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1. Introduction 

Farm real estate represents a dominant asset on the farm sector balance sheet in the U.S.A. (it 
accounted for nearly 84% of total U.S. farm assets in 2009) and is usually the largest investment in the 
farmers’ portfolio. It is therefore considered to be an important indicator of the sector performance and 
of the producers’ welfare (Nickerson et al., 2012). The real values of agricultural land have been 
increasing dramatically starting from the second half of 2000s, raising many questions about their 
macroeconomic determinants and whether the boom will turn into a bust (Gloy, 2012), especially after 
the 2008 global financial crisis. The analysis of land values also raises a number of policy issues, 
regarding government support, taxation and environmental protection.  

For all these reasons, the empirical literature on the determinants of agricultural land values is 
extensive. The relationship between farmland prices and expected future returns on this asset has been 
extensively investigated in the past (see, for example, Falk, 1991; Engsted, 1998; Lence and Miller, 
1999). However, despite the great amount of research efforts, most economic theories have only met 
small empirical evidence (Gutierrez et al., 2007).  

This work investigates the spatial effects that may characterize the determination of agricultural 
land values in selected Midwestern U.S.A. States. We adopt the Ricardian Present Value Model 
(PVM) as the theoretical framework to address farm land values behavior in the long run. We specify 
and estimate spatiotemporal model that relates land value to its determinants. The spatial econometrics 
techniques we empoly - designed to account for the spatial effects that may characterize lattice data - 
represent an important methodological tool that has not yet been extensively applied in this field of 
analysis. We estimate a model that includes a spatial lag of the dependent variable to account for 
spatial dependence. We also characterize the temporal dynamics as an autoregressive process of first 
order. Finally, we present a spatiotemporal lag to account for all possible sources of autocorrelation in 
the data. 

The theoretical framework of analysis and the employed dataset are presented in sections 2 and 3 
respectively, while section 4 explores the spatial characteristics of the data. The results of our 
estimations are given and discussed in section 5. Section 6 presents the necessary checks of the 
stability conditions for the estimated model and the computation of long-run elasticities of cropland 
value with respect to the included regressors. Section 7 contains the final concluding remarks and the 
discussion of possible future developments. 

2. The Present Value Model 

2.1. The theoretical model 

The PVM (Campbell and Shiller, 1988; Campbell et al., 1997) is a financial model that relates the 
price of a stock to its expected future returns discounted to the present using a constant or time-
varying discount rate. When applied to the analysis of land values, we consider the price of the stock 
to be the price of land (in our case, the value of cropland, ��); the dividends are measured as cash 
rents (��) received by the land owners. The value of cropland is therefore related to the capitalized 
value of the current and future stream of cash rents. 



 

 

Following Gutierrez et al. (2007), we assume time-varying expected stock returns so that the 
relationship between prices and returns is non-linear and we define the log of the gross real rate of 
return on acre of land in State � from period � to � + 1,  (�	
�), as 

 
�	
� ≡ 
��(��	
� + ��	
�) − 
��(��	) ................................................   (1) 

 

or equivalently 
 

�	
� ≡ ��	
� − ��	 + 
��(1 + ���(�	
�)), ............................................  (2) 
 
where �	
� = ��	
� − ��	
� is the natural logarithm of the dividend-price ratio (��	
�/��	
�), 
which is also called spread in financial literature. Lower case letters denote natural logarithms of the 
correspondent variables. 

Equation (2) can be linearized using a first-order Taylor expansion into 
 
�	
� ≈ � + �	 − ��	
� + ∆��	
�,     (3) 

 
where � = −
��(�) − (1 − �) ∙ 
��(1/� − 1) and � = 1/(1 + ��/��). One should notice that 
equation (3) is a linear difference equation for the log stock price that can be solved forwardly and, 
under the condition that lim#→% �# �	
# = 0, we obtain 
 

�	 ≈ −�/(1 − �) − ∑ �#%
#() (∆��	
�
# − �	
�
#). (4) 

 
According to equation (4), if the stock price is high today, then there must be some combination 

of high dividends and low stock returns in the future (Campbell et al., 1997). This relation holds ex-
ante as much as ex-post, therefore taking expectations we obtain 

 
�	 + �/(1 − �) ≈ −E	,∑ �#%

#() (∆��	
�
# − �	
�
#)-. (5) 
 
The rationale of the PVM is embodied in equation (5) as it expresses the current value of the 

dividend-price ratio in terms of the present discounted value of expected future values of ∆��	
� and 
�	
�. The log dividend-price ratio is high only when dividends are expected to grow slowly or the 
expected stock returns are high and, when the dividend follows a log-linear unit-root process, the log 
dividend-price ratio is stationary provided that the expected stock return is stationary (Campbell et al., 
1997). According to the PVM, if the agents are fully rational, then the asset prices (e.g. farmland 
values) and the dividends generated from that asset (e.g. cash rents) cannot drift persistently far apart 
from each other. 

Let us also assume that the expected return to our asset .	/�	0 exceeds the expected return of 
another asset .	/�	0 by a constant � that represents the risk premium on investments on our asset; the 
PVM reduces to  

 
�	 + (� − �)/(1 − �) ≈ E	,∑ �#%

#() (�	
�
# − ∆��	
�
#)-. (6) 
 
By supposing further that the expected rate of return on the alternative asset is stationary and that 

the logs of dividends and prices are non-stationary but their differences are, then it should be 
concluded that the RHS of equation (6) is stationary too and the constant expected excess returns 
version of the PVM holds. According to this finding, the PVM has been tested in the literature by 
estimating and then testing for cointegration the following equation 

 
��	 = 1 + 2��	 + 3	, (7) 
 
where 1 = −(� − �)/(1 − �) and 3 is a zero-mean disturbance, or equivalently 



 

 

�	 − 1 = (1 − 2)��	 − 3	. (8) 
 
If 2 = 1, intuitively, the log prices move one-to-one with log dividends and their unit-root 

components cancel out, leaving the spread unaffected. On the contrary, if 2 ≠ 1, then (1 − 2)��	 
does not disappear and the spread is non-stationary (Gutierrez et al., 2007). 

2.2. Empirical literature on the PVM and farmland prices 

Many empirical studies on the determinants of farmland prices refer to the PVM as their 
theoretical framework. According to it, the value of an income-producing asset such as farmland is the 
capitalized value of the current and future stream of earnings from owning that asset (often measured, 
not exclusively, as cash rents). In other words, land values should equal the present value of all future 
expected cash flows stemming from a productive use of that land and therefore changes in expected 
returns to farming should explain changes in farmland prices (Du et al., 2007).  

The empirical testing of the PVM has consisted in estimating equation (7) for each cross-sectional 
unit � and then testing the stationarity of the residuals by means of conventional cointegration tests. 
However, the empirical results do not fully support the PVM as the most appropriate for explaining 
farmland values. Among the empirical studies on this topic, we recall the analysis on farmland prices 
in Iowa conducted by Falk (1991), that ended up rejecting the PVM because, although highly 
correlated, farmland price and rent movements are not consistent with that. Clark et al. (1993) found 
similar results for Illinois, Tegene and Kuchler (1993) and Engsted (1998) for three U.S. regions (the 
Lake States, the Corn Belt and the Northern Plains). The failure to find cointegration is addressed by 
Gutierrez et al. (2007) by allowing structural breaks in the cointegrated relationship that represent a 
shifting risk premium on farmland investments, thus finding results in favor of the PVM. 

Moving from the classical literature on PVM, some other trends have been gaining popularity in 
the analysis of farmland value. Some researchers concentrated on the influence of urbanization 
(Hardie et al. 2001; Plantinga et al. 2002; Livanis et al. 2006 among others); others focused on the 
testing of the PVM in presence of transaction costs (Lence and Miller, 1999; de Fontnouvelle and 
Lence, 2001). Important contributions tended to make distinctions among the streams of rents, 
particularly by arguing that farmland rents do not only consist in cash rents and that government 
payments should be considered as rent sources, but also distinguishing between different types of 
public subsidies (Clark et al., 1993; Weersink et al., 1999; Goodwin et al., 2003 among the others). 

3. The data 

All the employed data for the agricultural sector were made available by the United States 
Department of Agriculture (USDA), National Agricultural Statistics Service1 (NASS) and Economic 
Research Service (ERS). The estimates of land values are based on annual survey data and report the 
market value2 per acre of cropland only rather than farmland in general (in current dollars), so that 
problems arising from heterogeneity in land quality and use are limited (pastureland, for example, is 
not included). Cropland only includes the land used to grow field crops, vegetables or land harvested 
for hay. This also permits to exclude the value of farm buildings and take the value of land only into 
consideration.  

Net cash rents per acre of cropland (in current dollars) are used, rather than gross cash rents, as 
this reflects the net return to the landowner (Alston, 1986). They measure returns to land from 
agricultural production, and can be interpreted as a Ricardian land rent. Besides this type of rent, 
agricultural support programs also represent a land return which may capitalize into land value. Direct 
government payments per acre of cropland, as estimated by the USDA-Economic Research Service, 
are therefore used as explanatory variables.  

                                                           
1 http://www.nass.usda.gov/Quick_Stats/ 
2 The land value is the value at which the land used for agricultural production can be sold under current market conditions, if allowed to 
remain on the market for a reasonable amount of time (USDA-NASS 2012). 



 

 

All monetary variables were deflated using the GDP implicit price deflator (reference year 2005) 
from the U.S. Department of Commerce, Bureau of Economic Analysis.  

Population density, calculated from the annual estimate of population from the U.S. Department 
of Commerce, Bureau of Census, is included among the covariates of the model as a proxy for urban 
pressure, that represents competing demand for land for non-agricultural use (Feichtinger and 
Salhofer, 2011).  

The employed dataset is a panel of annual (1971-2009) observations for 12 Midwestern U.S. 
States (North Dakota, South Dakota, Nebraska, Minnesota, Iowa, Wisconsin, Illinois, Michigan, 
Indiana, Ohio, Arkansas, Mississippi), for which more homogeneous data are available, less affected 
by urban influence (e.g. those for North-eastern States). Moreover, cropland is mostly found in the 
Midwest, while the Western States, that have lower shares of cropland to total farmland, are less 
heavily surveyed by NASS for cash rents and the data on cropland per acre are either thinner or not 
available because sometimes limited only to either irrigated or non-irrigated cropland.  

The availability of data on cropland value per acre for the selected variables turned out to be a 
constraint that led to the exclusion of States such as Louisiana, Missouri and Kansas form the original 
dataset. The availability of data on cash rents, only limited to 2009 for South Dakota, determined the 
time-span. 

Thanks to the non-commonly considered variables, the employed dataset represents an 
improvement with respect to earlier studies.  Although lower-level data might improve the analysis in 
terms of better theoretical explanation for spatial dependence (see Breustedt and Habermann, 2008, for 
a spatial analysis of farm-level cash rents) our focus on State-level data allowed to take a longer time-
span into consideration.  

4. Exploratory Spatial Data Analysis 

Panel data have been frequently used in the field of agricultural economics, but spatial panel data 
have only recently started to be applied, although it is clear that location plays an important role 
(Baylis et al., 2001).  

When aiming at modeling the spatial dimension of data and take into account the effects of spatial 
dependence and/or spatial heterogeneity that characterize them (Anselin, 1988), an Exploratory Spatial 
Data Analysis (ESDA) should be conducted in order to highlight the most appropriate specification of 
the model. It requires the definition of a spatial weight matrix as a  square, non-stochastic and 
symmetric matrix, whose elements measure the intensity of the spatial connection between spatial 
units and take on a finite and non-negative value. The elements on the main diagonal are all equal to 0 
by definition.  

We choose to employ a row-standardized rook spatial weight matrix, 6, whose elements, 78#, 

take on the values of either 0 or 1 depending on whether States � and 9 share some positive portion of 
their boundaries or not3.  

In order to determine whether there is overall spatial dependence among the observed cropland 
values we employed the well-known Moran’s I index4 and scatterplot. The Moran’s I index (Table 1) 
shows significant positive values for all considered years, especially starting from the end of the 
1990s, thus leading to reject the null hypothesis of no spatial dependence in favor of positive spatial 
dependence in the distribution of cropland values. Moran scatterplots5 confirm that, albeit present in 
all considered years, spatial dependence appears to be stronger starting from the year 2000. We believe 
that exploiting the time dimension of the data conveys therefore pieces of information that cross-
sectional data would ignore. 

 
 

                                                           
3 We believe it represents a good average picture of the possible connectivity schemes. Nevertheless, the ESDA proved to be 
robust to the choice of different spatial weight matrices. Results are available upon request. 
4 Moran’s I index is calculated as I = (n/S)y′Wy(y′y)@�, where S is the sum of all the elements of W and y is the vector of 
the n	observations for the considered variable. 
5 Moran scatterplots are available upon request. 



 

 

Table 1. Results for the Moran’s I index for observed cropland value (1971 - 2009). 
Year Moran’s I p-value  Year Moran’s I p-value  Year Moran’s I p-value 
1971 0.287 0.064  1984 0.414 0.021  1997 0.477 0.012 
1972 0.322 0.047  1985 0.414 0.020  1998 0.489 0.011 
1973 0.343 0.040  1986 0.460 0.012  1999 0.546 0.006 
1974 0.297 0.059  1987 0.464 0.012  2000 0.601 0.003 
1975 0.280 0.069  1988 0.356 0.034  2001 0.634 0.002 
1976 0.277 0.073  1989 0.273 0.069  2002 0.657 0.002 
1977 0.319 0.052  1990 0.291 0.062  2003 0.385 0.027 
1978 0.301 0.057  1991 0.267 0.074  2004 0.637 0.002 
1979 0.288 0.065  1992 0.279 0.067  2005 0.605 0.003 
1980 0.297 0.062  1993 0.327 0.047  2006 0.597 0.003 
1981 0.274 0.073  1994 0.286 0.053  2007 0.593 0.003 
1982 0.265 0.076  1995 0.336 0.044  2008 0.572 0.004 
1983 0.270 0.071  1996 0.327 0.044  2009 0.582 0.004 

 
The results of the ESDA therefore give clear indication in favor of the estimation of a spatial 

model, capable of taking the spatial dependence among the observations of the dependent variable into 
account.  

5. Estimation and discussion of the results 

When dealing with observations that are collected both over space and time, there are numerous 
reasons to expect both serial dependence between the observations on each spatial unit over time and 
spatial dependence between the observations on the spatial units at each point in time to be present. 
This is because economic agents require time in order to collect information and make decisions and 
because what happens in neighboring locations influences these decisions. Following Elhorst (2010), 
since we treated space-time data, we conveniently chose to estimate a first-order autoregressive lag 
model in both space and time: the analysis on the determinants of cropland values in 12 U.S. States 
over the period 1971-2009 was conducted by estimating a model in which a spatial lag of the 
dependent variable is included, the temporal dynamics is described as an autoregressive process of 
first order and a spatiotemporal lag is also introduced so as to make our model a truly time-space 
dynamic model (Anselin, 2001).  

Fixed individual effects were also added to the specification in order to take into account 
unobserved time-invariant sources of heterogeneity such as climate and land quality (Kirwan, 2009) 
and different sets of covariates were included, as described in equations (9) and (10): 

 
��8	 = BC��8	 + D��8	@� + EC��8	@� + 2���8	 + 2F�G8	 + �8 + 38	; (9)

 
��8	 = BC��8	 + D��8	@� + EC��8	@� + 2���8	 + 2F�G8	 + 2H��8	 + �8 + 38	,  (10) 
 
�� is the real cropland value, �� is the real net cash rent for cropland, �G is the population 

density and �� are real direct government payments. All variables were included in the model after a 
natural logarithm transformation. Models (9) and (10) were estimated by the Quasi-Maximum 
Likelihood (QML) estimator by Yu et al. (2008) and the results are shown in Table 2. 

 
Table 2. QML estimates for the coefficients of models (9) and (10). 

 Model (9) Model (10) 
Coeff. Estimate t-stat Estimate t-stat 
λ 0.382 8.899*** 0.382 9.074*** 
γ 0.734 19.824*** 0.713 20.359*** 
ϱ -0.182 -3.254*** -0.187 -3.529*** 
β� (cr) 0.079 2.720*** -0.012 -0.415 

βF	(pd) 0.328 3.426*** 0.548 5.659*** 
βH	(gp)   -0.048 -6.906*** 

Significance level: ***=1% (|t − stat| > 2.58); **=5% (|t − stat| > 1.96) ; *=10% (|t − stat| > 1.64). 



 

 

5.1. The effects of net cash rents and population density on cropland values 

According to the PVM, we expect net cash rents to have a positive impact on cropland values. 
The estimation of model (9) (Table 2) indicates a significant, albeit limited, coefficient for the 
expected net cash rents (0.079), while population density shows a higher positive coefficient (0.328). 
Indeed, increasing population density may increase the demand for agricultural goods and therefore 
agricultural land and, at the same time, it may be sign of increasing urban pressure that enhances 
competing demand for land for non-agricultural use. A stronger effect of changes in population than of 
returns to farmland on farmland values has already been found for some U.S. regions by applying an 
entropy-based information approach: Salois et al. (2011) find that, although changes in farmland 
values are more strongly associated with changes in returns to farmland at the national level, the 
relationship appears to change over time and region and for some regions (Northeast, Corn Belt, 
Appalachia, Mountain and Pacific) population has become more informative. 

The reasons for such limited effects of the covariates may be numerous. One possible explanation 
relies in the inclusion of State-specific fixed effects; some results in the literature already support the 
idea that they may absorb part of the cross-sectional effect of the expected land rent, thus suggesting 
that structural determinants of the expected rents are more effective in determining cropland value 
than short-run expected fluctuations (see Duvivier et al., 2005, for a study on a Belgian case). The 
high and highly significant estimates obtained for the spatial and temporal autoregressive coefficients 
(B and D) suggest that these may also absorb part of the effects of the covariates. The time-space 
autoregressive coefficient is also significant (E), albeit negative and smaller in absolute value.  

5.2. The inclusion of government payments  

The inclusion of government payments as a covariate into the model does not return 
straightforward results (Table 2). First, the coefficient associated with direct government payments is 
significant and negative, indicating a negative impact of public subsidies on cropland value. This 
result is unexpected and requires deeper analysis and interpretation. Then, when we consider the 
effects on the other coefficients, it should be noted that the spatial and temporal effects are not 
significantly affected, whereas the inclusion of government payments enhances the impact of 
population density (whose coefficient rises from 0.328 to 0.548. Yet the most remarkable consequence 
is that caused on the estimates of β�, that turn to be negative and not significant. 

The empirical literature has already addressed the issue in various contributions that led to very 
different conclusions. A central point that should be taken into consideration concerns the fact that 
agricultural support policy instruments are thought to be highly correlated with land rents and this may 
cause multicollinearity in the estimates. Indeed, part of the literature concentrates on explaining the 
relationship between these two variables rather that their effect on land values, trying to assess 
whether agricultural policy benefits landowners of farmers the most (see, for example, Roberts et al., 
2003; Lence and Mishra, 2003; Goodwin et al., 2004; Latruffe and Le Mouël, 2009; Kirwan, 2009).  

Moreover, different types of subsidies are expected to have different impacts on cash rents and 
land values, therefore a distinction between the programs of agricultural support appears to be 
necessary in order to better interpret these results. Lence and Mishra (2003), for example, find that 
alternative farm programs have different effects on cash rents in Iowa, with positive effects of market 
loss assistance and production flexibility contracts, no effects of conservation reserve programs and a 
negative impact of deficiency payments. Similar conclusions are drawn by Goodwin et al. (2003), who 
argue that government payments cannot be considered to reflect the long-term expected stream of cash 
flows, which is the determinant of land values and is a latent variable. The only variables that can be 
observed and taken into account are the “market and government payment realizations for a sample of 
farms under a fixed set of policy instruments and market conditions” (p. 745). As Phipps (2003) 
argues, program payments are extremely variable from year to year and do not appear to have the 
characteristics of stability that should characterize expectations of returns to land for a given location 
and policy regime. 



 

 

Feichtinger and Salhofer (2011) also find different capitalization rates for particular types of 
payments, with lower elasticity for agro-environmental payments, that often cause land rents to 
decrease.  

The difficulties that arise as a consequence of the inclusion of government payments in the model 
are therefore numerous and the results obtained through model (10) can only be considered as an 
indication of the need of further research that takes into account the evolutions of agricultural policy in 
time and the differences in types of agricultural subsidies. 

6. Short run and long run land value elasticity 

The estimated β� and βF coefficients cannot be interpreted exactly as the elasticity of land value 
to, respectively, cash rents and population density, because of the presence of the variable cv on the 
RHS of model (9). Another contribution we make is therefore to provide an estimation of the impact 
and long-run elasticity of cropland values in response to changes in net cash rents and population 
density.  

Before applying long-run value effect analysis, we test the series stationarity, in order to be sure 
that the process we are analyzing is not an explosive one. In order to do so, from equation (9) we 
define the N × N matrix  

 
` = (a − BC)@�(Da + EC) (11) 

 
where a is an b × b identity matrix and C is an exogenous spatial weight matrix of the same 
dimensions.  

Using ̀  we can re-write model (9) as 
 
��8	 = `��	@� + (a − BC)@�(2���8	 + 2F�G8	 + �8 + 38	) (12) 
 
The stability conditions of the process described in equation (12) can be now analyzed by 

computing the eigenvalues of the ` matrix.  
Depending on the eigenvalues, i.e. the characteristic roots of	`, we have three possible cases. 

When all the roots are less than 1 in absolute value, we call it a stable case. When all the roots are 
equal to 1, we term it a pure unit root case, which generalizes the unit root dynamic panel data model 
in the time series literature to include spatial elements. When some of the roots (but not all) are equal 
to 1, we define it as a spatial cointegration case, where the unit roots in the process are generated with 
mixed time and spatial dimensions.  

Using the estimates obtained in section 5 for the autoregressive parameters by using a rook spatial 
weight matrix6 (Dc = 0.734;	Bg = 0.382;	Ec = −0.182), we find the following eigenvalues of 
matrix ` [0.893, 0.850, 0.773, 0.759, 0.735, 0.710, 0.681, 0.696, 0.693, 0.692, 0.893, 
0.663]. Since all the values are less than 1, we can conclude that the system is stable. Hence the 
computation of elasticities for cash rents and population density is possible and can be easily done by 
solving the dynamic equation (12), i.e. 

 
��8	 = (a − `L)@�(a − BC)@�(2���8	 + 2F�G8	 + �8 + 38	). (13) 

 
where L is the lag operator, that operates on an element of a time series to produce the previous 
element, such that, given i = ji�, iF, iH, … l, i8	m = i	@�, for all � > 1. 

Using the estimates 2g�=0.079 and 2gF=0.328 and � = 0, … , 100, we find that the impact 
elasticity of cropland value (i.e. the elasticity calculated at � = 0) is equal to 0.13 with respect to cash 
rents and 0.53 with respect to population density. These values represent the expected immediate 

                                                           
6 The results lead to the same conclusions when the estimates obtained by using the other spatial weight matrices are used in the 
computations.  



 

 

percentage changes that a 1% percent change in, respectively, cash rents and population density would 
cause on cropland values. 

Considering long-run impacts instead, the calculated long-run elasticity of cropland value with 
respect to a 1% increase in cash rents is equal to 1.2, while the long-run elasticity of cropland value 
with respect to a 1% increase in population density is equal to 4.97 (Figure 1). About 50% of the long-
run impact of both cash rents and population density on cropland value is already reached after 6 years 
and the percentage increases up to 90% after 21 years. Therefore, in the long-run, the effect of 
population density (hence, according to our assumptions, of urban pressure and competing land uses) 
is significantly higher than that of cash rents in determining cropland values. 

 

 
Figure 1. Long-run elasticity of cropland value with respect to net cash rents and population 
density. 

 

Such a close-to-unity estimated long-run elasticity of cropland values to cash rents is close to 
what one would expect according to the PVM and that is usually not verified in empirical analyses. 
Gutierrez et al. (2007) find similar results by allowing for structural breaks in the cointegration 
relationship between the two time series, for a large panel of 31 U.S. States for the period 1960-2000. 
Previous empirical contributions, mainly based on time-series analysis, lead to different conclusions 
and, as previously said, end up rejecting the PVM and generally finding evidence of divergence 
between the present value of future cash flows and the market price of farmland (Falk, 1991; Clark et 
al., 1993a; Engsted, 1998). 

7. Concluding remarks 

The analysis of the determinants of land value in the U.S.A. is a relevant field of study given the 
importance of farm real estate on the farm balance sheet and because of the great number of policy 
issues that it raises. We adopted the PVM framework, according to which the value of land is the 
capitalized value of the current and future stream of earnings from owing that asset. In order to 
consider a more homogeneous dataset, only 12 States of Midwestern U.S.A., for which more reliable 
agricultural data are available, were included in the analysis and only cropland was taken into 
consideration when collecting data on land value and cash rents. Our model also introduced population 
density among the regressors as a proxy for urban pressure, in order to take into account the effects 
that competing alternative land uses might exert. 

Although a fairly large body of literature has been devoted to this topic, spatial econometrics has 
only found limited application in this empirical field so far. We believe, as the ESDA confirmed, that 
data on land values are characterized by effects of spatial dependence that should be taken into 



 

 

account in estimating an econometric model that aims at explaining the factors that contribute to land 
value formation. In order to do so, we chose to estimate a model in which a spatial lag of the 
dependent variable is included. The temporal dynamics is described as an autoregressive process of 
first order and a spatiotemporal lag was also introduced so as to make our model a truly time-space 
dynamic model. 

The results that we obtained confirm the existence of significant spatial and temporal dependence 
and therefore the need to take them into consideration. Our estimate of the long-run elasticity of 
cropland value with respect to net cash rents, which is close to unity, is an element favorable to the 
validity of the PVM assumptions. This is a result that has found only limited support in the literature 
on land values, which generally ends up rejecting the PVM. Gutierrez et al. (2007) find similar 
evidence in favor of the theoretical model when allowing for structural breaks in the time series. 
However, further checks on the estimated elasticity of 1.2 are required before drawing a conclusion on 
this. The effect of cash rents in determining land values is smaller than that of population density, 
which also has a positive significant effect on cropland values. Both variables appear to exert the 
biggest part of their influence on land values in about 20 years, as the computation of long-run 
elasticities revealed, even if about half of that impact is already reached after about 6 years. 

The inclusion of government payments among the regressors was motivated by the fact that they 
can also be considered as an expected future stream of earnings from owning land, with relevant 
policy implications. However, the obtained results so far do not allow to draw final conclusions on the 
impact of agricultural support programs on cropland values. As suggested by the vast literature on this 
topic, a deeper reasoning and more disaggregated data are needed in order to provide a better model 
specification, capable of taking into account the evolution of U.S. agricultural policy in time and the 
differences between various instruments of government intervention. 

Future developments of this analysis should therefore follow two main paths. On the 
methodological point of view, the econometric model that was estimated is one that has not been 
widely employed in empirical analyses, because of the complexity of its estimation and the lack of 
already available routines in econometric software. No standard and widely known testing procedures 
are available yet. Nevertheless we consider running precise specification testing as a priority in order 
to complete the present analysis. Moreover, following Gutierrez et al. (2007), the model should also be 
tested for structural breaks that may occur in the time series. This is not only a methodological 
extension of the study because detecting and allowing for structural breaks may also serve as a means 
for adding to the analysis of government support intervention. A deeper reasoning on the role of 
government payments and the best way to treat available data on policy intervention is also a path that 
should be followed.  
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