan) 
3,413.18 2,459.82 1,132.03 1,204.08 0.000* 

Chemical inputs (Egyptian 

Pound / Feddan) 
1,921.80 2,252.02 3,813.39 2,353.50 0.003* 

Other inputs (Egyptian 

Pound / Feddan) 
4,088.27 3,009.86 5,046.22 2,931.66 0.221 

1
Std Dev: standard deviation. 

2
 * indicates statistical significance at the 5%. 

 

Conventional (organic) farms spend 11,517 (8,413) Egyptian Pounds annually in 

labor input. On a per unit of land, organic farms are much more labor intensive than 

conventional farms (3,413 vs. 1,132 Egyptian Pounds per Feddan). Given the restrictions 

faced by organic farms regarding the use of chemical inputs, labor becomes much more 

relevant in these farms. To ensure immunity against pests and diseases, conventional farms 

spend quite a lot of money relative to organic farms (47,188 Egyptian Pounds vs. only 4,715 

Egyptian Pounds). On a per Feddan basis, these expenses show that conventional farms are 

much more intensive in fertilizers and crop protection applications (3,813 Egyptian Pounds 

per Feddan) than organic farms (1,921 Egyptian Pounds per Feddan). This is not surprising 

given the legal regulations that substantially restrict the use of chemical inputs by Egyptian 

organic farms. Expenses in other inputs are rather low in organic farms compared to their 

conventional counterparts (12,598 Egyptian Pounds vs. 65,179 Egyptian Pounds). On a per 

Feddan basis, organic farms are less intensive in energy, fuel and seed use (4,088 Egyptian 

Pounds per Feddan) than conventional farms (5,046 Egyptian Pounds per Feddan).   

Using the aforementioned variables and based on Kumbhakar et al.’s (2007) 

approach, the parametric frontier model is specified as a Cobb-Douglas function: 

0 1 1 2 2 3 3 4 4log log log log logY x x x x u v                                                          (10) 
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It is worth noting that estimating the frontier for each observation in the sample allows 

overcoming any functional form misspecification. It also provides enough flexibility to 

capture the differences in production behavior across sample farms. The CV procedure 

defined above is used to select the bandwidth parameter required to derive the LML estimator 

of (10). Final results indicate that the bandwidths 1h , 2h , 3h  and 4h take values of 4.45, 8.50, 

5.12 and 5.65, respectively.  Once the adequate bandwidth for our data is selected, the local 

parameter estimates are derived.  

Table 2 shows the descriptive statistics for the variation in the local estimates of 2

u  

and 2

v . These statistics support the presence of heterogeneity in the sample indicating an 

important degree of variability among observations regarding the proportion of the 

inefficiency term to the noise term ( 2 2/u v   ).  

 

Table 2. Summary statistics for the local estimates of 2

u  , 2

v  and   

Local estimates  2

u  2

v    

Maximum (100%) 0.183 0.093 30.117 

Third quartile (75%) 4.895E-04 0.086 0.075 

Median (50%) 7.610E-05 0.083 0.031 

First quartile (25%) 1.130E-05 0.075 0.012 

Minimum (0%) 1.458E-06 2.004E-04 0.004 

 

Figures 1 and 2 illustrate the variation of the estimates of the input coefficients for 

conventional and organic farms, respectively. Since a Cobb–Douglas functional form is 

assumed for our model, the coefficients represent input elasticities. The variation in the 

localized estimates supports that it is not reliable assuming the same input elasticities for all 

observations. For conventional farms, variation is especially important for land, with an 

elasticity that ranges from 16% to 75%, followed by chemical inputs, labor and other inputs, 

that have an elasticity fluctuating from 10% to 50%, 15% to 45% and 10% to 40%, 

respectively. In the case of organic farms, variation is relevant for land with an elasticity that 

ranges from 20% to 43%, followed by other inputs (20% to 40%), labor (20% to 38%) and 

chemical inputs (3% to 18%). Input elasticities indicate that both conventional and organic 

farms operate under decreasing returns to scale with a mean scale elasticity equal to 0.835 

and 0.749, respectively (table 3). Hence, it is not recommendable to increase farm size for the 

purpose of increasing productivity. 

 

Table 3. Distribution of production and scale elasticities for conventional  

and organic Egyptian Farms 

Elasticities  
 

Conventional Organic 

Estimate Std. Dev Estimate Std. Dev 

Land  0.239 0.158 0.237 0.048 

Labor 0.271 0.117 0.202 0.091 

Chemical inputs 0.161 0.094 0.062 0.044 

Other inputs 0.164 0.108 0.248 0.068 

Returns to scale 0.835 0.086 0.749 0.055 
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Fig. 1 Distribution of localized estimates of input elasticities: conventional farming 

 

  

  
Fig. 2 Distribution of localized estimates of input elasticities: organic farming 
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The localized elasticity estimates for both types of farms have the expected positive 

sign. On average, production elasticity estimates indicate that labor is the most productive 

input in conventional farming, followed by land, fertilizers and crop protection products. In 

organic farming, other inputs present the highest contribution to output increases followed by 

land, labor and crop protection inputs. The restrictions faced by organic farmers regarding the 

use of conventional inputs may be behind the low productivity of crop protection inputs, i.e., 

the authorized crop protection inputs may not be as productive as conventional ones. The fact 

that labor is more productive in conventional than in organic farming is compatible with the 

more restrictive use that conventional farms make of this input. Further, the low intensity 

with which organic farms use other inputs also explains the higher productivity of this input 

in organic produce. 

The distribution of the localized efficiency estimates is shown in Table 4. Our 

empirical findings suggest high and similar TE performance for both farm types. Organic 

farmers, on average, are slightly more efficient than their conventional counterparts (97.5% 

and 96.4%, respectively), indicating that organic (conventional) farmers achieve 97.5% 

(96.4%) of their maximum potential output. High TE performance contributes to the firm’s 

economic viability. This high level of efficiency is motivated by the scarcity of agricultural 

resources such as land and water which compels farmers to optimize their use. It also 

indicates that there is small scope, for both types of farms, to improve their economic results 

by reducing input use. Hence, in light of increasing input costs, both types of farms are likely 

to face reduced economic profits: organic (conventional) farms would only be able to 

increase their output by 2.5% (3.6%) if they were in the efficient frontier (i.e., by holding 

input level constant). 

Serra and Goodwin (2009) found that organic arable crop farming in Spain has 

efficiency levels slightly below conventional farms (0.94 vs. 0.97). In any case, average 

efficiencies are close to the ones derived in our work. Comparison with other studies that use 

different methodologies can be conducted to provide a reference for our findings. Guesmi et 

al. (2012) used SFA and obtained TE scores of 0.80 and 0.64 for organic and conventional 

grape farms in Catalonia, respectively. These efficiency scores are very distant from ours and 

are likely due to heterogeneity in the sample. In another study, Oude Lansink et al. (2002) 

used DEA to compare organic and conventional crop and livestock farms in Finland and 

found that organic crop producers have higher efficiency than conventional farms 0.96 and 

0.72, respectively. Our findings are also consistent with Tzouvelekas et al.’s results (2001; 

2002a, b), who used the SFA approach to evaluate the TE levels achieved by Greek organic 

and conventional farms. They found organic producers to be more efficient than conventional 

ones for five types of farms, namely, wheat, olives, raisins, grapes and cotton (0.84 vs. 0.79, 

0.69 vs. 0.54, 0.76 vs. 0.70, 0.68 vs. 0.62 and 0.75 vs. 0.71, respectively). However, our 

results are different from those derived by Bayramoglu and Gundogmus (2008), who 

assessed the efficiency of the Turkish grape sector using DEA techniques and suggested that 

conventional farms operate closer to their frontier than organic producers (0.90 vs. 0.86). In 

contrast with our findings, Madau (2007) used a SFA model and concluded that Italian 

conventional cereal farms are more efficient than organic farms (0.90 vs. 0.83). Differences 

in TE estimates found in the literature of productive efficiency of organic farming can be 

attributed to either the use of different methodologies or different production systems. 

Technical efficiencies range from a minimum of 69% (81%) to a maximum of 100% 

(100%) for conventional (organic) farmers, indicating important heterogeneity within sample 

farms. However, a lower dispersion is found among organic farms: almost two thirds of 

organic farmers have efficiency ratings between 99% and 100%, whereas one half of 

conventional farmers display these high performance levels. This result is expected as the 

organic Egyptian farms are rather homogeneous regarding managing practices and area 
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cultivated, while conventional farms are more diverse ranging from very small farms to huge 

commercial ones.  

 

Table 4. Frequency distribution of technical efficiency scores 

TE (%) Conventional Organic  

<90 3 4 

90-95 2 0 

95-99 10 5 

99-100 15 21 

Mean 0.964  0.975  

Standard deviation 0.075 0.045 

Minimum  0.694 0.811 

Maximum 0.998 0.999 

 

5. Concluding remarks 

 

Despite the relevant growth in organic farming in Egypt, there is no study that focuses on the 

performance of organic farming in this country. Ours contributes to the scarce literature by 

conducting a comparative study of technical efficiency ratings for organic and conventional 

farms in Egypt. As well known, both parametric SFA and nonparametric DEA approaches 

present some shortcomings that may conduct to derive biased efficiency estimates. A new 

approach recently introduced by Kumbhakar et al. (2007) based on LML techniques allows to 

overcome these drawbacks by locally estimating the parameters of the deterministic and 

stochastic components of the frontier. Since using a robust methodology is important for 

sound decision making, LML methods are used in this article.  

Our analysis is based on farm-level data which consists of 60 organic and 

conventional farms in Egypt. Empirical findings indicate substantial variation in efficiency 

estimates across observations. Results suggest that our sample farms operate with high mean 

efficiency scores and that organic farmers, on average, achieve higher technical efficiency 

levels than their conventional counterparts (0.97 and 0.96, respectively).  

Our results allow deriving some interesting policy implications. Since high technical 

efficiency is a prerequisite for economic viability, knowledge that organic farms are at least 

as efficient as conventional farms may encourage more farmers to adopt organic practices. 

Higher organic yields in monetary units could further be improved by increased access to 

foreign and national markets offering attractive organic price premiums (Lohr and 

Salomonson, 2000). Finally, the low productivity of authorized organic fertilizers and crop 

protection inputs in organic farming, may be attributed to the lack of necessary information 

on how to adequately use these inputs. Specialized extension and training services providing 

technical assistance could improve production performance.  

Our research can be extended in different ways. Given the increasing relevance of the 

environmental impacts of agriculture, correcting the technical efficiency estimates with 

environmental considerations would provide very useful information. Also, increasing the 

sample size by collecting more data can improve the reliability and the number of farms 

represented by our results. Consideration of risk issues in our efficiency analysis may refine 

research results. As is well known, agriculture is affected by both output and price risks that 

usually determine production decisions, which in turn can affect production efficiency.  
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