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Abstract 

This article presents an integrated modelling framework (IMF) at field scales including a 
bio-economic farm optimization model. It is applied on two contrasting Austrian landscapes 
to analyze climate change and CAP policy reform impacts in 2040. Changing policies reduce 
farm gross margins by -36% and -5% in the two landscapes respectively. Climate change 
increases gross margins and farms can reach pre-reform levels on average. Climate induced 
intensification such as removing of landscape elements and increasing fertilization can be 
moderated by an agri-environmental program (AEP). However, productivity gains from 
climate change increase the opportunity costs of AEP participation. 
 

Keywords 

integrated land use modelling, agri-environmental program, climate change, landscape 
 

1 Introduction 

Knowledge on farm level adaptation is crucial to understand climate change impacts and 
economic responses even at larger scales of spatial aggregation (Reidsma et al., 2010). Hence, 
different methodologies have been employed to analyze climate change impacts and farm 
adaptation. They can be categorized in (i) qualitative and quantitative surveys, (ii) 
econometric analyses of observed land use and farm management data, and (iii) integrated 
land use modelling (ILM). For instance, Olesen et al. (2011) surveyed 50 experts on 13 
environmental zones in Europe to study observed and expected climate change impacts as 
well as farm adaptation for major field crops, grapevine, and grasslands. In contrast, Reidsma 
et al. (2009) used econometric methods to analyze data from the European farm accountancy 
network by estimating climate change impacts and adaptation behavior for different farm 
types and regions. Both surveys and econometric methods can provide important insights in 
farm level adaptation but also face limitations. Surveys among farmers and agricultural 
experts can generate empirical evidence in developing theories and hypothesis but can be 
expensive. Experts may have limited knowledge on actual farm behavior and are prone to 
substitute observations with their normative expectations (Mignolet et al., 2004). Such biases 
can be reduced by surveying farmers directly. Periodical repetition can reveal differences 
between stated and actual behavior. However, individual farmers may also lack knowledge 
about regional circumstances apart from their detailed farm level experiences. Both experts 
and farmers are exposed to overestimate recently observed events for the future while 
neglecting others (Mitter et al., 2014). They may be conservative in envisioning fundamental 
system changes over time periods of several decades and may struggle with the high 
complexity and uncertainty of agricultural systems. Econometric analysis can overcome some 
of these limitations, if data of long time series (i.e. 30 years) and structural stratification is 
available. Predictive positive quantitative models may be applied despite their limited 
suitability for ex-ante assessments under expected circumstances outside the observed range. 
This can be challenging in climate change impact studies, where future changes likely are 
more fundamental than those observed in the past. In contrast, ILM on climate change 
impacts and adaptation usually consist of economic land use optimization models and bio-
physical process models on plant and livestock production. Consequently, ILM usually rely 
on interdisciplinary knowledge about systems behavior, which is often modelled by 
integrating disciplinary concepts, data, and scenarios. Such demanding prerequisites enable 
ILM to overcome two major constraints of surveys and econometric methods, i.e. ex-ante 
analyses of systems with high complexity and uncertainty.  
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ILM climate change impact and adaptation studies are available at different spatial scales 
from field (e.g. Lehmann et al., 2013) to regional (e.g. Henseler et al., 2009; Leclère et al., 
2013) and global levels (e.g. Nelson et al., 2013). Global as well as large-scale regional 
studies usually model price effects from climate change endogenously. The representation of 
market effects is usually accompanied by coarse spatial resolution of bio-physical impact 
characteristics and superficial representation of farm management and endowments. 
Consequently, large scale studies hardly take farm level adaptation into account so far. On the 
opposite, field level studies can consider high resolution bio-physical impact data to evaluate 
the effectiveness of farm adaptation measures. As in the case of large scale models, lacking 
interactions at the farm level, such as competition for land, labor and capital resources 
aggravate conclusions on the economic efficiency of adaptation from a farm perspective 
(Gibbons and Ramsden, 2008). 

Consequently, the farm level appears superior for the representation of land use choices 
in ILM studies on climate change adaptation and complement global, regional, and field level 
studies. ILM at the farm level is synonymous to bio-economic farm modelling (cf. Janssen 
and van Ittersum, 2007). A number of different studies on climate change impacts and farm 
adaptation are available already at this scale. They are applied to analyze responses of 
different farming systems (e.g. Kanellopoulos et al., 2014; Dono et al., 2013), which shall 
support farm and policy decision making. Other applications focus on inter-annual farm 
processes and decision making such as scheduling of field work (e.g. Aurbacher et al., 2013). 
Another group of studies applies bio-economic farm modelling to analyze climate change 
effects on land use and the environment at the landscape to small regional level (e.g. Briner et 
al., 2012). Consequently, these studies aggregate farm level model output, either from all 
individual or selected farms in a small region. A high spatial resolution provides interfaces for 
landscape level analysis such as on landscape appearance and biodiversity conservation. 

Climate change impact analysis for Austria indicate moderate increases of average 
producer rents up to 2040 due to more favorable production conditions and autonomous 
adaptation in agriculture (Schönhart et al., 2013). However, the impacts are expected to be i) 
heterogeneous with winners and losers among regions and farm types, ii) uncertain due to 
unpredictable changes in precipitation patterns and extreme events, and iii) unclear with 
respect to environmental consequences such as on biodiversity and landscape appearance. 
Agricultural land use change is among the major drivers for visual landscape appearance, 
environmental quality, and biodiversity, which are affected, experienced, and measured 
mainly at field to landscape levels. 

In this article, we present an integrated modelling framework (IMF) at the farm level, 
which has already been applied in studies on the effectiveness of agri-environmental 
programs in an Austrian case study landscape (e.g. Schönhart et al., 2011a). The IMF is 
applied on two contrasting grassland and cropland dominated landscapes in Austria and 
extended to analyze climate change impacts on farm production and adaptation as well as on 
the abiotic and biotic environment. The IMF shall address issues i-iii raised above and shall 
support analyses of landscape appearance, biodiversity conservation, and abiotic 
environmental impacts from agricultural adaptation measures at field, farm and landscape 
level. Section 2 explains the method, data as well as applied climate and socio-economic 
scenarios. In this article, we consider the climate impacts on the maintenance of orchard 
meadows and the participation in agri-environmental programs. Section 3 presents results, 
which are discussed in section 4. Section 4 also provides an outlook on open research 
questions and policy conclusions. 
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livestock production, agri-environmental management measures, and subsidies from the 1st 
and 2nd pillar of the Common Agricultural Policy (CAP). Gross margins on annual farm 
production activities are calculated from the standard gross margin catalogue (BMLFUW, 
2008) and literature surveys. Annuities for production activities with investment character are 
calculated for permanent crops. Farm labour requirements are based on a detailed set of 
standard working units (Handler et al., 2006) and literature reviews. A digital soil map 
(Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft, 
BFW), and a digital elevation map (Bundesamt für Eich- und Vermessungswesen, BEV) 
describe the field characteristics of the case study landscapes. Automatic pixel segmentation 
and semi-automatic classification have been applied to identify discrete landscape elements 
(for a description of this method, see Schauppenlehner et al., 2010).  

2.3 Case Study Landscapes 

The research project follows a case study approach in two spatially proximate landscapes 
of the Austrian Mostviertel region (rectangles with ~1,500 ha each). The region has been 
chosen due to its variety in land uses, the importance of landscape elements such as orchard 
meadows, and its pronounced land use intensity and climate gradients. It is characterized by 
an intensively managed rather homogeneous cropland dominated landscape in the North and a 
more extensively managed grassland dominated heterogeneous cultural landscape in the 
South. Parts of the South are also located in the montane zone where afforestation may 
threaten traditional agricultural land uses and landscapes. Consequently, the case study region 
features a large diversity of farms in terms of farm type (mixed farms, arable farms and 
livestock farms), farm size, and production intensity. In order to cover the total area in each 
case study landscape, farms have been selected if they cultivate at least one field in one of the 
two landscapes. Therefore, 231 farms are included in total. 

2.4 Climate and Socio-Economic Assumptions 

Simulations in the IMF are based on scenarios to anticipate changes in climate, market 
prices, and policy instruments. These climate scenarios influence the bio-physical output of 
EPIC, while the socio-economic scenarios only impact the choices of production and 
management measures in FAMOS[space]. To analyze climate change impacts, we apply three 
contrasting climate change scenarios and four underlying socio-economic scenarios. The 
climate change scenarios with daily resolution are based on a statistical climate model and 
historic trend observations (Strauss et al., 2013). A significant temperature trend has been 
observed for the past, which is extrapolated to about +1.6°C for Austria in 2040. Scenarios on 
precipitation have been developed to capture the inherent uncertainties (see Table 1). Scenario 
CS01 imitates past precipitation patterns, CS05 and CS09 include +20% and -20% in absolute 
annual precipitation sums, respectively, with daily precipitation patterns identical to past 
observations.   

 
Table 1. Scenario overview (own construction, AEP = agri-environmental program). 
Scenario 
name 

AEP CAP reform Climate change in 2040 
∆ temperature (°C) ∆ precipitation (%) 

REF_2008 no no    0.0 0% 
BAU_2008 yes no    0.0 0% 
REF_2040 no yes    0.0 0% 
BAU_2040 yes yes    0.0 0% 
CS01 yes yes + 1.6 0% 
CS05 yes yes + 1.6 +20% 
CS09 yes yes + 1.6 -20% 
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Climate change puts pressures on orchard meadows in all three scenarios compared to 
both BAU_2040 as well as BAU_2008. It may be the result of increasing productivity, which 
also increases the opportunity costs of extensive land use and landscape element maintenance. 
With respect to land use intensity, the AEP reduces nitrogen application rates by about 10% 
for both landscapes in BAU_2008 compared to REF_2008 and similar patterns are modelled 
for phosphorus. Even more drastic relative differences are modelled between REF_2040 and 
BAU_2040 (-42% in the North; - 9% in the South from REF_2040). Fertilizer intensity is 
increasing in all three climate change scenarios at similar rates. Higher yields demand more 
nutrients and higher land productivity leads to increasing marginal benefits of inputs such as 
fertilizers. In the three climate scenarios CS01, CS05 and CS09, fertilizer application remains 
between REF_2008 and BAU_2008 levels indicating a moderate intensification pressure 
compared to today.  

4 Discussion and Outlook 

The results from changes in socio-economic market and policy conditions, such as the 
introduction of an AEP or implementation of the CAP reform, as well as climate change 
indicate considerable land use changes in two Austrian landscapes, which may be typical for 
other Austrian regions as well. The introduction of the AEP only slightly increases farm 
incomes on average although the area participating in the AEP increases about three-fold in 
both landscapes. It leads to maintenance of orchard meadows as well as reduction in fertilizer 
application. On the contrary, the total area within AEP remains well below expected values. It 
may either be the result of overestimated crop yields in the model or of insufficient 
representation of variable costs. Both should be further investigated to prove the AEP 
effectiveness. Increasing productivity from climate change increases the opportunity costs of 
AEP participation and maintenance of orchard meadows despite the currently unclear impacts 
of future heat stress on orchard trees in the region. Its effects are similar to those of increasing 
market prices and likely challenge the design and affordability of AEPs in the future. Such 
programs should therefor capture changing market and productivity conditions to maintain 
participation rates. Model results, available studies (e.g. Schönhart et al., 2011c) and 
observations all indicate insufficient policy mechanisms to maintain orchard meadows in the 
long run, which calls for more effectiveness in policy design. 

With respect to climate change, there is little effect between the three different scenarios. 
Temperature is more likely limiting production today than precipitation in both case study 
landscapes. The aggregated bio-physical yield changes (Figure 2) from the climate change 
scenarios are much more different than the economic effects especially in the northern 
landscape. This indicates effective farm adaptation via alternative crop choices and intensity 
levels although further adaptation measures need to be included in the IMF such as the 
transition from agriculture to forestry, irrigation, or alternative soil mechanization (e.g. cover 
crops and minimum tillage). Farm level adaptation is subject to the awareness of farmers on 
climate change, the availability of adaptation measures and adaptation costs. All of those can 
be affected by CAP measures such as in rural development programs. Concerning the 
modelled effects from the CAP reform, further research is required to analyse and explain the 
severe losses in gross margins for some farms. One reason may be the high historical 
premiums resulting from bull fattening during the reference period. Nevertheless it indicates 
the considerable farm level impacts of some subsidy regimes and calls for careful policy 
design for both the introduction and phase-out of policies. 

The results on climate change impacts confirm other studies. Schönhart et al. (2013) 
reviewed the literature and provided spatial analysis on climate change impacts for the 
territory of Austria. Their results show similar impacts concerning productivity gains on 
grassland and moderate losses on cropland. This is expected to increase farm incomes in those 
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parts of Austria with currently growth-limiting temperature levels and sufficient precipitation 
patterns. However, such model results are based on important assumptions including 
sufficient autonomous adaptation by farmers, limited impacts from extreme weather events, 
infestation from pests and diseases, or the effectiveness of CO2-fertilization. With respect to 
agricultural markets, increasing productivity can even lead to income losses if its relative 
changes are beyond those of other producers in international markets and if disadvantageous 
farm structures decrease international competitiveness (cf. Hermans et al., 2010). Further 
research is necessary to study such market effects at the international level despite the 
considerable challenges with respect to data.  

Quantitative analyses of complex systems require integrated modelling tools. If spatially 
explicit, they offer multiple opportunities to pursue inter-disciplinary research questions. In 
this article, we described and applied an IMF, which has been developed to analyze climate 
change impacts and adaptation for two Austrian case study landscapes. Its novel feature 
compared to other bio-economic farm models is its spatially explicit representation of fields 
belonging to an individual farm. This improves the representation of mechanization costs (e.g. 
distances of fields to the farm, size of fields), yields, and environmental outcomes. The 
vector-based landscape data in the IMF enables analysis of landscape structure and field scale 
intensity. Both are major determents of landscape appearance and biodiversity and are 
impacted by climate change, as has been shown by the research results. Further research 
efforts include the development of model interfaces in order to analyze indirect biodiversity 
impacts from climate change and to include methods in landscape planning such as 3-
dimensional landscape visualizations  (e.g. Schauppenlehner and Amon, 2012), which provide 
new opportunities for the quantification of landscape values. 
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