INTRODUCTION

In discussing the price of food in the context of growth, food is usually associated with agriculture. Thus the problem becomes that of determining the price of agriculture relative to that of non-agriculture along the growth path. This however does not reveal the whole story since food purchased by the consumer contains non-agricultural inputs such as processing, packaging, transportation, refrigeration, as well as food consumed in restaurants. The quantity of the non-agricultural inputs and their prices affect the consumer price of food. The non-agricultural inputs of food are not forced on the consumer, but rather demanded by him. Consequently, it is of interest to analyse the determinants of the agricultural and non-agricultural inputs of food. To simplify the discussion all the non-agricultural inputs of food are aggregated. The utility function of a representative consumer is written as

\[u = U[F(A, Q), N] \]

This function is weakly separable in food (F) and non-food (N). Food has an agricultural component, A, and a non-agricultural component, Q. The ratio \(q = Q/A \) can serve as a measure of quality of food. The expenditure on food is decomposed according to the two components, that received by agriculture \(P_A A \) and that received by non-agriculture \(P_N Q \), where \(P_N \) is the price of the non-agricultural product. Thus, the food budget is:

\[B_F = P_A A + P_N Q \]

The average price paid by the consumer for food, per unit of A, to which we refer as the consumer price is:

\[P_F = B_F/A = P_A + P_N q \]

and its ratio to the price received by farmers is
\[R_A = \frac{P_F}{P_A} = 1 + pq \]
(4)

where \(p \equiv \frac{P_N}{P_A} \).

This is also equal to the ratio \(B_F/P_{AA} \), the reciprocal of the share of the farmer in the consumer’s dollar. The price of food in terms of the non-agricultural product is:

\[R_N = \frac{B_F}{P_N} = \frac{1}{p} + q \]
(5)

It is clear that \(R_A \) and \(R_N \) both increase with the quality of food but are affected differently by the price ratio \(p \). The remainder of the analysis will examine the behaviour of \(p, q, R_A \) and \(R_N \) in the process of growth. That requires an analysis of the product market along the growth path.

We begin by providing some empirical evidence. The share of agriculture in the retail cost of food in the US is published by the USDA. The value for 1983 was 33 per cent. Dunham places this value in a perspective by stating that it ‘... was trended down gradually since the mid forties when the share was nearly 50 per cent.’\(^2\) A casual review of the time series of this share indicates considerable fluctuation. The trend can be attributed, at least in part, to a positive income response of \(q \) which implies that the income elasticity of \(Q \) is larger than that of \(A \). The fluctuations can be attributed to fluctuations in prices. A study by Houston (1979) for the UK covering 1963–75 concludes that ‘The relative stability of these marketing costs, despite the trend towards increased consumption of processed and convenience foods, suggest that improvement in marketing techniques and advances in food technology have to some extent offset the cost of additional services provided by services and manufacturing.’\(^3\) This conclusion can be interpreted as an increase in \(q \) and a decline in \(p \), thus leaving \(R_A \) fairly stable. Some scattered information is provided by Mittendorf and Hertag (1982) for developing countries. The information shows a wide spread across countries and the sample is small. Nevertheless the conclusion is suggestive: ‘the data indicate that the share of marketing costs in relation to the consumer price is higher in the developed countries (due to considerable higher labor costs and higher levels of processing packaging and presentation of food items)’.\(^4\) Again, a suggestion of an increase in \(p \) and \(q \) with level of economic development.

An analytic formulation of the farm-retail price spread was provided by Gardner (1975). The essence of his model consists of a production function for food consisting of two inputs, \(A \) and \(Q \) in terms of our notation. There is a demand function for (aggregate) food which depends on the price of food and a shifter. The model is closed by assuming supply functions for \(A \) and \(Q \) and imposing the competitive conditions. In this framework the composition of food is determined by the producers, and the consumer has to buy the food provided at the profit maximising combination of \(A \) and \(Q \). This assumption is restrictive and as indicated
Agricultural growth and the price of food

above it is alleviated in the present analysis. Besides this, we deal with developments along a growth path.

The discussion begins with the derivation of the demand functions for the two components of food as well as for non-agriculture. The supply side is the standard two sector model. The short-run equilibrium is determined within a competitive framework of a closed economy. We deal with a closed economy, although food is tradable, because the world is a closed economy, and this fact determines the major developments in the variables of interest. The growth path is then generated by treating individually and exogenously some of the major determinants of growth: capital accumulation and different kinds of technical change. This is followed by some consequences of removing the assumption of competitive factor markets. In view of the space limitation, the analysis is largely graphical, based on some general known properties and concentrates on essentials.

DEMAND

The problem of the representative consumer is to maximise (1) subject to the budget constraint: \(B = \left[p_A A + p_N Q \right] + p_N N = B_F + B_N \)

Using obvious notations, the first order conditions are:

\[
U_A = U_F F_A = \lambda p_A, \quad U_Q = U_F F_Q = \lambda p_N, \quad U_N = \lambda p_N
\]

(6)

The utility function is weakly separable, so that the composition of food is independent of the level of \(N \). This is seen from

\[
\frac{U_Q}{U_A} = \frac{F_Q}{F_A} = \frac{p_N}{p_A} \equiv p
\]

(7)

Thus the demand for \(A \) and \(Q \) conditional on the food budget are:

\[
A(p_A, p_N, B_F) = A(p, B_F/p_A)
\]

\[
Q(p_A, p_N, B_F) = Q(p, B_F/p_A)
\]

(8)

The expression to the right of the equality sign utilises the homogeneity property of the demand functions. The solution is illustrated in Figure 1. Point \(E \) indicates the optimal choice at the budget level \(B_F/p_A = F_1 \). The income consumption curve ICCF is drawn to illustrate two assumptions: (1) Both components, \(A \) and \(Q \) are normal; (2) the income elasticity, with respect to \(B_F \), of \(A \) is smaller than one and that of \(Q \) is larger than one. Thus, the quality of food \(q \), increases with the food budget. Turning to (4) and (5) it is seen that under (i) increasing expenditure on food, and (ii) constant prices, both \(R_A \) and \(R_N \) increase.
The increase in the price of food, either in terms of A or N, reflects the consumer preference for quality.

The unconditional demand functions can be obtained by finding the optimal food budget and using it in (8). Alternatively, they can be obtained directly. Those are presented below in the Hicks compensated form with the signs of the partial derivatives attached:

\[
\begin{align*}
A(p_A, p_N, u) &= (p, u) \\
q(p, ?) &= (? +) \\
N(+, -) &= (- +)
\end{align*}
\]

Since all the three components are normal goods, each of these functions is monotone increasing in u. Thus we can substitute A for u and write

\[
Q(p, A), \quad N(p, A)
\]

These functions are drawn in Figure 2. They represent the loci of optimal points achieved at price ratio p and increasing levels of expenditures. The income effects are summarised in the first two columns of Table 1.

Changes in prices have inter and intra group effects. A decline in \(p_A\) reduces the price of F relative to N and thus the intergroup substitution effect is in favour of F. A decline in \(p_N\) decreases the prices of F and N but the price of F declines less because Q is only one component of F. Therefore the intergroup substitution of a decline of \(p_N\) is in favour of N. The sign of the intergroup price effect is shown in Table 1 in the first two lines and last two columns.

A decline in p calls for an intra food substitution in favour of Q(F), where Q(F) is the quantity of Q used in F. This intra food substitution is summarised in line Q(F) of Table 1. Lines Q and A are the sum of the
Agricultural growth and the price of food

Agricultural growth and the price of food

A

\[A(p, u), \bar{N}(p, u) \]

\[+ + - + \] \hspace{1cm} \text{(11)}

and those are clearly signed.

THE ECONOMY IN THE SHORT RUN

Under the space limitation, it is most efficient to analyse the process within a neoclassical framework of a two sector model of a closed

inter and intra group substitutions. While A is signed, Q is not because of the contradicting signs in the response of F and Q(F). Consequently, the price effects of q, R_A and R_N are also ambiguous.

It is possible to place some boundaries on the effects. Since the price of Q and N is the same, we can view Q + N = \bar{N} as a compositive good, and write the utility function as \(U(A, \bar{N}) \), resulting in demand functions.

\[U(A, \bar{N}) \]

\[+ + - + \] \hspace{1cm} \text{(11)}

and those are clearly signed.

THE ECONOMY IN THE SHORT RUN

Under the space limitation, it is most efficient to analyse the process within a neoclassical framework of a two sector model of a closed

inter and intra group substitutions. While A is signed, Q is not because of the contradicting signs in the response of F and Q(F). Consequently, the price effects of q, R_A and R_N are also ambiguous.

It is possible to place some boundaries on the effects. Since the price of Q and N is the same, we can view Q + N = \bar{N} as a compositive good, and write the utility function as \(U(A, \bar{N}) \), resulting in demand functions.

\[U(A, \bar{N}) \]

\[+ + - + \] \hspace{1cm} \text{(11)}

and those are clearly signed.

THE ECONOMY IN THE SHORT RUN

Under the space limitation, it is most efficient to analyse the process within a neoclassical framework of a two sector model of a closed

inter and intra group substitutions. While A is signed, Q is not because of the contradicting signs in the response of F and Q(F). Consequently, the price effects of q, R_A and R_N are also ambiguous.

It is possible to place some boundaries on the effects. Since the price of Q and N is the same, we can view Q + N = \bar{N} as a compositive good, and write the utility function as \(U(A, \bar{N}) \), resulting in demand functions.

\[U(A, \bar{N}) \]

\[+ + - + \] \hspace{1cm} \text{(11)}

and those are clearly signed.
economy and thereby build on some known results. The model consists of constant returns to scale sectoral production functions:

\[Y_i = F_i (K_i, L_i, T_i) \quad i = 1, 2 \]

where \(K_i \) and \(L_i \) are sectoral employment of capital and labour respectively and \(T_i \) is a measure of technology. Sector 1 is agriculture and 2 is non-agriculture. It is assumed that factors are fully employed and their supply is exogenously given. This latter assumption only simplifies, but does not modify the qualitative results. Finally, it is assumed that the competitive conditions are met in that factors of production are paid their value marginal productivities. Under these assumptions, the production possibilities of the economy are given by the transformation curve in Figure 3a. The relationship between the (supply) price and points on the transformation curve is summarised by the supply function for agriculture in Figure 3b. Note that \(p = p_N/p_A \), hence, when the economy specialises in agriculture \((y_1 = \bar{y}_1) \) \(p \) is at its minimum level \(\bar{p} \) and conversely, when the economy specialises in non-agriculture \((y_2 = \bar{y}_2) \) the price is at its maximum, \(\bar{p} \). Also, \(p \) increases with \(y_2 \) and declines with \(y_1 \).

Next we turn to the demand functions. Combining the two equations in (11), the demand can be summarised by:

\[x_1 = D(p, x_2) \quad \text{(12)} \]

where \(x_1 \) is demand per caput of \(A \), and \(x_2 \) is demand per caput of \(N \). It is assumed that \(D(p, 0) = 0 \), as \(p \to 0, D \to 0 \), and as \(p \to \infty, D \to \infty \).

Under these assumptions there is a unique stable short-run equilib-
Agricultural growth and the price of food

617

rium. That is, there exist a price \(p_c \) such that \(x_1(p_c, y_2(p_c)) = y_1(p_c) \). This is illustrated by point \(E \) in Figure 3. The determination of the equilibrium can be demonstrated in Figure 3b. For this, we evaluate \(x_1 \) only at points \([p, y_2(p)]\), where \(y_2(p) \) is the production per caput at price \(p \). At \(\hat{p} \), \(y_2(\hat{p}) = \hat{y}_2 > 0 \) but \(y_1(\hat{p}) = 0 \), hence \(x_1[\hat{p}, y_2(\hat{p})] - y_1(\hat{p}) > 0 \) implying an excess demand for \(x_1 \). The opposite occurs at \(p \) where \(y_2(p) = 0 \) and therefore \(x_1(p, 0) = 0 \), hence excess supply. As \(\partial y_1(p)/\partial p < 0 \), \(\partial y_2(p)/\partial p > 0 \), \(\partial x_1/\partial p > 0 \), \(\partial x_1/\partial x_2 > 0 \), the excess demand declines with \(p \), and \(E \) is achieved where the excess demand is zero. Having determined \(p \), \(A \), and \(N \), the demand functions facilitate decomposition of \(N \) into \(N \) and \(Q \) and thus the determination of food, \(F(Q, A) \). This outline of a graphical proof can be repeated in each of the following cases to determine the displacement in the equilibrium position.

The analysis can be generalised to the case where the factor supplies in the economy are increasing functions of their prices. Such an extension will add technical details but will not affect the qualitative results. 5

CAPITAL ACCUMULATION

By capital accumulation is meant an increase in the capital labour ratio for the economy as a whole. An accumulation facilitates an expansion of the production possibilities of the economy and thereby causes a positive effect for all the commodities.

The evaluation of the price effects of accumulation requires an assumption on the capital intensity. It is assumed here that agriculture is the labour-intensive sector. That is, at any price regime, \(k_1 < k_2 \), where \(k_i = K_i/L_i \). Under this assumption, the Rybezynek proposition indicates that under constant prices capital accumulation leads to an expansion of the output of the capital-intensive sector and to a decline of the output of the labour-intensive sector. Thus, at the initial prices capital accumulation causes an increase in the demand \(x_1 \) due to the increase in income, and a decline in the supply \(y_1 \), hence excess demand. A new equilibrium is achieved at a higher price for \(y_1 \), that is a decline in \(p \). Consequently the equilibrium output of \(y_1 \) will increase if the income effect is stronger than the substitution effect and will decrease if the converse holds. The decline in \(p \) supplements the income effect for \(N \) and its equilibrium output will increase. Finally, in view of the price change, the quality of food, \(q = Q/A \) is likely to increase. This reflects two effects, a stronger income elasticity for \(Q \) than for \(A \), and a substitution in favour of \(Q \) due to the decline in \(p \). However, the total quantity of \(Q \) depends on the equilibrium consumption of food. If \(A \) does not decline, then \(Q \) will increase. If \(A \) declines, it is possible that food consumption will decline even through its quality will improve. Still it is expected that the income effect will dominate.

The foregoing analysis shows a decline in \(p \), the price of the capital-intensive product. How does it affect the relative price of food? By (5) \(R_N \), the price of food in terms of \(N \), increases. However, by (4) the change
in R_A, the price of food in terms of A, is ambiguous. Since p declines and q is likely to increase, the outcome will depend on the relative changes. If the income effect is weak, it is possible that the change in price will dominate and R_A will decline. The change in p depends on the supply and demand elasticities and will not be discussed here. It is however likely that the income effect on q is strong and dominant and R_A will increase.

TECHNICAL CHANGE

Technical change (TC) is basically the engine of growth. However it is not a simple concept. It takes various forms and at least in part is endogenous in the economic system. The best we can do in the limited space is to illustrate some leading cases. Such cases are selected to illuminate the importance of the income and price elasticities of demand. We begin with Hicks neutral technical (HNTC) of equal rates in the two sectors. Figure 4 presents transformation curves for two technologies, 0 and t. Point E is the initial equilibrium. Under HNTC of equal rates in the two sectors, the supply price at H, located at the intersection of the outer transformation curve and a ray through E, is the same as at E. However, at this price and the new production possibilities the demand is given by point C. Thus, there is an excess supply of A and p increases until a new equilibrium point E_1 is reached. It can be shown that this point is located between H and C. The location of C, and therefore E_1 to the right of H reflects the fact that the income elasticity of A is less than 1.

![FIGURE 4 HNTC of equal rates](image)

The increase in p makes food cheaper relative to N. Hence, the consumption per caput of food increases due to the income and price effects. Yet, both effects are not sufficient to increase consumption of A at the rate of the TC. Consequently, the consumption of $N + Q$ increases by more than the rate of the TC and the income effect
dominates the price effects. This is also true for the two components, N and Q, individually, implying an increase in q. The final outcome is an increase in pq and therefore an increase in RA. On the other hand the sign of the change in RN is ambiguous. But again, the increase in quality may dominate the change in price thus leading to an increase in RN.

Another extreme case is that of TC in one sector only, say in agriculture. Figure 5 illustrates HNTC in agriculture alone. At point B the resource allocation is the same as at the initial point because it produces the same quantity y₂ under constant technology. However, due to the TC the relative price of agriculture declines (p increases) and hence point H representing the initial price PE is to the left of B. The demand under the initial price is at C. The new equilibrium point will be in the segment BC when the price elasticity of demand for A is less than 1. It will be in the segment BH if the elasticity is larger than 1. Empirically, such elasticity is smaller than one. In this case HNTC in agriculture alone leads to an increase in p and in the consumption of both commodities. The increase in the consumption of non-agriculture reflects the income effect, since the economy becomes more affluent due to the TC. It can produce a larger output of food with fewer resources and the resources saved can be diverted to non-food production. Note, however, that this result depends crucially on the demand elasticity, for if the demand for A were elastic, such a change would have reduced the equilibrium consumption of non-agriculture.

The effect of this change on q depends on the strength of the intrafood substitution between A and Q. Since p increases, such a substitution reduces q. However, this may be dominated by the income effect on q. If q does not decline then RA increases and if q does not rise RN declines. The other possibilities are ambiguous.

The foregoing two cases of HNTC facilitates a more general analysis. To show this, let T₁ and T₂ be the rates of the HNTC in the two sectors, then the consequences of such a change can be analysed in two steps: (1) Equal rates: Assume that T₁ > T₂, then analyse first the system under
the assumption of $T_1 = T_2$. (2) Differential rate: Now analyse under the assumption of TC in agriculture alone at a rate $T_1 - T_2$. Over a long swing, it is likely that even if the rates are not the same, the common part is dominating and therefore the results obtained for equal rates of HNTC are more relevant.

DISEQUILIBRIUM ANALYSIS

The foregoing analysis dealt exclusively with equilibrium points. When dealing with the growth of agriculture, the assumption of equilibrium might be too restrictive for the analysis to be empirically pertinent. The low income elasticity for A forces resources to flow out of agriculture as the economy expands. For reasons not discussed here, this flow particularly in the labour market, is not fast enough in order to equate wages across sectors and consequently the agricultural wage is lower than that of non-agriculture. In this sense the economy is not operating efficiently. This is illustrated in Figure 6 by point H, which is not on the frontier. The demand curve that passes through H determines the price which clears the product market at H.

![Figure 6](image)

FIGURE 6 Convergence to equilibrium

Assuming that labour migrates to the sector with the higher wage, there will be a flow of labour out of agriculture. This will cause a decline of A and an increase of N as shown by the arrows in Figure 6 which illustrates convergence to E on the transformation curve. Note that such a process of convergence to the frontier increases the consumption possibilities and as such has a positive income effect on A, Q and N. In addition to the income effect there is also a price effect. The partial effect of the off-farm migration is to narrow the wage gap and thereby to increase the cost of production in A and to decrease it in N. Assuming that competition prevails within each sector, the average cost is equal to the product price (zero profit) and therefore p declines. Such a decline in p facilitates the absorption of the expanding production in non-agricul-
Agricultural growth and the price of food

The positive income effect and the price effect increase \(Q \) whereas \(A \) declines and therefore \(q \) increases. However, the sign of the change in \(R_A \) is ambiguous whereas \(R_N \) increases.

The foregoing analysis assumed constant resources and technology. Once this assumption is removed, we will have a simultaneous movement toward the transformation curve and a movement of the curve itself. This is the reason that the process takes so long to complete.

AN EMPIRICAL ANALYSIS

The foregoing analysis suggests positive relationship between \(q, R_A, R_N \) and between income and it is somewhat less definite on the net effect of \(p \). Thus, the empirical analysis can test the qualitative results and supplement them. The analysis is of the US data for the period 1946–82. Such data were readily available. It would be interesting to repeat the analysis on other data.

The analysis consists of computing regressions of \(\ln q \) (Lq) and \(\ln R_A \) on \(\ln p \) (Lp), \(\ln y \) (Ly) where \(y \) is disposable income per caput deflated by the consumer price index, and an interaction term (Lp) (Ly). The average compounded rates of change of these variables are: \(p = 0.0116, q = 0.00295, y = 0.021 \) and \(p_A A/B_F = -0.0035 \). Thus, the terms of trade of agriculture deteriorated at an annual rate of about 1 per cent whereas \(q \) increased at the rate of about 0.3 per cent. In terms of Table 1 it means that the effect of the TC dominated that of capital accumulation and of flow of resources in its effect on the terms of trade. This statement should be qualified to allow for the role of the US as an exporter of food. However, this qualification is not that simple and conspicuous and is avoided here. In terms of \(q \) we see that its growth is consistent with the HNTC of equal rates and not inconsistent with the others.

The regressions are summarised in Table 2. Two regressions are presented for each of the two dependent variables, with and without the interaction term. The contribution of the interaction term is particularly important for the Lq regression where it improves the fit and eliminates the serial correlation. The price elasticities were positive at the low income level. They gradually declined and became negative at about the mid-point of the sample. The average for the period was \(-0.047\) whereas the extreme values were \(-0.30\) and \(+0.24\).

Recall that an increase in \(p \) reduces the relative price of food and thereby affects positively \(Q \) and \(A \). This is the intergroup effect. It can be shown to be proportional to the income elasticities of \(Q \) and \(A \) and therefore, by our assumption it increases \(q \). The intrafood substitution due to an increase in \(p \) leads to a decline in \(q \). Since we obtain positive price elasticities for the low income years it implies that at such income levels the intergroup effect dominates the intrafood substitution. That is, the main effect of an increase in \(p \), which implies a lower price for food, is
TABLE 2

<table>
<thead>
<tr>
<th>Regression no.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Lq</td>
<td>Lq</td>
<td>LR_A</td>
<td>LR_A</td>
</tr>
<tr>
<td>R^2</td>
<td>.38</td>
<td>.66</td>
<td>.96</td>
<td>.976</td>
</tr>
<tr>
<td>DW</td>
<td>.78</td>
<td>1.46</td>
<td>1.02</td>
<td>1.59</td>
</tr>
<tr>
<td>Constant</td>
<td>.70 (3.7)</td>
<td>-.88 (7.2)</td>
<td>.786 (8.5)</td>
<td>.254 (3.7)</td>
</tr>
<tr>
<td>LP</td>
<td>-.014 (.2)</td>
<td>2.25 (5.7)</td>
<td>.56 (18.4)</td>
<td>1.55 (7.0)</td>
</tr>
<tr>
<td>Ly</td>
<td>.15 (3.5)</td>
<td>.35 (7.6)</td>
<td>.088 (4.0)</td>
<td>.173 (6.7)</td>
</tr>
<tr>
<td>(Ly) (LP)</td>
<td>—</td>
<td>-.80 (5.8)</td>
<td>—</td>
<td>-.350 (4.5)</td>
</tr>
<tr>
<td>EP: average</td>
<td>-.014</td>
<td>-.047</td>
<td>.56</td>
<td>.544</td>
</tr>
<tr>
<td>SD</td>
<td>0</td>
<td>.19</td>
<td>0</td>
<td>.08</td>
</tr>
<tr>
<td>Ey: average</td>
<td>.151</td>
<td>.12</td>
<td>.088</td>
<td>.074</td>
</tr>
<tr>
<td>SD</td>
<td>0</td>
<td>.13</td>
<td>0</td>
<td>.059</td>
</tr>
</tbody>
</table>

Notes:
Numbers in parentheses are t ratios of coefficients to the left.
DW: Durbin-Watson statistic.
EP: Elasticity of the dependent variable with respect to price.
Ey: Elasticity of the dependent variable with respect to income.
Average: Average for the period.
SD: Standard deviations of the computed elasticities.

to increase food consumption. The change in the quality due to intrafood substitution is less important. The situation is reversed as income increases.

The income elasticity of quality was stronger in the early period and declined gradually and become negative in the last three years. This trend reflects the increasing price of quality (p) and indirectly the increase in income. Thus, at high income and high price of quality, the intra food substitution dominated and that called for a decline in q.

The second set of regressions reports the response of R_A to changes in p and y. In this set, the interaction, though significant, contributes less to the simpler regression (3), but still as in the previous case reduces the serial correlation. Nevertheless, there is little difference in the average elasticities between the two regressions. Thus, the elasticity of R_A is about 0.55 with respect to p and 0.075 with respect to income. That indicates that R_A increased with p and y. Recall that R_A is the reciprocal of the share of agriculture in the food budget, and this declines with p and y. This of course reflects the changes in q.

NOTES

1I am indebted to Bruce Gardner, Dennis Dunham and Ulrich Koester for assistance in locating the empirical evidence. The study was supported by the International Food Policy Research Institute and by a grant from BARD - The United States-Israel Binational Agricultural Research and Development Fund.
2Dunham, p. 10.
3Houston, p. 59.
Agricultural growth and the price of food

Mittendorf and Hertäg, p. 31.
In this case, the slope at the transformation curve is not equal to the supply price. However, the supply function is still positively sloped and the equilibrium determination according to Figure 3b is still valid (Mundlak 1984).
Sources of data: \(R_A \) was derived from Dunham. The remaining variables are obtained from USDA, Agricultural Statistics, different volumes.

REFERENCES

Houston, George, 'The Behavior of Prices and Margins of Selected Food Products in the United Kingdom', OECD, Paris, July 1979 (mimeograph).