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Dynamic Input Demand Functions and Resource Adjustment
for U.S. Agriculture:  State Evidence

by Perry Warjiyo and Wallace E. Huffman*

Farmers in the developed countries do not hire their workforce or rent machinery and land afresh each day

or week because it is more profitable to have longer term arrangements/contracts.  Hiring/training and

firing/terminating workers, searching/learning to use and refurbishing/returning machinery, and

searching/learning to use and returning land to its original condition are all costs over and above a per-unit time

rental rate.  These costs insure that farmers' demand for most inputs depend not only on current exogenous factors

but also on past use and expectations about future use.  These are arguments that agricultural input demand

functions, at least for the developed countries, are dynamic requiring some time for full adjustment to exogenous

economic shocks to occur.

Friesen, Capalbo, and Denny (1992) identify two different approaches to dynamic input demand.  First,

there are theory-based models where dynamics arise from optimal agent behavior.  These models have generally

taken an adjustment-cost route, e.g., see Lucas 1967a, Nichell 1986, Chambers and Lopez 1984, Vasavada and

Chambers 1986, Vasavada and Ball 1988, or resources deterioration with use, e.g., Tegene, Huffman and

Miranowski 1988.  Second, data-based dynamic models have been used where dynamics are used to describe the

pattern of input use but do not arise from explicitly optimal agent behavior, e.g., see Friesen, Capalbo, and Denny

(1992).  Both of these approaches have claimed advantages and disadvantages.

Earlier econometric studies of dynamic agricultural demand functions have pursued methods that could

color their results.  First, models have been fitted to data containing a high level of aggregation. Most have used

national aggregate data, but an exception is Tsigas and Hertel (1988).  Second, when technical change has been

incorporated conceptually, it has been proxied empirically by a time trend. Huffman and Evenson (1989; 1993),
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however, have shown that during the post-World War II period shifts in U.S. agricultural supply and input

demand schedules and multifactor agricultural productivity change were significant.  They have also shown that

agricultural research stocks are part of story explaining these changes even after allowing for trend.  Third,

dynamic input demand functions have been fitted frequently to annual data, ignoring possible time series

problems.  Autocorrelation when it is present can cause estimated coefficients to be statistically inconsistent

(Greene 1993). 

The objective of this paper is to present an econometric model of dynamic agricultural input demand

functions that includes research-based technical change and autoregressive disturbances and to fit the model to

data for a set of state aggregates for a developed country pooled together.  We follow the methodological

approaches of developing a theoretical foundation for our dynamic input demand system and assume that state

aggregate behavior is approximated by (nonlinear) adjustment costs and long-term profit maximization.  We

chose to use data over the post-World War II period for the United States, a major developed country, and the

basic data are from Huffman and Evenson 1993, Chapter 7.

The Model

The models leading to quasi-fixed inputs in agriculture for developed countries are ones built largely

upon a hypothesis of significant internal costs associated with resource adjustment.  Significant location and

geoclimate specificity to farm-land characteristics means that commercially available nonhuman durable goods

(e.g., equipment and building) must be modified to function efficiently.  Breeding stock are heterogenous with

respect to genotype and location which means that large herd adjustment over a short period requires major search

costs (or premium/discount on the price).  Changing the number of farm workers also requires searching/training

or terminating/retraining costs.  Thus, rapid adjustment of farm resources may consume valuable resources that

might be used to produce crop and livestock outputs.  If the marginal cost of rapid resource adjustment is

increasing with the size of adjustments, farmers face incentives to spread resource adjustments over several years

(Nichell 1986; Barro and Sala-i-Martin 1995, p. 119-22).
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Consider the following representation of production:

(1) y   =  F(Y,X,K,I,Z)o

where y  is denoted the first output, Y is a vector of other outputs, X is a vector of variable inputs, K is a vector ofo

quasi-fixed inputs, I is the gross investment in quasi-fixed inputs (K), and Z is technology and environmental

factors.  Now the hypothesis of adjustment cost is summarized as (Y,X,K,I,Z) > 0, (Y,X,K,I,Z) < 0 

where  is the marginal adjustment cost associated with changing the quasi-fixed factors.  Thus, the

adjustment cost model is assumed to have a symmetric representation.  The dynamic accounting relationship for

quasi-fixed inputs can be summarized as:

(2)  = I ! *K

where  = dK/dt and * > 0 is a constant depreciation rate.  To be a quasi-fixed input, an input is fixed in the

short-run but variable in the long-run.

A general dynamic input demand system can be represented as:

(3) (t) =   MK (t ! 1) + $ p(t ! 1) + $  w(t) + $ q(t)1     2   3

    + $ [(Z(t!1) ! (t)] + $  + ,(t)4     0

where (t) is an mx1 vector of (net) investment rates for m (potentially) quasi-fixed input stocks K(t), p(t) is a

an k x1 vector of output prices, w(t) is an k x1 vector of variable input prices, q(t) is an k (=m)x1 vector of rental1         2          3

prices on the quasi-fixed inputs, Z(t) is an k x1 vector of agricultural research, and ,(t) is an mx1 vector of4

random disturbances.  M is a matrix of constant but unknown adjustment coefficients; and $ , $ , $ , and $ are1  2  3   4 

matrices of unknown coefficients; and $  is a vector of unknown coefficients.  Farmers are implicitly assumed to0

observe current input prices and lagged output prices when making decisions at the beginning of a production

period.
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Following Epstein and Denny (1983) and Vasavada and Chambers (1986), the dynamic demand

equations (3) can be rewritten in the form of the multivariate flexible accelerator (MFA) model:

(4) (t) =   M[K(t ! 1) ! ] + ,(t)

where

(5)   =   ! M [$  + $ p(t !1) + $ w(t) + $ q(t)-1
0  1    2   3

        + $ (rZ(t ! 1) ! (t))].4

 denotes the "long-run" or "desired" level of the quasi-fixed input stocks, K(t), M represents the adjustment

matrix; and r is the discount rate.  The system (4) and (5) permits slow or fast adjustments in the quasi-fixed

inputs.  In particular, high adjustment costs will prevent farmers from quickly attaining their long-run or desired

level of quasi-fixed inputs.  These adjustment costs drive a wedge (or, a disequilibrium) between the short-run (or

actual) and long-run (or desired) input use levels.  The matrix M provides information needed to characterize how

fast farmers adjust to the long-run equilibrium level.1

Early attempts to incorporate adjustment-cost theory into agricultural input demand models used

univariate partial-adjustment models.  This was a straightforward application of the Nerlovian partial- adjustment

model to input demand functions derived from a static model.  Much of the early empirical evidence is for the

United States.  Griliches (1960) used this approach for an empirical study of U.S. demand for farm tractors,

1921-1957.   He obtained an estimate for the adjustment coefficient of 0.17, and concluded the results supported2

the adjustment cost hypothesis.  Heady and Tweeten (1963), also, made extensive use of the univariate partial-

adjustment model in this study of U.S. agricultural resource demand.  They applied the model to demand

functions for hired labor, family labor, and operating inputs.  They concluded that adjustments of labor and

operating inputs were rapid (e.g., adjustment coefficients were about 10) but of farm structures were rather slow

(e.g., adjustment coefficients were about 4).3
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The early versions of dynamic input demand owe a debt to Eisner and Strotz (1963) and Lucas (1967). 

The unambiguous comparative results obtained by these authors were a consequence of an assumption of

separability of the traditional production and investment decisions.   The responses to rental price changes in4

dynamic models, however, need not be symmetric as in static models (see Treadway 1971 and Mortensen 1973). 

In our paper, equation (4) is a first-order difference equation, and M, the adjustment matrix, and stability of the

dynamic input demand system are closely linked.  Stability requires that all the eigenvalues of M lie within a unit

circle.

In this study of a developed country, potentially quasi-fixed inputs under the control of farmers are

placed in one of six groups:  labor, automobiles and trucks, tractors, equipment, service structures (primarily

buildings and fencing), and land.  There is a seventh input group, labeled intermediate inputs, which is assumed to

be variable.  If the model was applied to a developing country, the input groups would most likely be modified,

e.g., the auto and truck category would most likely disappear.  Several studies of U.S. agriculture have concluded

that labor is quasi-fixed, e.g., see Vasavada and Chambers (1986).  However, Vasavada and Ball (1988) defined

two labor inputs, family and hired labor, and they concluded that family labor was quasi-fixed (hired labor was

variable).  For developed countries, most studies of dynamic agricultural input demand have concluded that

automobiles and trucks, tractors, equipment, and service structures are quasi-fixed.  The test results for fixity of

land, however, have been mixed.  Lyu and White (1985) and Vasavada and Chambers (1986) concluded that land

is quasi-fixed.  In contrast, Vasavada and Ball (1988) concluded that land is variable.

Inter-dependency and fixity in resource adjustments

The model (eqs. 3 and 4) permits inter-dependencies in input adjustments.  If interdependency in input

adjustments do not exist, a univariate partial-adjustment model is appropriate.  In such a model, the adjustment of

each quasi-fixed input is independent of the stocks of other quasi-fixed inputs.  Therefore, no indirect effect of

relative price changes occur.  Indirect effects of changes in opportunity costs are channelled only through an

input's own lagged stock.  In these univariate partial adjustment models, the adjustment matrix M is a diagonal
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matrix.  The model collapses into six separate dynamic input demand equations, each depending only on relative

prices and one lagged quasi-fixed input.  This is basically the model that was applied by Griliches (1960) and

Heady and Tweeten (1963).

Alternatively, subgroups of quasi-fixed inputs may possess interdependent adjustments.  For instance,

the six inputs in our model might be grouped into capital, land, and labor.  Then we could examine whether

inter-dependencies exist in adjustments among the aggregated input groups.  In this case, the adjustment matrix

M is block diagonal with each block containing the adjustment coefficients of the inputs belonging to the three

groups.

The system of dynamic input demand equations (4)!(5) can also be employed to examine input

adjustment rates.  Consider first the significance of the adjustment cost hypothesis.  In the absence of adjustment

costs for inputs, farmers, when facing changes in relative prices, adjust their inputs freely without suffering

short-run output losses.  In this case, the quantity of inputs will always be equal to (long-run) desired levels so

that no short-run "disequilibrium" exists in input usage.  This outcome requires (t) = 0 so that K(t) =  for all

t, and the adjustment matrix M is an (negative) identity matrix.

Thus, if the i-th input is variable (and hence is not quasi-fixed), the following restrictions on the

adjustment matrix M hold:

(6) M = !1, M  = 0,�j � i.ii   ji

The first restriction implies that no disequilibrium exists in variable input usage (i.e., (t) = 0 andi

K(t) =  for all t).  The second restriction implies that the lagged value of input i does not appear in the demandi   i

equation for the other inputs.  These restrictions apply only to the i-th column of the adjustment matrix M and do

not require that M  = 0 for all j and k � i.  Variable inputs, by definition, are always in equilibrium use.  Inputjk
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demand, however, can still be affected by the lagged quantity of other quasi-fixed inputs, and inter-dependency

may exist among adjustment rates of quasi-fixed inputs.  Hence, we have testable implications.

Table 1 summarizes the parameter restrictions on the adjustment matrix M for several different

hypotheses (assuming no autocorrelation of disturbance in the model).  Some of the hypotheses (e.g., symmetry)

are not listed since they are clear from the context.

The estimation procedure

The dynamic agricultural input system (3) forms a seemingly-unrelated six-equation system, one each for

the (potentially) quasi-fixed inputs.   Thus, if the vector of disturbances ,(t) is contemporaneously but not serially5

correlated, the seemingly unrelated regression (SUR) estimation procedures developed in Zellner (1962) is a good

choice for conducting the empirical analysis.  When autocorrelations in the errors of (3) is present, the estimation

procedure must be modified.  If the disturbances ,(t) follow a vector autoregressive process of first degree:  

(7) ,(t)  =  M,(t ! 1) + >(t)

where M is an MxM matrix of coefficients, and >(t) is a Mx1 vector of white noises having a mean 0 and

covariance matrix E.  With this specification, the system of dynamic input demand equations (3) can be

transformed into:

(8) (t) =

where  = (I ! M)$ ; I is the identity matrix.  Several estimation procedures have been proposed in the literature0

such a system.
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Since the system (3) with error structure of (7) is a special case of a general simultaneous equation model

having first-order vector autoregressive errors, the full-information maximum-likelihood (FIML) estimation

method developed in Sargan (1961) can be applied.  The procedure is to transform the system of equations (3)

into equations (8) and then, under the assumption that the random errors >(t) are distributed as a multivariate

normal, having mean 0 and covariance matrix E, and to apply the FIML estimation to the transformed model. 

The method is one of solving a non-linear system of equations. 

Since the FIML estimation procedure is time consuming to solve, several approximating methods appear

in the literature.  They involve extending the two-step SUR procedures suggested in Zellner (1962) to incorporate

the autocorrelated errors in the system.  Spencer (1979) has adapted the two-step procedures suggested both in

Hatanaka (1976) and in Dhrymes and Taylor (1976) for estimating models that include lagged dependent

variables.  In the first step, a consistent estimate of the parameters in the system is obtained either from an

instrumental variable procedure, a non-linear least squares estimate of each equation, or Hatanaka's single

equation estimation technique.  The "preliminary" estimates of the autoregressive matrix (M) and

cross-covariance matrix of residuals (E) are then calculated.  In the second step, the generalized least square

procedure is applied to the transformed system using the "preliminary" estimates of E and M.  This stage provides

the final estimates of the parameters in the model and "corrections" to the "preliminary" estimate of M.  The

resulting estimates are consistent and asymptotically efficient.

An alternative estimation procedure is one for a system that is non-linear in parameters.  Gallant (1975)

provides a procedure for estimating non-linear SUR equations based on the least-square method.  Apart from

non-linearity in the system, the procedure is similar to that of a linear system.  In particular, the estimated

covariance matrix obtained from estimating each equation separately is used to estimate the complete system

using Aitken-type estimation method.  This procedure will be applied in the empirical analysis in this study.

The Data
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Annual input and price data for U.S. agriculture are available from Huffman and Evenson (1993) for the

years 1950-82.  The six New England states are excluded because farm output is small, and frequently

intertwined with off-farm jobs.  Hence, the observations are 42 state aggregates.  The quantities are the

Tornquist-Theil indices and the prices are the associated implicit prices (i.e., revenues or expenditures divided by

the quantity indices) with a 1977 base period (i.e., 1977=100).

Measures of the agricultural inputs needed for this study were derived as follows.  The labor input is a

derived measure of annual hours of hired labor and operator and family labor.  Annual hours of hired labor were

derived from expenditures on hired labor and an average hourly wage rate.  The annual hours of operator and

hired labor were derived from USDA estimates of the number of persons working on farms and an estimate of

average hours of farm work for these individuals.

For capital inputs--autos and trucks, tractors, equipment, and service structures--the quantity is derived

as follows.  Unpublished USDA data on annual depreciation by type of capital item were divided by the USDA's

depreciation rate to obtain a capital stock value.  The capital stock values were then divided by USDA national

price indexes for autos and trucks, tractors, farm equipment, and building and fencing supplies, respectively, to

obtain capital stock measures for each of our four capital types.

The land input is derived as cropland-equivalent units from data on cropland used for crops, cropland

used for pasture, other cropland, irrigated land, woodland used for pasture, and other pasture.  The weights were

taken from Hoover (1961).

Intermediate inputs encompass purchased and nonpurchased feed, seed, fertilizers, repairs and operation,

and miscellaneous inputs.  An aggregate quantity index was computed using actual or imputed expenditures on

these inputs and state prices (or opportunity cost) measures where possible and national prices where state prices

did not exist.

Research stocks are also from Huffman and Evenson (1993).  Public research includes USDA and SAES

research.  Private research encompass applied research on food and kindred products, textile mill products,
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agricultural chemicals, drugs and medicine, and farm machinery obtained from reports of the National Science

Foundation.  All research variables are represented as stocks obtained using trapezoidal weight patterns to

aggregate research expenditures over the previous 35 years.  After a gestation period of 2 years, the research

expenditures are assumed to increase productions linearly for 7 years, constant for 6 years, and then declines for

20 years (see Huffman and Evenson 1993).

Table 2 presents the sample mean values of the quantity indices and implicit prices of the inputs and

outputs for this study.  Detailed descriptions of data sources and constructions can be found in Huffman and

Evenson (1993).

The Empirical Results

The estimated parameters of the system of dynamic agricultural input demand equations under

the assumption that the errors are contemporaneously and AR(1) correlated are reported in Table 3.  (t), and

the technical change rates, (t), have been approximated by first-differences in the appropriate terms.  Except for

the agricultural outputs that are produced continuously, the prices for outputs produced in year t are the prices

observed in t-1.   Current prices are used for inputs.  The transformed dynamic agricultural input demand system6

is fitted using the non-linear SUR estimation procedure of Gallant (1975).

The model as represented in equation (8) is a special case of a more general vector autoregressive

specification, and it contains 108 parameters.  Starting values for the nonlinear estimation were obtained by first

fitting equation (3) without autocorrelation using the SUR method, then using the residuals to obtain estimates of

the first-order autoregressive [AR(1)] coefficient for each dynamic input demand equation.  The final estimates

were obtained using SAS-SYSNLIN.  The estimation converged globally after a total of 16 interactions.

Each of the estimated autoregressive coefficients for the dynamic agricultural input demand system is

significantly different from zero at the 5 percent significance level, except for the tractor input (see M  in Table 3). ii
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Furthermore, the hypothesis that all six of the autoregressive coefficients are jointly zero is soundly rejected.  The

sample Gallant-Jorgenson (G-J) statistic is 3,130 which is well above the critical chi-squared value of 12.59 with

6 degrees of freedom at the 5 percent significance level.  

A statistically significant AR(1) time series process for the error terms means that economic shocks to

dynamic input demand die out slowly or persist for many years (see Enders 1995, Ch. 2).  In three of the five

dynamic agricultural input demand equations, the autoregressive coefficient M  is positive, and two are relativelyii

large--about 0.84 for autos and trucks and for land.  These positive M  values imply a correlogram for theii

residuals that is smooth and gradually declining.  Hence, a positive shock in year t to these dynamic input demand

equations will have positive effects on input demand for many years in the future.  In the remaining two

equations--equipment and labor inputs--, M  is negative, and they imply an osculating in sign correlogram.  Forii

example, a large positive shock to dynamic input demand for these inputs in year t (say when a significant

addition of equipment is made) will cause alternating negative and positive increments to demand in successive

years going into the future.  The finding of a statistically significant time-series process for the dynamic

agricultural input demand system seems to represent an important advance in the modeling of dynamic

agricultural input demand systems over previous studies.  Furthermore, our results cast doubt on the credibility of

several earlier findings. 

The empirical results are interesting.  Most of the estimated parameters are statistically significant at the

5 percent level.  The R s are low due to the first-difference specifications of the system.  All the diagonal elements2

of the adjustment matrix, , have negative signs and are statistically significant.  The eigenvalues of this matrix

are below unity in absolute value [!0.377, !0.133, !0.65, !0.022, !0.093 and !0.097].   Hence, the adjustment7

matrix and the dynamic agricultural input demand equations are stable systems, and all own-price effects are

negative and statistically significant.  The largest value for estimated contemporaneous correlation of error terms

is between the tractor and land inputs, !0.203.  If the autocorrelated errors in the demand system are ignored, the
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estimated adjustment coefficient for autos and trucks, equipment, and land are much different (see below). 

Hence, model specification seems to matter.

Interdependency in Resource Adjustments

Some test results for alternative specifications of the dynamic agricultural input demand equations

are reported in Table 4.  The testing procedure is based on the strategy developed by Gallant and Jorgenson (1979). 

For hypothesis testing in the system of equations, the estimate of the covariance matrices between the "unrestricted"

and the "restricted" models must be held constant.  The procedure is first to fit the unrestricted model and then to

import the estimated covariance matrix from the unrestricted model into the restricted model.  Gallant and Jorgenson

(1979) showed that the change in the least-squares criterion function for the "unrestricted" and "restricted" models

using this procedure is distributed asymptotic chi-square with degrees of freedom equal to the number of restrictions

under the null hypothesis.

When vector autoregressive errors are part of a dynamic input demand system, the parameter restrictions

for specialized resource adjustments are complex.  In the transformed dynamic input demand equations (8),

parameter restrictions on the adjustment matrix M alone (see Table 1) are not sufficient to imply

inter-dependency of adjustments or input quasi-fixity.  Further restrictions on the vector autoregressive coefficient

matrix M are required.  For example, the fact that M is a diagonal matrix does not necessarily imply that the

univariate partial-adjustment hypothesis holds.  As long as M is unrestricted, the inter-dependency in the

adjustments of the quasi-fixed inputs is still prevalent either directly from K(t ! 2) or indirectly from (t ! 1). 

The univariate partial-adjustment model, however, holds whenever we cannot reject a joint null hypothesis that

both the adjustment matrix M, and the vector autoregressive coefficient M are diagonals.  Appendix A presents an

example showing the derivation of the parameter restrictions on the dynamic input demand system for first-order

vector autoregressive errors and two inputs.
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The reasoning can be extended to test for quasi-fixity of each input.  Recall from (8) that the i-th

agricultural input is variable and hence is not quasi-fixed if we cannot reject the joint null hypotheses that M  =ii

!1 and M  = 0 for all j � i.  These parameter restrictions are valid only if the vector auto-regressive matrix is null. ji

If M is unrestricted, however, the instantaneous adjustment of the i-th input cannot hold when M  is non-zero. ii

Furthermore, the quantity of the i-th input still affects the change in demand for the j-th input as long as M  isji

non-zero.  Thus, as shown in Appendix A, the i-th input is said to be variable and hence is not quasi-fixed if we

cannot reject a joint null hypothesis that, M  = !1, M  = 0 for all j � i, and M  = 0 for all j.  To be able to concludeii   ji         ji

that all agricultural inputs are variable, it is necessary for the adjustment matrix M be an (negative) identity and

the vector-autoregressive coefficient M be a null matrix.

The null hypothesis of independent adjustments in all six U.S. dynamic agricultural input equations

is easily rejected at the 5% significant level.  The sample G-J statistic of 141.7 exceeds the critical chi-squared

value of 43.8 at the 5% level and 30 degrees of freedom.  This means that there are interdependencies in input

adjustments among some or all six agricultural inputs.  Hence, a multivariate flexible-accelerator model appears

to be a better representation of U.S. state aggregate input adjustment behavior during 1950-82 than a univariate

adjustment representation.  This conclusion is consistent with results for U.S. national aggregate behavior

reported in Vasavada and Ball, 1988; Vasavada and Chamber, 1986; Epstein and Denny, 1983.

Next, consider independent adjustment among groups of agricultural inputs.  For this purpose, the six

input groups have been consolidated into the following three groups:  capital, land, and labor.  The capital group

includes automobiles/trucks, tractors, equipment, and service structure.  Now we can reformulate an interesting

null hypothesis that a univariate partial-adjustment model is appropriate for this three-group input demand

system.  This hypothesis, however, is also rejected at 5% significant level.  For example, the previous year's usage

of land and labor affect farmers' decisions on current farm aggregate capital input.  Similarly, the previous year's
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quantity of capital input also influences farmers' current investment in land and labor.  In short, the conclusions

show definite inter-dependencies nature of resource adjustments in U.S. agriculture.8

The Resource Adjustments Rate

How rapidly does adjustment of agricultural resources occur in a developed country?  The answer to this

question may be useful for GATT/WTO or NAFTA policy analyses because knowing something about the speed

of adjustment can help policy makers predict the time path of economic adjustments.  This method is best suited

to analyze how fast farmers adjust agricultural input usage when there is a once-and-for-all change in policy.

For U.S. agriculture, the hypothesis that each of the six agricultural input groups is variable is rejected at

the 5 percent significance level (Table 4).  All the sample G-J statistics are well above the critical chi-squared

values.  Thus, autos and trucks, tractors, equipment, service structures, land, and labor in U.S. agriculture during

the post-World War II era were quasi-fixed.  This implies that U.S. farmers did not quickly adjust inputs to long-

run optimal levels after a change in relative prices (or agricultural research) occurred.  Instead, the adjustments

were in general distributed over many years.

Some interesting  insights can be gained by examining the absolute values of the adjustment coefficient. 

They are as follows: autos and trucks, 0.37; tractors, 0.07; equipment, 0.10; service structures, 0.09; land, 0.13;

and labor, 0.08.  They imply for autos and trucks that the adjustment rate was relatively fast.  It takes no more

than 5 years to close 90 percent of a disequilibrium caused by a one-time change in relative prices, and our results

imply a faster adjustment rate than Heady and Tweeten (1963) obtained for U.S. machinery, motor vehicles, and

equipment.  Our adjustment coefficient for tractors, however, is significantly smaller than what Griliches (1960)

obtained for U.S. tractors. Our results seem to compare favorably with those for multivariate flexible-accelerator

models.  Vasavada and Chambers (1986) concluded that the adjustment coefficient for capital was 0.12 and Lyu

and White (1985) reported an adjustment coefficient for machinery of 0.09.  

For the other five agricultural inputs, our results imply that 90 percent of input usage disequilibrium

would be corrected in 10 to 15 years.  Our land-adjustment coefficient is larger than Lyu and White's (1985)
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estimate of 0.03 for (U.S. national) real estate but low compared to some other U.S. studies.  For example,

Vasavada and Chambers (1986) reported an estimate of 0.59, and Vasavada and Ball (1988) reported much

larger estimated adjustment coefficients (i.e., 0.74) for real estate which encompassed both farmland and service

structures.  In addition to treatment for autocorrelation, studies differ in the degree of aggregation (state vs.

national) and the definition of land.  Our definition of the quantity of land refers to a cropland-equivalent basis,

but the other studies use a different measure (see Ball 1977).

We have rejected the null hypothesis that U.S. farm labor is a variable input.  In general this should not

be too surprising because there has been a long history of seemingly slow adjustment of U.S. family labor to

economic shocks.  The adjustment coefficient for U.S. farm labor is 0.08 which implies that it takes more than 20

years to close 90 percent of a disequilibrium caused by an economic shock.  This is approximately one-half of a

working life.  Our estimate is almost the same as Vasavada and Chambers' (1986) estimate of 0.07 for U.S. farm

labor but smaller than Vasavada and Ball (1988) obtained for U.S. family labor.  Hence, evidence is pretty strong

for adjustments in U.S. farm labor as a quasi-fixed rather than as a variable input.

If we had failed to take account of first-order autocorrelation of the error terms in the dynamic

agricultural  input demand system, the implied speed of adjustment would have been much different for some of

the inputs.  The adjustment coefficient for autos and trucks and for land would have been significantly smaller,

0.11 vs. 0.37 for autos and trucks and 0.07 vs. 0.13 for land.  For tractors, service structure, and labor the

treatment for autocorrelation does not change significantly the size of the adjustment coefficient, but for

equipment, failing to take account of autocorrelation would have resulted in a larger adjustment coefficient, 0.14

vs. 0.10.  We conclude that some of the seemingly "slow" adjustment of quasi-fixed agricultural inputs reported

in earlier U.S. studies is most likely due to model misspecification associated with the time-series process of the

errors in the dynamic input demand system. Because the observations are for states pooled over time, a

concern might arise about differences in parameter across states.  A dynamic agricultural input demand system

containing state dummy variable was also fitted.  In general, the results do not differ very much from the ones
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excluding state effects.  In particular, the univariate partial-adjustment model is rejected, so the results provide

evidence for inter-dependency in optimal input adjustments.  The hypotheses that the inputs are variable, either

taken as whole, as a group, or individually, are all rejected.  Hence, the same general conclusions are maintained.

The Rental Price Effects

Table 3 also reports estimates of responsiveness of input demand to price changes.  Recall that all of the

short-run own-price effects on agricultural input demand are negative and three of them are significantly different

from zero.  This is somewhat surprising because the dynamic adjustment-cost theory does not provide any prior

sign expectation for these price effects.  The short-run own-price elasticity of demand for tractors and equipment

are the largest, !0.015 and !0.033, respectively, and the others are smaller in absolute value than !0.01.  Thus,

although the short-run own-price elasticities are negative, they are in general economically small.  The cross price

effects are also highly significant.  The hypothesis that one input is independent from price effects of other

quasi-fixed inputs is easily rejected at 5% significant level.  The hypothesis of independent price effects among

groups is also rejected.

A closely related issue is whether price effects are symmetric across the dynamic input demand system. 

The dynamic adjustment-cost theory (Treadway, 1970, 1971; Mortensen, 1973) does not require symmetry. 

However, Vasavada and Chambers (1986) imposed symmetric rental price effects in their empirical analysis of

investment demands for U.S. agriculture.  The results from tests reported in Table 3, however, do not support

symmetry.  The null hypotheses of symmetric (rental) price effects for all inputs and among input groups are

rejected at the 5% significant level.

Among short-run cross-price effects on dynamic agricultural input demand, a few additional effects are

noteworthy.  An increase of the price of tractors, service structures, or land sifts leftward the demand schedule for

autos and trucks.  An increase of the price of land also shifts leftward the demand for tractors, but an increase of

the price of autos and trucks or labor shifts it rightward.  An increase in the price of autos and trucks or labor

shifts leftward the demand for equipment but an increase of the price of tractors, service structures, or land shifts
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it rightward.  Finally, an increase of the price of autos and trucks shifts leftward the demand schedule for farm

labor. 

A change in the relative price of crop to livestock output also affects dynamic input demand functions. 

An increase of the price of crop (relative to the price of livestock) output shifts rightward the short-run demand

schedule for all the quasi-fixed inputs, except for labor and land.  These effects seem consistent with livestock

production being overall more labor intensive than crop production and capital services being more highly

substitutable for labor in crop than livestock production.

Thus, the results in Table 4 provide evidence that dynamic agricultural input demand schedules for the

United States are negatively sloped and affected by changes in (real rental) prices of all inputs.  The results are in

accord with the theoretical analysis in the general dynamic adjustment-cost theory.

Research Impacts

The results shed new light on the effects of agricultural research on dynamic agricultural input demand in

a developed country.  They show that an increase in U.S. public and private research cause a significant rightward

shift in the short-run U.S. demand schedule for farm automobiles and trucks (see Table 3).  Because of seeming

labor-saving technical change in U.S. agriculture over the study period (e.g., Huffman and Evenson 1989; Hayami

and Ruttan 1985), our result that added public agricultural research shifts rightward the demand for labor

(significant at 7% level) is surprising.  On the other hand, added private agricultural research shifts leftward the

demand schedule for tractors and labor (latter significant at 15% level).  Public and private agricultural research,

however, have no other significant effect on the short-run demand for quasi-fixed U.S. agricultural inputs.

Concluding Remarks

This paper has presented new econometric evidence about the demand for inputs in U.S. agriculture

viewed from the perspective of a dynamic adjustment-cost model.  We considered six potentially quasi-fixed

inputs and one group of intermediate inputs.  We rejected the hypothesis that inputs of autos and trucks, tractors,
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equipment, service structures, land, and labor behave as "variable" inputs.  Instead we accepted the hypothesis

that they behave as quasi-fixed inputs, which means that they adjust somewhat sluggishly to an economic shock. 

We also concluded that a multivariate flexible-accelerator representation of dynamics was superior to six separate

univariate flexible-accelerator representations of the dynamic input demand.  Hence, we conclude that the

dynamic input demand functions are integrated in complex and economically important ways.

We soundly rejected the hypothesis of no vector first-order autocorrelated errors in the dynamic input

demand system.  The size of the estimated input adjustment coefficients were shown to differ significantly

between a model with and without autocorrelation.  When autocorrelation was permitted, the speed of input

adjustment was generally increased.  Hence, we conclude that part of the explanation for seemingly slow

adjustment of dynamic U.S. agricultural input demand to economic shocks reported in other studies (e.g.,

Vasavada and Ball 1988; Vasavada and Chambers 1986) was most likely due to misspecification of the

autocorrelation structure for the dynamic input demand system.  Other studies have largely ignored the

consequence of autocorrelated errors.

Our results imply that dynamic input demand schedules for inputs have negative slopes, although quite

own-price inelastic; and to be shifted significantly by cross-price changes, a change in relative price of crop to

livestock output, and by a change in the stock of public and private research.  Finally, we believe that results are

applicable to agricultural input demand in other developed countries.
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APPENDIX A.   Parameter Restrictions of the Investment Demand

System with Vector Autoregressive Errors

This appendix provides a work-out example for deriving parameter restrictions on the investment

demands under a first-order vector autoregressive process for the case of only two quasi-fixed inputs. 

Generalization to N inputs can be done in a straightforward manner.  To begin, ignoring terms other than stocks

of quasi-fixed inputs since they will not affect this analysis, the transformed investment demands (8) can be

written in full as follows:

(A.1) (t) =1

(A.2) (t) =2

where X(t) and X (t) are vectors of other terms in the system.  In the following, some parameter restrictions are1   2

derived for testing some hypotheses of interest.
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Univariate partial adjustment hypothesis

This hypothesis exerts that the adjustment of a stock of quasi-fixed input do not depend on the stocks of

other inputs.  This can be attained if both the adjustment matrix M and the autoregressive matrix M are restricted

to be diagonal.  Thus, we need that M  = M  = 0 and M  = M  = 0.  This is because, under such restrictions, the12  21    12  21

system becomes:

(A.3) (t) = M (t ! 1) + M K (t ! 1) ! M M K (t ! 2) + X (t)Q  1 11 1     11 1     11 11 1     1 1

(A.4) (t) = M (t ! 1) + M K (t ! 1) ! M M K (t ! 2) + X (t)Q  2 22 2     22 2     22 22 2     2 1

As can be seen, the adjustment of each input only depends on its own stock.  Notice how this specification differs

from those in previous studies.  There are still some autoregressive coefficients in the system in this specification.

All inputs are variable

When all inputs are variable, this means that their adjustments are instantaneous so that their stocks

would not affect the adjustment of other inputs.  This can be attained simply by restricting M to be an (negative)

identity matrix and M to be null.  Under such restrictions, the system becomes:

(A.5) (t) = !K (t ! 1) + X (t)Q1 1     1 1

(A.6) (t) = !K (t ! 1) + X (t)Q2 2     2 2

By rewriting in the level forms, the system will build down into demands for stocks (as opposed to investments)

for inputs as those in the static model specifications.
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Input quasi-fixity tests

To test the quasi-fixity of the inputs, we should be able to show that it is not variable.  The i-th input is

variable if its adjustment is instantaneous so that its stock does not affect the adjustment of other inputs.  To test

the variability of the i-th input, it is necessary and sufficient that M  = !1 and the i-th columns of both M (exceptii

M ) and M matrices are deleted.  For instance, if we want to show that the first input is variable, imposeii

restrictions that M  = !1 and M  = M  = M  = 0.  Under such restrictions, the system becomes:11    21  11  21

(A.7) (t) = M (t ! 1) !K (t ! 1) + M K (t ! 1)1 12 2    1     12 2

! (M M  + M M ) K (t ! 2) + X (t)R11 12  12 22  2     1 1

(A.8) (t) = M (t ! 1) +M K (t ! 1)2 22 2    22 2

! (M M  + M M ) K (t ! 2) + X (t)R21 12  22 22  2     2 2

It can be seen that the stock of first input disappears in the second equation.  The stock of the second input,

however, can affect the first input because it is quasi-fixed input.  Notice how the autoregressive coefficient is still

kept in general forms.
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Table 1. Selected hypotheses of interest and the implied parameter restrictions on the system of 

agricultural demand equations (when autocorrelation is absent)a

_________________________________________________________________________________

Parameter restrictions 
Hypotheses on the adjustment matrix M
_________________________________________________________________________________

Independent adjustment M  = M  = M  = M  = M  =12  13  14  15  16

among all inputs M  = M  = M  = M  = M  =21  23  24  25  26

(i.e., univariate M  = M  = M  = M  = M  =31  32  34  35  36

partial adjustment M  = M  = M  = M  = M  =41  42  43  45  46

model) M  = M  = M  = M  = M  =51  52  53  54  56

M  = M  = M  = M  = M  = 061  62  63  64  65

Independent adjustment M  = M  = M  = M  = M  = M  =15  16  51  61  25  26

among groups M  = M  = M  = M  = M  = M  =52  62  35  36  53  63

M  = M  = M  = M  = M  = M  = 045  46  54  64  56  65

All inputs are M  = M  = M  = M  = M  = M  = !1,11  22  33  44  55  66

variable (i.e., the M  = M  = M  = M  = M  =12  13  14  15  16

absence of adjustment M  = M  = M  = M  = M  =21  23  24  25  26

cost theory) M  = M  = M  = M  = M  =31  32  34  35  36

M  = M  = M  = M  = M  =41  42  43  45  46

M  = M  = M  = M  = M  =51  52  53  54  56

M  = M  = M  = M  = M  = 061  62  63  64  65

Automobile/truck
M  = !1,M  = M  = M  = M  = M  = 011  21  31  41  51  61stock is variable

Tractor stock is variable M  = !1,M  = M  = M  = M  = M  = 022  12  32  42  52  62

Equipment is variable M  = !1,M  = M  = M  = M  = M  = 033  13  23  43  53  63

Service structure
M  = !1,M  = M  = M  = M  = M  = 044  14  24  34  54  64is variable

Land is variable M  = !1,M  = M  = M  = M  = M  = 055  51  52  53  54  56

Labor is variable M  = !1,M  = M  = M  = M  = M  = 066  61  62  63  64  65

_________________________________________________________________________________

1 is for automobiles/trucks, 2 is for tractors, 3 is for equipment, 4 is for servicea

structures, 5 is for land, and 6 is for labor.
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Table 2. The sample means of quantity indices and implicit prices of inputs
and outputsa

_______________________________________________________________________

Inputs/ Quantity indices Implicit prices
Outputs   (1977=100)
_______________________________________________________________________

Labor 150.03 3.108
Hired labor 121.24 0.990
Family labor 168.72 2.116

Capital Stocks 97.98 14.077
Automobiles and trucks 172.47 0.374
Tractors 86.57 2.936
Equipment 89.74 5.901
Service structures 109.94 4.844

Land 97.41 2.060

Intermediate Inputs 82.33 8.780
Feed 97.01 3.315
Seed 94.81 0.378
Fertilizer 65.75 1.180
Repair and operation 84.05 1.728
Miscellaneous inputs 70.76 2.216

Crops 86.26 646.447

Livestock 95.72 1,972.122
_______________________________________________________________________

Total number of observations is 1386.  The prices of capital stocks and land are rental prices.  Wage ratea

for hired labor is assumed as the marginal cost for the family labor.
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Table 3. Nonlinear SUR estimates of the agricultural demand system under diagonal first-order vector
autoregressive errorsa

___________________________________________________________________________

     Dependent variables:  change of (potentially) quasi-fixed input 
___________________________________________________________

Autos &    Service
 trucks  Tractors   Equipment   structure Land Labor

___________________________________________________________________________

Lagged input use:

Autos and -0.369 -0.012 -0.026 0.014 -0.001 0.017
  trucks (15.91) (4.45) (4.37) (2.00) (0.59) (2.92)

Tractors 0.046 -0.068 0.047 -0.036 0.010 -0.091
(0.66) (4.85) (1.63) (1.05) (1.29) (3.12)

Equipment -0.013 -0.001 -0.096 -0.006 0.005 0.008
(0.57) (0.11) (9.53) (0.54) (2.07) (0.77)

Service 0.057 0.013 0.025 -0.088 -0.007 -0.012
  structure (2.06) (3.20) (3.01) (8.02) (2.28) (1.45)

Land 0.445 0.011 0.042 -0.021 -0.133 -0.022
(3.98) (1.42) (2.72) (1.10) (3.61) (1.41)

Labor 0.127 -0.002 -0.002 0.014 -0.006 -0.076
(4.99) (0.61) (0.48) (2.14) (2.19) (14.20)

Relative prices of:

Autos and -0.550 -0.572 0.189 -0.338 -0.057 -0.042
  trucks (9.41) (11.42) (1.67) (2.79) (3.13) (0.38)

Tractor 1.610 -0.446 0.158 0.254 -0.130 0.607
(6.32) (5.74) (0.89) (1.38) (4.41) (3.45)

Equipment -2.798 0.713 -0.501 0.267 0.213 -0.690
(11.98) (8.88) (2.71) (1.40) (8.18) (3.77)

___________________________________

Numbers in parentheses are the absolute sample t-values.  The numeraire is the price of livestock.  Thea

independent variables are the transformed variables.
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Table 3. (continued)
___________________________________________________________________________

    Dependent variables:  change of (potentially) quasi-fixed input
___________________________________________________________

Autos &    Service
 trucks  Tractors   Equipment   structure Land Labor

___________________________________________________________________________

Service -0.225 0.096 0.064 -0.042 -0.013 0.211
  structure (2.15) (3.51) (1.03) (0.64) (1.10) (3.41)

Land 0.008 0.005 -0.004 0.019 -0.002 -0.016
(0.42) (1.32) (0.54) (2.02) (1.20) (1.94)

Labor -0.242 0.019 0.006 -0.040 -0.007 -0.010
(3.77) (1.38) (0.21) (1.24) (0.97) (0.36)

Intermediate 0.050 0.014 -0.057 -0.081 -0.001 0.016
  input (0.57) (0.53) (0.95) (1.27) (0.03) (0.26)

Crops 0.091 0.128 0.104 0.057 -0.006 -0.085
(1.65) (6.93) (2.47) (1.30) (0.96) (2.02)

Research variables:

Public 7.435 -0.062 -0.366 0.088 0.042 0.549
(5.49) (0.45) (1.26) (0.25) (0.30) (1.85)

Private 48.563 -4.453 1.205 -0.885 0.703 -2.638
(5.77) (5.20) (0.67) (0.41) (0.90) (1.45)

Other variables:

Intercept -1.564 8.739 5.505 3.924 2.357 18.301
(0.74) (6.21) (1.32) (1.29) (9.90) (4.86)

M 0.837 0.026 -0.307 0.148 0.832 -0.181ii

(47.20) (0.88) (11.09) (4.48) (18.46) (6.35)

___________________________________________________________

R 0.631 0.366 0.197 0.165 0.816 0.2822

RMSE 8.177 3.387 9.311 7.492 0.901 8.611
___________________________________________________________________________
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Table 4. Tests of hypotheses on the agricultural demand equations under diagonal first-order vector
autoregressive error structure

___________________________________________________________________________

Degree of
Hypotheses Chi-squares  freedom Conclusiona

___________________________________________________________________________

Absence of auto-correlations 3,130.07 6 Reject

Independent in adjustments
of all inputs 141.69 30 Reject

Independent in adjustments
among groups 92.18 18 Reject

All inputs are variable 394,386.65 42 Reject

Automobile stock is variable 19,465.68 7 Reject

Tractor stock is variable 5,296.33 7 Reject

Equipment is variable 4,748.17 7 Reject

Service structure is variable 11,645.73 7 Reject

Capital group is variable 49,438.64 28 Reject

Land is variable 239,572.65 7 Reject

Labor is variable 21,966.41 7 Reject

___________________________________________________________________________

The chi-square statistics are based on Gallant and Jorgenson (1979).  The entries in this column are thea

differences of the products of the objective function and the number of observations in the full and
restricted models.
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1. The discussions of equilibrium throughout this study correspond to the equality between
the actual and the desired levels of the quasi-fixed input stocks, and not between the
supply and demand of such inputs in the market.

2. Cromarty (1959) estimated the farm investment demands for tractors, machinery, and
trucks for 1923!1954 period.  He included lagged stock in his specification for machinery
but not for tractors and trucks.  Theoretical justification in term of adjustment cost
hypothesis was not provided.

3. Other studies are worth mentioning.  Penson, Romain, and Hughes (1981) derived an
intertemporal rental price in their empirical study of investment demands for tractors. 
Lamn (1982) applied several macroeconomic models of investment demand to real farm
investment.  Another model is based on mathematical programming applied to farm
investment and replacement (e.g., Reid and Bradford, 1987).

4. In any case, the relative prices affect directly the investment demands as this is clear from
the presence of p, w, and q directly in the system (3).

5. The discussion in this section focuses primarily on estimating the system with static price
expectation.  For the autoregressive output price expectation, the estimation procedures
are similar.

6. Certainly other empirical representations of output prices could be employed.

7. The eigenvalues when first-order autocorrelated is ignored is [!0.143, !0.052, !0.131,
!0.099, !0.068, and !0.027].

8. The next two hypotheses in Table 4 concern the symmetry in resource adjustments either
in all inputs or in capital group.  Both hypotheses are rejected at 5% significant level.

Endnotes

The authors are Senior Economist, Bank of Indonesia, and Professor, Iowa State University, Ames, IA.  Helpful*

comments were obtained from Agricultural Economics workshop participants at the University of Chicago and
from Yang Li.


