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Abstract 
This article studies the influence of risk on farms’ technical efficiency levels. The analysis 
extends the order-m efficiency scores approach proposed by Daraio and Simar (2005) to the 
state-contingent framework. The empirical application focuses on cross section data of Catalan 
specialised crop farms from the year 2011. Results suggest that accounting for production risks 
increases the technical performance. A 10% increase in output risk will result in a 2.5% 
increase in average firm technical performance. 
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1. Introduction 
 
Proper measurement of a firm’s efficiency and productivity requires an appropriate 
characterization of the stochastic environment in which production takes place. Inadequate 
characterization of the stochastic environment may lead to uncertainty being incorrectly 
attributed to efficiency and productivity differences (Chambers and Quiggin, 2000; O’Donnell 
et al., 2010). Production under uncertainty can be characterized by differentiating outputs 
depending on the state of nature in which they are realized (Chambers and Quiggin, 1998 and 
2000). This characterisation leads to a stochastic technology based on a state-contingent input 
correspondence. Conventional empirical representations of stochastic technologies are 
restrictive by requiring non-substitutability between state-contingent outputs. This restriction 
implies that producers can only respond to changes in the production environment by 
changing input use, but not reallocating production among different states of nature. Standard 
stochastic production functions are based upon the assumption that the state-contingent 
vector of outputs is generated by a vector of inputs that are controlled by the producer and a 
random variable beyond the control of the producer (Chambers and Quiggin, 2002, 2006).  
The state-contingent input correspondence approach developed by Chambers and Quiggin 
(2000) does not impose this restriction, as it assumes that the vector of state-contingent 
outputs is chosen ex-ante, though realized ex-post. The state-contingent framework has been 
shown to yield more precise efficiency measures relative to approaches that impose this 
restriction.  

Previous literature has provided ample evidence that economic agents are not neutral 
to risk. To the extent that economic decisions are influenced by risk preferences, risk implicit 
in the state-contingent output distribution may have an impact on the efficiency with which 
economic agents operate (Battese et al., 1997). We measure this impact through Daraio and 
Simar’s (2005) nonparametric frontier model, that allows for the influence of external factors 
on firm efficiency ratings. In frontier analysis, nonparametric efficiency measures are based 
upon the assumption that all observed units belong to the attainable production set. As a 
result, super-efficient outliers can have an influential impact on these envelopment estimators. 
Robustness can be increased through a trimming process that results in the frontier not 
enveloping all data points. Daraio and Simar (2005) provide a probabilistic formulation of a 
robust nonparametric order-m efficiency model, being m the trimming parameter, that allows 
for the influence of environmental variables that cannot be controlled by the producer, but 
that shape the outcome of production. Daraio and Simar (2005) proposal allows determining 
whether the environmental variable promotes or reduces efficiency. However, the Daraio and 
Simar (2005) approach does not adequately capture the stochastic conditions under which 
production takes place. The state-contingent framework proposed by Chambers and Quiggin 
(2000) can be implemented using standard tools of efficiency analysis when ex-ante outputs are 
known. As a result, Daraio and Simar’s (2005) framework can be extended to examine 
efficiency and productivity in truly state-contingent terms. The extended model will not only 
be robust to outliers, but also to incorrect interpretations of uncertainty effects as efficiency 
effects.  

The objective of this research article is to assess the influence of production risk on the 
technical efficiency of a sample of farms by extending the approach developed by Daraio and 
Simar to the state-contingent production technology.  The empirical application focuses on 
cross-section data of arable farms in Catalonia, Spain. Eliciting information on ex-ante state-
contingent outputs is a highly complex process that can be subject to subjectivity regarding 
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beliefs on the crop yield distribution. Therefore, this paper generated order-m efficiency scores 
that are more robust to the presence of outliers. The efficiency scores were derived for each 
sample farm and the role of risk on farm performance was assessed.  
 
 
2. Methods 
 
Within the state-contingent framework, uncertainty is represented by a set of states of nature 
Ω  from which nature makes a draw. Random variables in the production process can be 
measured as maps from the set of states Ω  to the reals.  Assume a single random output firm. 
The random output can be represented as a vector y Ω

+∈   , where { }:sy y s= ∈Ω , being sy  
the realized (ex post) value of the random output variable y  if nature chooses state s . The 

non-random input vector is denoted by Nx +∈ . Denote by ∈ ⊂ rZ   the vector of 
environmental factors that are exogenous to the production process, but may explain part of it.    

The stochastic production technology is represented by {: ( , ) :x yψ =  } can produce x y . 
The boundaries of ψ  are an indicator of the efficiency with which firms operate. Under the 
influence of environmental variables, the technology is defined as { }: ( , ) :  can produce =  

z x y z x yψ . 

Note that for all z∈ , zψ ψ⊆ . The interpretation of the technology is as follows: before 
knowing the realization of the state of nature, the producer chooses ( , )x y  from within the 
technology set, thus making a decision about nonstochastic inputs and stochastic outputs. 
After this selection has been made, nature makes a choice from ∈Ωs . For agricultural 
technologies, ∈Ωs  is usually related to weather conditions. It is important to note that ex-
post realizations of random outputs are chosen by nature, and not by the producer (Chambers 
et al., 2011). Our article hypothesizes that the risk that firms face in the process from selecting 
the ex-ante output to obtaining ex-post realized production can have an impact on technical 
efficiency ratings, and we capture this risk through the environmental variable. Thus, in our 
particular application, ( )z z s= . 

Efficiency scores are usually approximated through radial distance from each 
production unit to the production frontier. Along these lines, the Farrell-Debreu output-
oriented efficiency score for a firm operating with { }: ( , ) :  can produce =  x y x yψ  can be defined 

as { }( , ) sup ( , )x y x yλ λ λ ψ= ∈  , being ( , )x yλ   the proportionate increase in outputs that can 
be achieved using the same technology and input combination. Since it is unknown, an 
estimator of the production frontier is required. Commonly used nonparametric estimators 
such as the Data Envelopment Analysis (DEA) initiated by Farrell (1957), or the Free Disposal 
Hull (FDH) proposed by Deprins et al. (1984) are based on the envelopment approach, which 
assumes that all observed units belong to the attainable set. While DEA and FDH have their 
own strengths and weaknesses, some scholarly papers have argued that FDH provides a better 
data fit than DEA (Tulkens, 1993; Vanden Eeckout et al., 1993). FDH usually outperforms 
DEA in technical efficiency measurement, because it constructs a technology that envelops the 
data more closely than DEA. Our analysis stems from the FDH technology set estimator 
which can be expressed as { }ˆ : ( , ) ,  1,...,N

FDH i ix y y Y x X i nψ +Ω
+= ∈ ≤ ≥ =

 


, where 1,...,i n=  
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denotes the observation number. The empirical problem consists of estimating the frontier and 
the efficiency scores from a random sample of production units { }( , ) 1,...,i iX Y i nχ = = .  

Cazals et al. (2002) have proved that, under free disposability of inputs and outputs, a 
probability function of  ( , )X Y  on  Ω

+ +× 

N , ( , ) Pr( , )= ≤ ≥ H x y X x Y y , can be used to 
characterize the production frontier. ( , )H x y  represents the probability of dominating a unit 
that operates at the level ( , )x y  and can be decomposed as ( , )H x y =  
Pr( ) Pr( )Y y X x X x≥ ≤ ≤ =

 ( ) ( )XY X
S y x F x


 . The survival function ( )
Y X

S y x


  represents the 

attainable output set for a producer using no more than the input level x , and can be used to 
characterize the Farrell-Debreu output efficiency measure as follows:   
 

{ }( , ) sup ( ) 0
Y X

x y S y xλ λ λ= >


  . (1) 

 
A nonparametric estimator of efficiency can be provided by plugging an empirical version of 

( )
Y X

S y x


  in (1):  

 

{ },
ˆ ˆ( , ) sup ( ) 0n Y X n

x y S y xλ λ λ= >


  , (2) 

 

where n is the sample size  and 1
,

1

( , )ˆ ( )
( )

n
i ii

nY X n
ii

X x Y y
S y x

X x
=

=

Γ ≤ ≥
=

Γ ≤
∑
∑







  is an estimator of 

( )
Y X

S y x


 , being (.)Γ  an indicator function. Expression (2) has been shown by Cazals et al. 

(2012) to coincide with the FDH estimator of efficiency that is given by:  
 

,

1,...,
ˆ ( , ) max min

i

s i
n si X x

s

Y
x y

y
λ

= Ω≤

   =       


, (3) 

 
where s denotes the state of nature.  

FDH efficiency estimates are very sensitive to the presence of outliers (i.e., atypical 
observations substantially different from the rest of the data). By definition, nonparametric 
estimates of the production frontier are extreme values of the dimensional space of inputs and 
outputs. This implies that the presence of super-efficient outliers may significantly affect the 
shape of the FDH frontier and efficiency computations. Cazals et al. (2002) and Daraio and 
Simar (2005) propose a generalized version of the FDH nonparametric approach, the order- m 
frontier, that is more robust to extreme observations.  The method uses, as a benchmark to 
evaluate a firm’s performance, the expected value of the best practice among m peers randomly 
drawn from the population of firms that use input levels up to x. For a given input level x  in 
the interior of the support of X , consider m i.i.d. random variables iY , 1,...,i m=  generated 

by the conditional distribution function ( )
Y X

S y x


  and define 

{ }( ) ( ', ) ' , , 1,...,N
m ix x y x x Y y i m+Ω

+Ψ = ∈ ≤ ≥ =

 
 , where y  is generated though ( )

Y X
S y x


 . The 
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maximum radial expansion for ( , )x y  to reach the FDH of the random set of firms ( , )ix Y  can 
be represented as: 
 

{ } ,

1,...,1,...,
( , ) sup 0 ( ) max min s i

m m si m
s

Y
x y y x

y
λ λ λ

= Ω=

   = > ∈Ψ =       



  . (4) 

 
 The estimator of the expected order-m efficiency score is then defined as:  
 

,
0

ˆ ˆ( , ) ( ( , ) ) 1 (1 ( ))  m
m m Y X n

x y x y X x S uy X x duλ λ
∞
 = Ε ≤ = − − ≤  ∫ 



   . (5) 

 
Since the reference against which efficiency of a production unit is measured is the average of 
the best among m peers, the frontier is less extreme than the FDH. Noteworthy is the fact that 
the order-m efficiency score is not bounded by 1. Efficiency values greater than 1 indicate that 
the firm is more efficient than the average of randomly drawn m peers.  

The model presented above can be extended to allow for exogenous factors that are 
not under the control of the firm, but that influence its performance levels. Under this setting, 
any random event is conditioned to =Z z . The joint distribution function of ( , )X Y  

conditional on =Z z , is defined as: ( , ) =H x y z  Pr( , )≤ ≥ =

X x Y y Z z  and its 

decomposition as ( , ) =H x y z  Pr( , ) Pr( , )≥ ≤ = ≤ = =

Y y X x Z z X x Z z

,
( , ) ( )X ZY X Z

S y x z F x z


 .  The Farrell-Debreu output efficiency estimate becomes:   

 

{ }, ,
ˆ ˆ( , ) sup ( , ) 0z
n Y X Z n

x y z S y x zλ λ λ= >


  ,  (6) 

 

where 1
, ,

1

( , ) (( ) / )ˆ
( ) (( ) / )

n
i i i ni

nY X Z n
i i ni

X x Y y K Z z h
S

X x K Z z h
=

=

Γ ≤ ≥ −
=

Γ ≤ −
∑
∑







  is an estimator of 
,Y X Z

S


, 

{ }( , , ) 1,...,= =i i iX Y Z i nχ is a sample of n iid observations, (( ) / )i nK Z z h−  is a kernel 

function and nh  is the bandwidth. As shown by Daraio and Simar (2005), equation (6) 
coincides with the conditional FDH estimator of efficiency, that is given by:  
 

,

1,...,,
ˆ ( , ) max min

i i

s iz
n si X x Z z h

s

Y
x y z

y
λ

= Ω≤ − ≤

   =       


,  (7) 

 
where h is the chosen bandwidth.  

The conditional order-m frontier can be defined as  {( ) ( ', )z N
m x x y +Ω

+Ψ = ∈ 

}' , , 1,...,ix x Y y i m≤ ≥ =

 , where y  is generated through  ,Y X Z
S


.  The maximum expansion for 
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( , )x y  to reach the conditional FDH of the random set of firms ( , )ix Y  1,...,i m= , can be 
represented as: 
 

{ } ,

1,...,1,...,
( , ) sup 0 ( ) max min s iz z

m m si m
s

Y
x y y x

y
λ λ λ

= Ω=

   = > ∈Ψ =       



  .  (8) 

 
 The expected order-m efficiency score is defined as:  
 

,
0

ˆ ˆ( , ) ( ( , ) ) 1 (1 ( , ))  m
m m Y X Z

x y z x y z X x S uy X x Z z duλ λ
∞
 = Ε ≤ = − − ≤ =  ∫ 



   . (9) 

 
Due to the multivariate nature of Y X

S


 and ,Y X Z
S


, there are no simple expressions of  

ˆ ( , )m x yλ   and ˆ ( , )m x y zλ . As shown by Daraio and Simar (2005), the integrals in (5) and (9) 
can be evaluated using a simple Monte Carlo algorithm that is described below. First, for a 
given x , draw a sample of size m with replacement among those iY  such that iX x≤  and 

denote the sample by ( )1 ,...,b mbY Y  . Second, compute , ,

1,...,1,...,
( , ) max min s i bb

m si m
s

Y
x y

y
λ

= Ω=

   =       



 . Third, 

repeat the first and second steps for 1,...,b B= , where B  is large.  Finally, compute the 

average of the bootstrapped efficiency estimates: , 1

1ˆ ( , ) ( , )B b
m n mb

x y x y
B

λ λ
=

≈ ∑


  . This Monte-

Carlo algorithm changes slightly when we need to compute the conditional order-m efficiency 
score.  Specifically, in the first stage, we need to draw a sample of size m with replacement and 

with a probability 
1

(( ) / )
(( ) / )
i

n
jj

K z z h
K z z h

=

−

−∑
, among those iY  such that iX x≤ . The rest of the 

process does not change.  
Conditional order-m efficiency estimators are based upon the smoothing in the 

estimation of function  , ,
ˆ ( , )

Y X Z n
S y x zλ


 . Our bandwidth selection process follows Daraio and 

Simar (2005) two stage approach. In the first stage, the likelihood cross-validation criterion, 
using a k-Nearest Neighbour method is used to optimize the estimation of the density function 
of Z . In a second step, the dimensionality of y  and x  is considered in order to compute 

, ,
ˆ ( , )

Y X Z n
S y x zλ


 , which is done by expanding the bandwidth obtained in the first stage by a 

factor of ( 1/( ))1 Nn − +Ω+ .  
The impacts of Z  on the production process are studied using a nonparametric 

regression that investigates the relationship between the ratio of the conditional and 

unconditional efficiency scores ,

,

ˆ ( , )
ˆ ( , )
m n

m n

x y z
x y

λ
λ





 and Z . More specifically, a local linear regression 

method is adopted to model dependence between these two variables. Details on the 
nonparametric linear regression methodology can be found in Fan and Gijbels (1996). Such 
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nonparametric approach allows for non-monotonic impacts of exogenous variables on 
efficiency levels, i.e., it allows the impacts of these variables to change depending on the level 
of Z . 
 
 
3. Data 
 
A survey of 190 farms in Catalonia specialized in the production of arable crops was 
conducted in 2011, prior to the growing season. Farms were considered as specialized in arable 
crops if their arable crop income (cereals, oilseeds and protein crops) represented at least 80% 
of their global income. Data obtained from the survey included farm’s planned input use (land, 
crop-specific inputs, farming overheads, paid and unpaid labor, and capital). Eight input 
variables were defined and used in the analysis: pesticide use expressed in total liters of active 
ingredients ( 1x ); organic and chemical fertilizers, expressed in kilos of nitrogen ( 2x ), total land 
planted to arable crops (measured in hectares, 3x ), expenses in seeds ( 4x ), energy ( 5x ) and 
contract work in euros  ( 6x ), total quantity of paid and unpaid labor (in hours, 7x ), as well as 
the capital used in the production process (expressed as the replacement value in euros, 8x ).  
 Data on the ex-ante cereal, oilseed and protein crop (COP) production were also 
collected. The elicitation process was designed as a trade-off between complexity and accuracy 
of responses. While providing survey respondents with detailed information on different crop-
growing scenarios may increase response accuracy, the amount of information that one should 
provide would make the survey too long and time-consuming, as well as too expensive. For 
example, by indicating the number of frost days during the growing season, one would not be 
projecting a detailed enough scenario, as frost days are not equally damaging during the plant 
growth cycle. Technicians from Unió de Pagesos, the largest farmer association in Catalonia 
and the group in charge of conducting the survey, recommended obtaining point estimates 
under bad, normal and ideal growing conditions without projecting specific scenarios.  

As argued by Unió de Pagesos, yields under normal growing conditions are usually a 
reference to producers, who typically provide, as a response, an average yield over a sufficiently 
long period of time (10 years approximately). Once these yields are identified, it is relatively 
easy for farmers to provide yield data under bad and ideal conditions. Three output variables 
were thus created: output under bad, normal and ideal growing conditions ( 1y , 2y , 3y ) and they 
were measured in euros, using the expected price under normal market conditions. As noted 
above, while the producer picks the vector ( x , 1y , 2y , 3y ) from within the technology set, 
nature has the role to choose the output that is being realized ex-post. Output risk is 
approximated by the standard deviation of the ex-ante output (i.e., output under the different 
crop growing conditions) expressed on a per hectare basis. It is important to note that our data 
collection method provides an estimate of the farmers’ perception of the production function, 
and not of the actual state-contingent production function as this is not observed. A subjective 
estimate of the magnitude of output standard deviation is known by producers at planting 
time. Table 1 presents summary statistics for the variables of interest.  

The difficulties associated to measuring ex-ante outputs are relevant. Our survey 
obtains these based on subjective notions that create potential for identification biases. For 
example, one farmer’s normal state may be another’s bad state. Difficulties inherent in 
obtaining accurate estimates of state-contingent yields are comparable to the hypothetical-bias 
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problem in contingent-valuation analyses. This leads to differences in values drawn up under a 
hypothetical and a real setting (List and Shogren, 1998). In order to reduce this bias, calibration 
techniques have been proposed. Some of these techniques involve warning survey respondents 
about the quality of the responses. This is the case of the “cheap-talk” technique that has been 
shown to reduce unknowledgeable respondents’ bias (List, 2001; Cummings and Taylor, 1999), 
but to be less successful with experienced respondents (List, 2001; Lusk, 2003). Our 
respondents had 29 years of experience in cultivating arable crops, and thus they can be 
considered as experienced. The fact that interviewers were technicians from Unió de Pagesos 
who know the farm well is expected to have reduced farmers’ incentives to provide biased 
responses.  

 
Table 1. Descriptive statistics of the variables used in the empirical application 

Variable  Variable  
Description 

Mean Standard 
deviation 

Minimum Maximum 

1y  Output under bad 
growing conditions (€) 30,444.95 33,117.37 1,630.20 246,000.00 

2y  Output under normal 
growing conditions (€) 50,737.46 51,625.90 3,003.00 396,000.00 

3y  Output under ideal 
growing conditions (€) 70,111.90 74,725.74 3,912.48 576,000.00 

1x  Active ingredients 
applied (liters) 84.89 117.05 0.00 749.70 

2x  Nitrogen application 
(kg) 9,658.31 12,217.45 82.44 95,085.47 

3x  Land (ha) 74.54 72.59 7.51 500.00 
4x  Seeds (€) 3,851.66 3,745.45 104.89 24,800.00 
5x  Energy (€) 4,891.20 5,328.66 0.00 41,250.00 
6x  Contract work (€) 2,901.19 4,013.90 0.00 26,820.00 
7x  Labour (hours) 549.90 655.42 0.00 3,775.96 
8x  Capital replacement 

value (€) 133,453.09 126,276.96 0.00 813,000.00 
z  Production risk 263.75 93.29 70.96 603.99 

 
 
4. Results 

 
In the application of the order-m efficiency model, a trimming parameter of the frontier equal 

to m=10 was selected. The results of the estimation of unconditional ( ),
ˆ ( , )m n x yλ    and 

production risk conditional ( ),
ˆ ( , )m n x y zλ   order-m technical efficiency are found in Table 2.  

The average unconditional and conditional technical efficiency scores take values of 0.84 and 
0.98, respectively. This suggests, first, that producers in the sample generate 16% and 2% less 
output than technically feasible in the unconditional and conditional setting. Second, these 
results show that consideration of production risk yields higher technical efficiency scores, i.e. 
that risk has a positive effect on technical performance. Hence, the more risky the production 
environment, the higher the motivation to produce efficiently. By improving technical 
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performance in response to a more risky production environment, farmers build up larger 
buffers in good states of nature and are better prepared for the bad states of nature. Hence, by 
improving the performance, farmers compensate for the higher risks. These results are 
compatible with Chambers et al. (2011) and Skevas et al. (2012) who find that higher risk levels 
lead to better technical performance.  

 
Table 2. Frequency distribution of Daraio and Simar (2005) order-m efficiency scores 

Efficiency 
interval 

order-m efficiency estimates 

,
ˆ ( , )m n x yλ   ,

ˆ ( , )m n x y zλ   
0 0.1λ< <  0 0 
0.1 0.2λ≤ <  0 0 
0.2 0.3λ≤ <  1 0 
0.3 0.4λ≤ <  5 0 
0.4 0.5λ≤ <  11 0 
0.5 0.6λ≤ <  15 0 
0.6 0.7λ≤ <  16 2 
0.7 0.8λ≤ <  19 5 
0.8 0.9λ≤ <  21 8 
0.9 ≤ λ  102 175 
Mean score 0.8380 0.9786 
 

 
The positive influence of risk on technical efficiency is formalized through the 

smoothed nonparametric regression line of ,

,

ˆ ( , )
ˆ ( , )
m n

m n

x y z
x y

λ
λ





 , the efficiency ratio, over z

presented in Figure 1. The marginal impact of risk on the efficiency ratio is not constant: 
Figure 2 shows that for risk levels up to 200 euros per hectare, the marginal impact of 
production risk on technical efficiency is positive but declining. Hence, below risk levels of 200 
euros per hectare an additional euro of risk increases technical efficiency, although the 
marginal improvement becomes smaller. However, for risk levels above 200 euro per hectare, 
the marginal impact on performance sharply increases with risk before levelling off at the risk 
level of almost 500 euro per hectare. This result suggests that, the higher the production risk 
perceived by farmers, the higher their effort to improve their technical efficiency.  However, at 
very high risk levels, i.e. risk levels beyond 500 euros per hectare, farmers do not put effort 
into further improving their technical efficiency. This result may imply that farmers have 
reached the limit of technical efficiency improvement, or concluded that further efforts into 
improving efficiency are not economically feasible. 
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Figure1. Smoothed local linear regression: effect of z
 
on ,

,

ˆ ( , )
ˆ ( , )
m n

m n

x y z
x y

λ
λ





  

 
 

 
 
In order to get a better grasp of the relevance of the magnitudes in Figures 1 and 2, the 

elasticity of ratio ,

,

ˆ ( , )
ˆ ( , )
m n

m n

x y z
x y

λ
λ





 with respect to Z has been computed at each data point. Results 

are presented in Figure 3. The average elasticity takes the value of 0.25, which implies that a 
10% increase in output risk will result in a 2.5% increase in firm technical performance. As can 
be appreciated, there is an increase in elasticity as output risk increases, which suggests that the 
bigger the production risk, the greater the impact on efficiency changes. While average 
elasticity is 0.25, risk levels on the order of 500 euros involve elasticities around to 0.9. 

Conditional efficiency estimates depend on the choice of the bandwidth through the  
likelihood cross validation criteria as described in the methodological section. Table 3 presents 
a sensitivity analysis to the choice of the bandwidth along the lines of Daraio and Simar (2005). 
Conditional order-m efficiency scores are computed for h’=h*1.2 and h’=h*0.8, where h is the 
bandwidth determined by the data-driven method. Mean values are presented in the table. 
Results are remarkably stable to the bandwidth choice. While not presented in the paper, but 
available upon request, the shapes of Figures 1 and 2 do not change with the bandwidth 
selection. Table 3 further shows sensitivity of efficiency scores to changes to the value of m 
(i.e., the number of random units or peers considered in the definition of the technology set). 
Results are robust to the change in the size of the peer group.  
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Figure 2. Smoothed local linear regression: marginal impact of z
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Figure 3. Elasticity of ,
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Table 3. Efficiency estimates sensitivity to the choice of the bandwidth and to the 
choice of the order of the frontier 
 

,
ˆ ( , )m n x y zλ   

' *0.8h h=  0.9837 
'h h=  0.9786 
' *1.2h h=  0.9731 

10m =  0.9786 
20m =  0.9944 
30m =  0.9983 

Note: h is the bandwidth determined by the data-driven method  
 
 
4. Concluding remarks 
 
This article studies the influence of risk on farmers’ technical efficiency. We use nonparametric 
order-m efficiency scores allowing for the influence of environmental variables as proposed by 
Daraio and Simar (2005). While we recognize that other variables may affect efficiency ratings, 
the curse of dimensionality of nonparametric estimators recommends against increasing the 
model size. The Daraio and Simar (2005) framework is extended to examine efficiency in a 
state-contingent production technology. The use of the state-contingent framework to account 
for the stochastic conditions under which production takes place entails an improvement 
compared to conventional approaches. Previous research has shown that the use of the state-
contingent approach leads to enhanced efficiency estimates. Results suggest that the risk 
perception by economic agents increases the efficiency with which they operate. More 
specifically, an increase in output risk on the order of 10% will result in a 2.5% increase in firm 
technical performance. Nonparametric regression analysis of the influence of risk on efficiency 
ratings indicates that, while relatively low efficiency levels motivate slow increases in efficiency, 
high risk levels accelerate improvements in farm performance. A direction for future 
extensions of this work lies in comparing our results with robust efficiency measures derived 
using bootstrapping techniques along the lines of Simar and Wilson (2000). 
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