
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

 

 

What drives the German hog price cycle?  
Diagnostic modelling of a nonlinear dynamic system 

 
 

Ernst Berg1 and Ray Huffaker2 

 
 
 
 

1 Institute of Food and Resource Economics, University of Bonn,  
Meckenheimer Allee 174, D-53115 Bonn, Germany 

e.berg@uni-bonn.de 
 

2 Department of Agricultural and Biological Engineering, University of Florida,  
281 Frazer Rogers Hall, Gainesville, FL 32611-0570, USA 

rhuffaker@ufl.edu 
 
 
 
 
 
 

 
 
 

 

 
Paper prepared for presentation at the EAAE 2014 Congress 

‘Agri-Food and Rural Innovations for Healthier Societies’ 
 

August 26 to 29, 2014 
Ljubljana, Slovenia 

 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2014 by Ernst Berg and Ray Huffaker.  All rights reserved.  Readers may make 
verbatim copies of this document for non-commercial purposes by any means, provided that 
this copyright notice appears on all such copies. 



 

 
 

 

 

 

 



 

1 
 

Abstract 

We investigated causal factors driving German hog-price dynamics with an innovative 
‘diagnostic’ modeling approach.  Hog-price cycles are conventionally attributed to randomly-
generated behavior best modeled stochastically—most recently as randomly-shifting sinusoi-
dal oscillations.  Alternatively, we applied nonlinear time series analysis to empirically recon-
struct a deterministic hog-price attractor from observed hog prices.  Hog prices cycle aperiod-
ically along this attractor as time evolves.  The empirically diagnosed attractor indicates that 
causal factors driving the German hog-price cycle are endogenous to the hog industry itself.  
We next formulated a structural (explanatory) model of the pork industry to synthesize the 
empirical hog-price attractor and to determine causal factors generating it.  Model simulations 
demonstrate that low price elasticity of demand contributes to aperiodic price cycling – a well 
know result – and further reveal two other important causal factors:  the irreversibility of in-
vestment (caused by high specificity of technology), and the liquidity-driven investment be-
havior of German farmers. 

Keywords: hog, cycle, nonlinear dynamics, chaos, phase space reconstruction 

1. Introduction 

Past work investigating the persistent hog-price cycle has resulted in substantial disa-
greement over underlying causes.  Early work attributed the phenomenon to naïve producer 
behavior characterized by linear-cobweb price adjustments (cf. Hanau, 1928, Ezekiel, 1938, 
Harlow 1960, Waugh 1964, Buchholz 1982).  More recent studies proposed that persistent 
fluctuations are driven by nonlinear chaotic price dynamics.  Statistical tests by Chavas and 
Holt (1991) (using quarterly US data) and Holzer and Precht (1993) (using weekly German 
data) failed to reject the hypothesis of nonlinear price dynamics.  Streips (1995) verified the 
results in Chavas and Holt (1991) for monthly data, and further reconstructed a chaotic attrac-
tor composed of non-repeating aperiodic price cycles. Holt and Craig (2006) employed re-
gime switching models to provide evidence of nonlinearity, regime dependent behavior, and 
structural change over an almost 100-year study period. A recent contribution by Parker and 
Shonkwiler (2013) returned to a linear representation of hog-cycle dynamics. They modeled 
the hog cycle in Germany as a randomly-shifting sinusoidal oscillation with time varying am-
plitudes.  They hypothesized that producer inability to predict future prices due to stochastic 
influences is responsible for persistent cycling.   

We employ a ‘diagnostic’ modeling approach to determine causal factors driving the 
German hog-price cycle. We apply nonlinear time series analysis to diagnose the presence of 
deterministic nonlinear dynamics in observed hog-price data. The presence of nonlinear dy-
namics provides evidence that the hog-price cycle is endogenous to the hog industry itself 
(Chavas and Holt, 1993), and not driven principally by random supply/demand shocks 
(Aadland, 2004) or a randomly perturbed sinusoidal cycle (Parker and Shonkwiler, 2013).  It 
also provides information that can be used, along with knowledge of the structure and tech-
nology of the pork industry, to formulate a structural (explanatory) model capable of simulat-
ing, and identifying causal factors driving, empirically-diagnosed hog-price dynamics.  

2. Characteristics of the hog cycle in Germany 

The graph of the German hog-price cycle is shown in Figure 1.  It is based on average 
producer prices for slaughtered pigs of quality E to P, in € per kg carcass weight, for the state 
of North Rhine-Westphalia, Germany.1 The record comprises the period from January 1990 to 

                                                 
1 The data were officially recorded and provided by the “Landesamt für Natur, Umwelt und Verbraucherschutz 
NRW”. 
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December 2011 for a total of 1144 observations.  Hog prices exhibit the well-known cycles 
superimposed by irregular disturbances. Furthermore, the average price level decreases during 
the first decade and increases slightly thereafter. This pattern is mainly caused by the change 
of the Common Agricultural Policy (CAP) of the European Union, starting with the McSharry 
reform in 1992. The CAP reform liberalized commodity markets by reducing the price sup-
port (i.e. intervention prices).  This led to a strong decrease of grain prices during the nineties 
and the early years of the new century. Consequently, hog prices followed declining feed 
prices leaving the farmers’ margins largely unchanged. The increase in average hog price in 
the latter part of the record is observed for most agricultural commodities.   

 

 
Figure 1: Time series of hog prices and estimated trend 

In the studies of the USA, the hog cycle is normally represented by the hog to corn price 
ratio. This implies that the decision makers value the slaughter pigs in quantities of corn. This 
might have been a valid assumption in the past, but it is highly questionable for the present 
circumstances, at least under European conditions. With today’s commonly used technology, 
significantly more than half of the total cost are fixed cost associated with the provision of the 
durable assets. For the past two decades, we found hardly any hog-to-feed price ratio for 
which the preferable choice would have been to leave capacities idle. Thus, short term pro-
duction decisions are primarily driven by past investments, and are largely independent from 
current feed prices. Furthermore, farmers as well as feed suppliers can choose between differ-
ent components. Consequently, the volatility of feeding cost will always be less than the vola-
tility of a single feedstuff. Finally, changes of feedstuff prices will be encoded in the hog pric-
es as far as there is a causality. Our empirical results to follow provide evidence for such cau-
sality.   

For these reasons, we contend that representing the hog cycle by a hog-to-feed price ratio 
biases the analysis by mixing two phenomena with totally different origins: the hog price cy-
cle on one hand and the volatility of barley prices on the other.2  Increased barley price vola-
tility is a recent phenomenon due to CAP reforms, whereas the hog cycle has existed for a 
long time caused by factors requiring further analysis. We focus our analysis on slaughter hog 
prices. Given nonlinear dynamic industry structure, slaughter-hog-price dynamics encode 
patterns of feedstuff prices. 

                                                 
2 For example, Parker and Shonkwiler (2013) conclude that – contrary to the USA – the hog cycle in Germany is 
becoming more volatile. This however contradicts the pattern of slaughter pig prices that exhibits a slightly de-
creasing volatility in the most recent years (Figure 1). 
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3. Nonlinear time series analysis 

Hog-price cycles are characterized by nonrepeating oscillations with different periods 
(i.e., ‘aperiodic’ cycles).  Deterministic nonlinear dynamic systems generate nonrepeating 
aperiodic ‘chaotic’ cycles endogenously. Chaotic dynamics are characterized by ‘sensitivity to 
initial conditions’ in which close neighboring trajectories at a given point in time exponential-
ly diverge as time evolves. Accurate long-term predictions of chaotic systems are unachieva-
ble.  Despite exponential divergence, chaotic trajectories converge toward a bounded, spatial-
ly-organized, and low-dimensional geometric structure (‘strange attractor’) upon which they 
orbit irregularly (Kaplan and Glass, 1995; Williams, 1997; Schreiber, 1999).  Chavas and 
Holt (1993) modeled a chaotic dairy-market strange attractor (Chavas and Holt, 1993). We 
apply nonlinear time series analysis to search for the presence of a hog-price strange attractor 
in the observed German hog-price record. 

3.1 Signal analysis 

Fourier Spectrum Analysis identified dominant peak frequencies in the hog-price record 
at 0.004 Hz (a 260-week or 5-year oscillation period) and 0.019 Hz (a 52-week or annual os-
cillation period) (Figure 2a).  

Continuous Wavelet Analysis verified stationary power at the low frequency 5-year os-
cillation as required by subsequent analysis (Figure 2b).3    

 

a. The Fourier frequency spectrum b. Continuous wavelet  
time-frequency spectrum 

Figure 2: Spectral analysis 
 
We applied Singular Spectrum Analysis (SSA) (Elsner, 2010; Vautard; 1999; Ghil, 2002; 

Golyandina, 2001) to reconstruct the hog-price record into the sum of structured (trend and 
oscillations) and unstructured-residual components.4 The hog-price record was filtered of 
noise by deleting the unstructured-residual component from the reconstruction.  The filtered 
record was used to search for an empirical hog-price attractor.  SSA commenced by embed-
ding the hog-price record, P(t), into a ‘trajectory matrix’, X, whose columns are 1K N L= − +
single-period lagged vectors of P(t), N is record length, and L is ‘window length’ restricted by 
2 / 2L N≤ ≤  and conventionally selected proportional to the dominant spectral peak in the 
Fourier spectrum (Hassani, 2007).  Accordingly, the window length was set at L = 520, which 
allows for 10 repetitions of the annual oscillation period.  ‘Singular value decomposition’ 
decomposed the trajectory matrix into the sum of ‘empirical orthogonal functions’ (EOF),

                                                 
3 AutoSignal 1.7 (© SeaSolve Software Inc., 1999-2003) was used for Fourier spectral analysis and Continuous 
Wavelet Analysis. 
4 R-package Rssa was used for Singular Spectrum Analysis 
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1

r

ii
X EOF

=
= , where T

i i i iEOF EV PCλ= , r = rank X, and eigenvalues iλ , eigenvectors 

( )iEV , and principal components ( )iPC  are drawn from the eigensystem of the covariance 

matrix, TXX .  Next, the EOFs were arranged in rank order according to magnitude of their 

respective singular values, ( )iλ , and then grouped to form the basis for trend, oscillatory, 

and unstructured-noise components.  The initial EOF typically forms the basis for the trend 
component.  Subsequent consecutive EOF pairs whose eigenvectors oscillate with identical 
frequency in phase quadrature are grouped to form the basis of harmonic oscillations.  The 
eigenvectors associated with EOFs 2,3 and 6,7 exhibit the 5-year and annual oscillations de-
tected by the Fourier spectrum, respectively (Figure 3a,b).  Finally, ‘diagonal averaging’ of 
grouped EOF matrices converts them to vector time series’ of corresponding trend, oscillato-
ry, and unstructured-residual components (Golyandina, 2001).  The isolated trend component 
and the composite SSA-reconstruction filtered of the unstructured-residual component are 
graphed against the observed hog-price record in Figure 3c.  Compelling evidence for the 
quality of the filtered SSA-reconstruction is that its trend and oscillatory components account 
for 99% of the variation in the observed record.5   

 

a.  Eigenvectors associated with 5-year oscillation b.  Eigenvectors associated with annual oscillation

b.  Reconstructed SSA components 

Figure 3: Singular Spectrum Analysis 
 

3.2 Phase Space Reconstruction 

We applied ‘Phase Space Reconstruction’ techniques (Kaplan and Glass, 1995; Williams, 
1997; Takens, 1980) to detect whether long-term system dynamics governing hog-price dy-

                                                 
5 Singular values measure the partial variance explained by their respective EOFs. 

E
ig

en
ve

ct
or

s 
2,

3

-5

-3

-1

1

3

5

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

52
3

55
2

58
1

61
0

Window length

E
ig

en
ve

ct
or

s 
6,

7

Window length

-2.2

-1.2

-0.2

0.8

1.8

2.8
1 33 65 97 12
9

16
1

19
3

22
5

25
7

28
9

32
1

35
3

38
5

41
7

44
9

48
1

51
3

54
5

57
7

60
9

0.70

1.20

1.70

2.20
observed  weekly hog prices
denoised SSA reconstruction
trend

Ja
n 

19
95

Ja
n 

20
00

Ja
n 

20
05

Ja
n 

20
10

Ja
n 

19
90



 

5 
 

namics evolve along an attractor. Given nonlinear dynamic structure, reconstructing real-
world system dynamics from the single SSA-filtered hog-price record is possible because in-
teractions among system variables are embedded in the record of each variable (Kot, 1988; 
Sugihara et al., 2012).  Everything depends on everything else, or as explained by the natural-
ist John Muir (1911), “[w]hen we try to pick something up by itself, we find it hitched to eve-
rything else in the universe.” (Muir, 1911) 

The 'time-delay' embedding method of phase space reconstruction (Takens, 1980) repre-
sents the multidimensionality of the real-world dynamic systems governing hog-price dynam-
ics by segmenting the de-trended6 and filtered hog-price record, ( )fP t , into a sequence of de-

lay coordinate vectors: ( ), ( 2 ),..., ( ( 1) )f f fP t d P t d P t m d− − − −  where 'd' is the ‘embedding 

delay’ and 'm' is the ‘embedding dimension’ (i.e., the number of delayed coordinate vectors).  
The embedding delay  was selected as the delay for which the mutual information function 
reaches its first minimum (d = 20 weeks) (Williams, 1997).  The embedding dimension was 
selected as the dimension for which the percentage of ‘false nearest neighbors’ falls below a 
prescribed tolerance (m = 4) (Williams, 1997). 7  If 2 1m n≥ + , the reconstructed attractor 
shares these key topological properties with a reconstruction in any coordinate system, where 
n is the dimension of the real-world attractor (Takens, 1980).  Since n is unobserved, in prac-
tice, m n≥  is generally considered adequate to reconstruct true system dynamics (Small and 
Tse, 2002).   

 

 

Figure 4: Anatomy of Empirical Hog-Price Attractor 

                                                 
6 During the period under consideration, there were no abrupt technological or structural changes that would 
have caused structural breaks. Thus, the de-trended price series can be viewed as being generated under a rela-
tively constant economic environment. 
7 R-package ‘tseriesChaos’ was used for computing the embedding delay and the embedding dimension. 
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3.3 Surrogate Data Analysis  

We applied surrogate data analysis to test whether apparent structure detected in the em-
pirically reconstructed hog-price attractor is more likely the figment of a mimicking stochastic 
process. The empirical attractor’s topological properties were compared statistically with 
those taken from phase space reconstructed from randomized surrogate vectors (Small and 
Tse, 2002; Theiler et al., 1992, Small and Tse, 2003).   

Surrogate vectors are designed to destroy intertemporal patterns in the SSA-filtered rec-
ord while preserving various statistical properties.  We generated two conventional types of 
surrogate vectors: AAFT (amplitude-adjusted Fourier transform) surrogates and PPS (pseudo 
phase space) surrogates. AAFT surrogates are generated as static monotonic nonlinear trans-
formations of linearly filtered noise. They preserve both the probability distribution and pow-
er spectrum of the SSA-filtered data (Theiler et al., 1992). PPS surrogates test for the presence 
of a noisy limit cycle by preserving periodic trends in the SSA-filtered data while destroying 
chaotic structures (Small and Tse, 2003).8   

Surrogate data testing proceeds by measuring topological properties associated with the 
phase space reconstructed from each surrogate vector. The mean from the distribution of each 
measure for the set of surrogate vectors is tested for significant difference from the corre-
sponding empirical measure. Statistically insignificant differences indicate that detected em-
pirical structure is more likely attributed to stochastic behavior.  

We formulated a two-tailed test rejecting the null hypothesis of insignificant difference 
when mean surrogate topological properties are significantly above or below their empirical 
counterparts. Rejection occurs for the set of critical significance levels cα  satisfying:  

( )2 1c tα ≥ −Φ  

where the right-hand side of the inequality is the p-value for a two-tailed test (Minitab), tΦ  
is the CDF for the t-statistic with N-1 degrees of freedom, and  is absolute value. The null 
hypotheses of insignificant difference were rejected for both correlation dimension and Lya-
punov exponent with computed p-values effectively zero. Consequently, we rejected the hy-
pothesis that the structure detected in the empirical hog-price attractor is due to mimicking 
random behavior.  

4. A nonlinear dynamic model of the hog industry 

The information revealed by nonlinear time series analysis guides our modeling of the 
German hog industry. The empirical hog-price attractor has an embedding dimension of 4, 
indicating that a minimum of 4 state variables is necessary to capture the essential system 
dynamics. Since the purpose of our model is to capture these dynamics, we do not attempt to 
formulate a detailed simulation model. The computed Lyapunov exponent supports the hy-
pothesis of divergent, possibly chaotic behavior. If the system is represented in continuous9 
time, at least three differential equations are necessary to generate chaotic behavior. The em-
pirical attractor is composed of two major cycles. The 5-year cycle could represent an invest-
ment pattern, and the annual cycle the short term adjustment of production. Both are linked to 
the price of slaughter hogs.   

                                                 
8 We follow methods outlined in Kaplan and Glass (1995) and Small and Tse (2002) to write R-code generating 
AAFT and PPS surrogate vectors, respectively.   
9 The system will be modeled in continuous time since all actors are assumed to make their decisions inde-
pendently at arbitrary points in time. This leads to a continuous time representation of the aggregated flows in-
corporated in the model. Contrary, a discrete time model would imply that all actions are synchronized as to take 
place at the discrete time steps of the model which, in our case, would be an unrealistic assumption. 



 

7 
 

We propose the following fifth order system of differential equations: 

( )
( )
( )CPC

CSPS

PSDP

c

s

p

,f

,,f

,,f

=

=

=







 (1) 

The system is composed of three dynamic processes: price adjustment, adjustment of the 
quantity of supply resulting from production decisions, and adjustment of the production ca-
pacities through investments. There are three state variables: production capacities (C), actual 
production or supply (S), and hog prices (P); along with time lags constituting additional (in-
termediate) states. The first equation describes the price adjustment process in which price 
change ሶܲ  depends on demand (D), supply (S) and the current price (P). The notation ሸܵ indi-
cates a third order differential equation that determines supply adjustment. This equation, to 
be specified later, models the production decisions based on the marginal cost function, and 
likewise considers the delay caused by the time period necessary to complete the production 
process. Production decisions in the short run are constrained by available production capaci-
ties; in the long run these may be expanded through investments. This process is modeled by 
the third equation, where the rate of change of production capacities ܥሶ  depends on product 
price (P) and current resources (C). Given the third order plus two first order differential 
equations, the above equations comprise a fifth order system. 

Operationalizing the model requires specification of the above equations. We begin with 
the price adjustment. Assuming a trial and error process, the rate of price change can be 
viewed as dependent on the difference between demand and supply, i.e. (D – S). This implies 
that the actors on the market have crude information on actual prices and trade volumes.  This 
information is available for the German hog market from weekly magazines and the internet. 
The simplest functional form is a linear relationship, i.e. ( ) 0>−= a,SDaP . Assuming 
that large surpluses of either demand or supply speed up the adjustment process, a more ade-
quate formulation is 

( ) 03 >−= a,SDaP  (2) 

Alternatively, we may postulate that the relative rate of price change equals the right hand 
side expression of the above formula: 

( )

( ) 0

or
3

3

>−=

−=

a,PSDaP

SDa
P

P





 (3) 

This constitutes an additional feedback loop in the model. We use equation (3) in the model. 
Figure 5 depicts the dependence of the marginal price change P on the difference between 
demand and supply (D – S) and the price level P respectively, according to equation (3). 
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Figure 5: Price Change as a Function of Demand and Supply 

Demand (D) is modeled with an isoelastic demand function: 

0, >= − cPbD c
 (4) 

where c represents the price elasticity of demand and b is a scale factor.  
The process of supply adjustment is represented by the third order differential equation ሸܵ 

in (1).  It can be separated into two components representing (a) the production decisions and 
(b) the time lag that occurs between the decision to start a production process and its comple-
tion. The production decision is based on the marginal cost function of the average production 
unit and the number of production units currently in service: 

0,, >= dgPgCS d
p  (5) 

Sp represents “planned” supply according to the actual decisions, and g P d represents the mar-
ginal cost function. An exponent d < 1 indicates economies of scale while d > 1 marks dise-
conomies of scale. If d = 1 no scale effects occur. 

The production time lag is modeled via an exponentially distributed delay which is gen-
erally defined by the system of first order differential equations 

( )

Sr

Sr

k,...,,i,rr
DEL

k
r

k

p

iii

=

=

=−= −

0

1

with

21

 (6) 

where k marks the order of the delay (in our case k=3), and DEL denotes the average delay 
time (the production period plus the reaction time of the decision makers). 

The adjustment of production capacities follows the differential equation 

01 >−







−= l,v,w,

l

C
C

Pv

C
wC

 (7) 

The first term represents investments and the second measures the reduction of produc-
tion facilities due to wear and tear. The parameter l measures the service life of the production 
facilities. The investment term assumes that the adjustment of production capacities follows a 
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logistic growth process for the case of constant product price P. The term v P marks the upper 
limit of this process, and can be interpreted as a “target size” of the sector proportional to P. A 
falling market price P can cause disinvestments if the term inside the brackets becomes nega-
tive as current capacities C exceed v P. This negates sunk cost effects that are important in the 
German hog sector due to the high specificity of the facilities. To allow for irreversibility due 
to sunk costs, the following formulation was used in the model: 

001 >−















−= l,v,w,

l

C
,C

Pv

C
wMaxC

 (8) 

where the Max[·] operator ensures that investments are always positive or zero, and capacities 
can decline only through deterioration.  

Large investments often cause high financial leverage that inhibit investments for a peri-
od of financial consolidation. This can be factored into equation (8) by introducing a (dis-
crete) time lag: 

001 >−














 −−= l,v,w,
l

C
,C

Pv

)Tt(C
wMaxC

 (9) 

The expression C(t–T) represents production capacities lagged by T time units. This for-
mulation is equivalent to the introduction of a maturation delay in logistic population models 
and may cause a periodicity if the time lag is significant. 

5. Model results 

The model was implemented in © Vensim and solved using a 4th order Runge-Kutta inte-
grator. It was simulated over a period of 50 years. Following our empirical results, the base 
run set the production delay DEL to 1 year and the time lag T for financial consolidation after 
large investments to 5 years. The service life of the facilities (l) was assumed to be 15 years 
on average. No scale effects were considered (i.e. d=1).  The demand elasticity was set to 
0.25.  Other parameters were normalized to generate a hypothetical equilibrium price of 
roughly 1.4 €/kg. 

The simulation results are depicted in Figure 6. The price series generated by the base 
run of the model (part a. of Figure 6) exhibits aperiodic cyclical behavior consistent with the 
observed hog-price record. Part b. of the figure portrays the trajectory of the primary state 
variables of the model, i.e. price, supply and production, in three-dimensional space and thus 
illustrates the attractor of the system. The graph reveals noticeable similarities with the recon-
structed attractor depicted in Figure 4.  Reconstructing phase space from the simulated price 
series results in an embedded dimension of 4 and a time lag of 20, and thus reveals largely the 
same results as obtained in the reconstruction for the original time series. This indicates that 
our model exhibits the same dynamic behavior as found for the real world system, and there-
fore provides a means to identify important determinants for the persistent hog cycle. 

Since the model is completely deterministic, the revealed market instability is endoge-
nous and the aperiodic cycling emerges without external shocks. The dynamic properties of 
the system are due to the inherent nonlinearities along with the built in time lags. The nonlin-
earities refer primarily to (1) the price adjustment process, (2) the irreversibility of invest-
ments due to sunk cost and (3) the logistic type adjustment of production capacities. Together 
with the periodicity of investments induced by the financial consolidation time lag, these fac-
tors result in the dynamic response displayed in the upper part of Figure 6. 
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a. Time response of the base run b. Simulated attractor in 3D space 

c. Omitting the investment time  
lag causes a Limit cycle 

d. Increased price elasticity of demand  
(c=0.55) leads to a stable equilibrium 

Figure 6: Simulation results 

With appropriate parameter changes, the model can generate quite different types of dy-
namic behavior as seen from the trajectories depicted in the lower part of Figure 6. If the fi-
nancial consolidation time lag is omitted, the simulated attractor is converted into a Limit Cy-
cle.  Regardless of the starting point, all trajectories converge on one orbit (part c. of Figure 
6). This behavior is caused by the combination of low demand elasticity and the irreversibility 
of investments. It holds over a fairly wide range of parameters. Only increased price elasticity 
of demand changes system dynamics to a Point Attractor (part d. Figure 6).  In the absence of 
external shocks, the system approaches a stable equilibrium. However, this is unrealistic be-
cause low demand elasticity for food is characteristic for all industrialized countries where 
only a small portion of income is spent for food. 

6. Conclusions 

We applied a diagnostic modeling approach to investigate causal factors driving the per-
sistent German hog-price cycle. Nonlinear time series analysis reconstructed an empirical 
hog-price attractor governing the aperiodic cycling of hog prices over time. Our empirical 
results indicate that causal factors driving the hog-price cycle are endogenous to the industry, 
and therefore can be investigated informatively by formulating a structural industry model.  
We drew from empirically diagnosed industry dynamics, and knowledge of industry structure 
and technology, to formulate a model that successfully simulated the dynamic complexity of 
the real-world hog-price cycle.   

The model provided important insights into the origin of the hog cycle in Germany. Be-
sides the low price elasticity of demand, which is a well-known determinant of market cycles, 
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the model revealed two more important influence factors. One is the irreversibility of invest-
ments caused by the high specificity of the technology. Along with low demand elasticity, this 
leads to permanent fluctuations in form of a Limit Cycle. Another important factor is periodic-
ity of investments induced by a time lag forcing a period of financial consolidation after a big 
investment. This is consistent with the investment behavior of German farmers which is often 
liquidity driven. It also reflects restrictions on the debt ratio imposed by the capital market. 
Adding this factor to the model converted the Limit Cycle into a Torus like attractor. 

These results have several practical implications. First, valid medium and longer term 
price forecasts (i.e. beyond a few weeks) are precluded by the nature of the attractor. By the 
same token, policy measures aimed at price stabilization (i.e. buffer stock policies) are likely 
to fail. Accepting that in industrialized countries demand elasticity can hardly be influenced, 
the remaining starting points for altering the system behavior are (1) the technology and (2) 
the investment and financing behavior. First, a more flexible technology (e.g. multi-purpose 
instead of highly specialized facilities) involving less sunk cost would enable a flexible re-
sponse to changing market conditions, thus lessening the degree of irreversibility of invest-
ments. Regarding the second aspect, utilizing alternative ways of financing which focus on 
equity capital (provided by external investors) rather than bank loans, would help smoothing 
the investment cycles. 

The methodology presented in this paper goes beyond conventional time series model-
ling – including state of the art methods of price volatility analysis (e.g. GARCH-approaches) 
– as it not only aims at reconstructing the time pattern of the series, but seeks to identify 
causal factors driving the system dynamics. To this end, a structural model serves as analyti-
cal tool, the design and development of which is guided by the empirically-diagnosed dynam-
ic properties of the system (i.e. the nature of the attractor) along with existing knowledge 
about the industry. The diagnostic part of the approach is primarily based on ‘Phase Space 
Reconstruction’ techniques. However, these techniques fail revealing a clear picture if the 
investigated time series contains notable (colored) noise, as is the case for most economic 
time series. ‘Singular Spectrum Analysis (SSA)’ was therefore applied first, and turned out to 
be a useful method for constructing a noise-free series for the further analysis that still incor-
porates the essential system dynamics. 

The presented diagnostic modeling approach is applicable to a wide range of problems 
focusing on the analysis of systems driven by nonlinear dynamics. These systems are often 
characterized by chaotic attractors whose essential properties can be empirically diagnosed as 
described, and applied to formulate theory-based models able to simulate the complexity of 
real-world dynamics. 
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