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1 Introduction

Agent-based computational economics (ACE) is the computational study of economies mod-

elled as evolving decentralized systems of autonomous interacting agents.2 A key concern

1To appear in Computational Economics, Special Issue on Programming Languages. For additional
related materials, see http://www.econ.iastate.edu/tesfatsi/. Corresponding author: L. Tesfatsion.

2ACE is a specialization to economics of the basic artificial life paradigm [8]. See [16] for a brief survey
of work in both artificial life and ACE.

1



of ACE researchers is to understand the apparently spontaneous appearance of global reg-

ularities in economic processes, such as the unplanned coordination of trading activities in

decentralized market economies that economists associate with Adam Smith’s invisible hand.

The challenge is to explain how these global regularities arise from the local interactions of

autonomous agents channeled through actual or potential economic institutions rather than

through fictitious coordinating mechanisms such as imposed equilibrium conditions.

The modelling of evolutionary economies has of course been pursued by many previous

researchers. See, for example, the numerous interesting studies surveyed by Witt [18] and

Nelson [11]. In addition, as detailed in Friedman [4], economists have recently been focus-

ing on the potential economic applicability of evolutionary game theory in which a fixed

number of strategy types reproduce in direct proportion to their relative fitness. Neverthe-

less, tractability issues have generally forced the use of relatively simple types of models

which either directly posit aggregate behavioral relations or impose strong restrictions on

the potential variability of behavior across agents; see Kirman [7].

Exploiting the recent advent of more powerful simulation tools, ACE researchers such as

Duong [2], Epstein and Axtell [3], Tesfatsion [15], and Vriend [17] have been able to extend

this previous evolutionary work in three key ways. First, ACE models generally consist of

heterogeneous agents who determine their interactions with other agents and with their en-

vironment on the basis of internalized data and behavioral rules. Second, a broad range of

agent interactions is typically permitted, with predatory and cooperative associations taking

center stage along with price and quantity relationships. Third, the evolutionary process is

generally expressed by means of genetic (recombination and/or mutation) operations acting

directly on agent characteristics. These evolutionary selection pressures result in the contin-

ual creation of new modes of behavior and an ever-changing network of agent interactions.

The present paper focuses on the particular ACE model developed by Tesfatsion [15] to

study the endogenous formation and evolution of trade networks. This model, referred to

as the trade network game (TNG), extends to an economic setting an earlier model ([1],

[13]) combining evolutionary game play with endogenous partner selection. In the TNG,

successive generations of resource-constrained traders choose and refuse trade partners on

the basis of continuously updated expected payoffs, engage in risky trades modelled as two-

person games, and evolve their trade strategies over time.
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The primary purpose of the paper is to present a C++ platform that implements the

TNG. This TNG platform is supported by SimBioSys, a general class framework for evolu-

tionary simulations developed by McFadzean [10] that has a number of capabilities important

for ACE modelling.

In particular, the TNG platform permits traders to be instantiated as autonomous en-

dogenously interacting software agents (tradebots) with internal behavioral functions and

with internally stored information that includes identifiers for other tradebots. The tradebots

can therefore display anticipatory behavior (expectation formation), and they can commu-

nicate with each other at event-triggered times. The tradebots use these and other platform

capabilities to determine their trade partners and to evolve their trade behavior. The mod-

ular design of the TNG platform permits experimentation with alternative specifications for

market structure, trade partner matching, trading, expectation formation, and trade behav-

ior evolution. All of these specifications can potentially be grounded in tradebot-initiated

activities. The TNG platform thus facilitates the general ACE study of trade networks.

The general features of SimBioSys are outlined in Section 2. The basic TNG model is

outlined in Section 3, making use of the particular TNG module specifications detailed in

[15]. Section 4 describes how the TNG has been implemented with the support of SimBioSys.

Section 5 illustrates how the TNG implementation can be used to study evolutionary TNG

outcomes at three different levels of analysis: individual trader attributes; trade network

formation; and social welfare. Concluding remarks are given in Section 6.

2 SimBioSys: An Evolutionary Simulation Framework

SimBioSys is a general C++ framework3 for evolutionary simulations developed by Mc-

Fadzean [10]. The framework permits a user to construct a virtual spatial environment

inhabited by any number of evolving populations of autonomous agents. The following

discussion emphasizes the particular features of this framework that have been used to im-

plement the TNG.

SimBioSys is designed to handle simulations comprising the following four features:

3C++ is a popular object-oriented extension of the C programming language; see, for example, Lipp-
man [9]. The discussion below does not presume any prior knowledge of C++.
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• A world defining the virtual environment where the simulation occurs;

• Populations of autonomous agents inhabiting the world;

• Programs driving the behavior of the agents;

• Genetic mechanisms emulating natural selection which act on the agents’ programs.

Agents are entities capable of displaying some kind of active autonomous behavior. A popu-

lation of agents of a particular species is represented as a population of computer programs

inhabiting a world. This world can comprise other agent species as well as passive objects

such as geographically distributed trails, obstacles, and energy sources (food). Agent inter-

actions with each other and with passive objects are driven by their programs. Specifically,

the program of each agent takes the agent’s perceptions as input and computes an intention

for the agent that the world resolves into an action. The evolutionarily significant activities

of the agents are birth, death, interactions, migration, and sexual reproduction (genetic re-

combination and mutation) among agents of each species. These activities are represented

as operations acting on the agents’ programs.

As a simple example, consider how SimBioSys has been used to evolve the foraging

behavior of an isolated ant. The behavior of each ant in an initial ant population is driven

by a program that implements a finite state machine, i.e., a state transition table that

determines an intended action for each possible state of the world. The fitness of each ant is

measured by the degree to which, in some prespecified number of time steps, it successfully

traverses a winding, broken, increasingly difficult trail in a cellular grid environment. Each

ant can sense whether or not the cell just ahead of it constitutes part of the trail. After

sensing the cell ahead of it, the ant must take one of four possible actions: move forward one

cell; turn right (without moving); turn left (without moving); or do nothing. The programs

of the initial ant population are randomly determined. After each ant in the population

completes a prespecified number of attempts to traverse the trail, the average fitness of each

ant is computed. The programs of the most successful ants are then retained while the

programs of the less successful ants are replaced with genetic variations (recombinations and

mutations) of more successful programs. The process then repeats.
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The static structure of SimBioSys is expressed through its class definitions and relation-

ships and the dynamic structure of SimBioSys is expressed through its hierarchical simulation

cycles. These aspects of SimBioSys will now be described in turn.

2.1 SimBioSys Class Definitions and Relationships

The programming language C++ is organized around the concepts of class and class deriva-

tion. A class is a module that contains data members, possibly of different types, together

with a set of member functions that operate on this data. A class that contains member func-

tions whose implementation is incomplete is called an abstract base class. An abstract base

class is thus an incompletely implemented class from which more completely implemented

classes can be derived.

For example, one might construct an abstract base class, Insect, whose member functions

express general characteristics commonly shared by insects (e.g., foraging behavior) without

providing an implementation for these characteristics. Instances of classes derived from

Insect, such as Ant and Wasp, could then inherit the member functions of Insect but also

provide specialized implementations for them. For example, Ant and Wasp might implement

distinct foraging behaviors.

SimBioSys is a C++ class library comprising both abstract base classes and special-

ized derived classes for constructing worlds, autonomous agent populations, programs, and

genetic mechanisms. The static relationships among the various SimBioSys classes are de-

picted in Figure 1. The label “HasA” or “HasSome” on a directed arrow connecting a class

A to another class B indicates that class A includes one or more derived class instances of

class B as data members; and the label “IsA” on a directed arrow connecting a class A to

another class B indicates that A is derived from B.

— INSERT FIGURE 1 ABOUT HERE —

At the highest level, SimBioSys represents the simulation as an abstract base class,

bioSimulation. This class contains member functions and data for the construction of a

world, one or more populations of agents that inhabit the world, and instruments for the

design and control of the user interface.
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An abstract base class, bioWorld, is responsible for the physics governing the virtual

environment of the simulation. Derived class instances of bioWorld implement specific en-

vironments, such as a rectangular grid or a torus. An abstract base class, bioPopulation,

identifies general data and operations required for the initial construction and genetic re-

production of the agent populations that inhabit the world. For example, bioPopulation

includes the size and average fitness of a population as data members, and it defines member

functions for setting the size of the population and for sorting the population by fitness.

An abstract base class, bioThing, represents all of the inhabitants of the world. These

inhabitants are either passive objects or active autonomous agents. The bioThing class

identifies certain general operations common to all inhabitants and provides for the storage

and retrieval of the current positions and orientations of the inhabitants.

An abstract base class, bioAgent, is a derived bioThing class that represents the subset

of world inhabitants who are agents. This class sets general protocols for communication

and interaction among agents, and between agents and passive objects. Each derived class

instance of bioAgent constructs a program that allows the represented agent to perceive its

local environment and to act in response to this perception. The program thus acts as the

agent’s brain. An abstract base class, bioProgram, sets general protocols for the communi-

cation between an agent and its program. One advantage of separating the function of the

program into the class bioProgram is the ability to substitute different implementations, such

as finite state machines, artificial neural networks, and Turing machines, without changing

any other aspect of SimBioSys.

Finally, an abstract base class, bioGType, identifies the basic recombination and mu-

tation operations used in the genetic reproduction of agent populations. These operations

act directly on agent genotypes, which are intrinsic characteristics of agents expressed as

bit strings.4 Derived class instances of bioGType implement operations for specific geno-

typical forms, either haploid (single bit string form) or diploid (double bit string form).

A class derived from bioAgent, bioPType, stores an instance of bioGType that is used by

bioPopulation to construct an agent’s program before the agent is added to the world.

4A bit string is a sequence of 0’s and 1’s: for example, (1, 0, 1, 1). A bit string is thus structurally analogous
to a biological chromosome. See Goldberg [6] for a detailed discussion of the use of bit string expressions in
genetic algorithms.
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int main () {
Initialize world and agent populations;
For (B = 0,...,BMAX-1) { // Enter the breeding cycle loop.

For (E = 0,...,EMAX-1) { // Enter the environmental cycle loop.
For (A = 0,...,AMAX-1) { // Enter the action cycle loop.

Do agent actions;
}
Environmental step;

}
Breeding step;

}
Return 0;

}

Table 1: Pseudo-Code for the SimBioSys Simulation Cycles

2.2 SimBioSys Simulation Cycles

As depicted in Table 1, a SimBioSys simulation run consists of the execution of a hierarchy of

cycle loops. At the top level, a breeding cycle loop is executed. Each breeding cycle consists

of an environmental cycle loop and a breeding step, and each environmental cycle consists of

an action cycle loop and an environmental step.

During each action cycle, each agent perceives its local environment, sends its perception

to its internal program, and translates the output of the program into a specific intended

action. The intended actions of all agents are collected by the world and resolved into realized

actions that affect the next state of the world. After the completion of the action cycle loop,

the environmental step is executed. During the environmental step, statistical data may

be collected and recorded, agent fitnesses may be calculated, and processes independent of

agent actions may alter the environment. For example, changes in the “weather” may affect

the quantity and geographical placement of energy sources.

After the completion of the environmental cycle loop, the breeding step is executed.

During the breeding step, the phenotypes (agent programs) associated with each agent pop-

ulation are sorted by fitness, parent phenotypes are chosen, and selected phenotypes within

the population are replaced by genetically altered (recombined and mutated) versions of par-

ent phenotypes. These evolved phenotypes are then assigned to a new generation of agents,

a new breeding cycle commences, and the whole process repeats.

Various artificial life applications of SimBioSys are reported in McFadzean [10, Chapter

6]. For example, SimBioSys has been used to simulate the cellular automaton Game of Life,
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the earlier described model of an isolated foraging ant, and a social foraging ant model in

which two distinct types of ants simultaneously compete for a finite supply of food in a

cellular grid. As will be seen in the next two sections, the trade network game application

presents SimBioSys with several new challenges. Most importantly, the process of choosing

and refusing potential trade partners requires the traders to display anticipatory behavior

and to engage in event-driven communication with each other.

3 The Basic Trade Network Game

This section outlines the basic features of the trade network game (TNG). The implemen-

tation of the TNG with the support of SimBioSys is taken up in section 4.

The TNG consists of a collection of traders that evolves over time. As depicted in

Table 2, each trader in the initial trader generation is constructed and assigned a random

trade strategy. The traders then enter a nested pair of cycle loops.

At the top level, a generation cycle loop is executed. Each generation cycle begins

with a configuration step during which each trader is configured with various user-supplied

parameter values. The traders then enter into a trade cycle loop. In each trade cycle the

traders undertake three basic activities: the determination of trade partners, given current

expected payoffs; the carrying out of potentially risky trades; and the updating of expected

payoffs based on any new payoffs received during trade partner determination and trading.

At the end of the trade cycle loop the traders enter into an environmental step during

which information about the individual traders is assessed and printed out. At the end of

the environmental step, an evolution step is executed during which evolutionary selection

pressures are applied to the current trader generation to obtain a new trader generation with

evolved trade strategies. This new trader generation then enters into a new generation cycle

and the whole process repeats.5

The TNG currently uses the particular specifications for market structure, trade partner

determination, trade, expectation updating, and trade behavior evolution detailed in [15].

For completeness, these specifications are reviewed below.

5A generation cycle in the TNG corresponds to a breeding cycle in SimBioSys and a trade cycle in the
TNG corresponds to an action cycle in SimBioSys. In the TNG there is no environmental cycle loop; rather,
there is a single environmental cycle comprising the trade cycle loop and the environmental step.
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int main () {
Init() ; // Construct initial trader generation

// with random trade strategies.
For (G = 0,...,GMAX-1) { // Enter the generation cycle loop.

// Generation Cycle:
InitGen(); // Configure traders with user-supplied

// parameter values (initial expected
// payoff levels, resource quotas,...).

For (I = 0,...,IMAX-1) { // Enter the trade cycle loop.
// Trade Cycle:

MatchTraders(); // Determine trade partners,
// given expected payoffs,
// and record refusal and
// wallflower payoffs.

Trade(); // Implement trades and
// record trade payoffs.

UpdateExp(); // Update expected payoffs
} // using newly recorded payoffs.

// Environmental Step:
AssessFitness(); // Assess and output trader information.
Dump(); // Output fitness statistics for the

// current trader generation.
EvolveGen(); // Evolution Step: Evolve a new trader generation.
}
Return 0 ;
}

Table 2: Pseudo-Code for the TNG

Alternative market structures are currently imposed in the TNG through the prespecifi-

cation of buyers and sellers and through the prespecification of quotas on offer submissions

and acceptances. More precisely, the set of players for the TNG is the union V = B ∪S of a

nonempty subset B of buyer traders who can submit trade offers and a nonempty subset S

of seller traders who can receive trade offers, where B and S may be disjoint, overlapping,

or coincident. In each trade cycle, each buyer m can submit up to Om trade offers to sellers

and each seller n can accept up to An trade offers from buyers, where the offer quota Om

and the acceptance quota An can be any positive integers.

Although highly simplified, these parametric specifications permit the TNG to encompass

two-sided markets, markets with intermediaries, and markets in which all traders engage in

both buying and selling activities. For example, the buyers and sellers might represent

workers and employers, lenders, banks, and borrowers, or barter traders. The offer quota

Om indicates that buyer m has a limited amount of resources (labor time, deposits, apples,...)

to offer, and the acceptance quota An indicates that seller n has a limited amount of resources

(job openings, investment earnings, oranges,...) to provide in return.
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Three illustrations are sketched below.

Case 1: A Labor Market With Endogenous Layoffs and Quits

The set B consists of M workers and the set S consists of N employers, where B and

S are disjoint. Each worker m can make work offers to a maximum of Om employers, or he

can choose to be unemployed. Each employer n can hire up to An workers, and employers

can refuse work offers. Once matched, workers choose on-the-job effort levels and employers

choose monitoring and penalty levels. An employer fires one of its current workers by refusing

future work offers from this worker, and a worker quits his current employer by ceasing

to direct work offers to this employer. This TNG special case thus extends the standard

treatment of labor markets as assignment problems [12] by incorporating subsequent strategic

(efficiency wage) interactions between matched pairs of workers and employers and by having

these interactions iterated over time.

Case 2: Intermediation with Choice and Refusal

The buyer subset B and the seller subset S overlap but do not coincide. The pure buyers

in V − S are the depositors (lenders), the buyer-sellers in B ∩ S are the intermediaries

(banks), and the pure sellers in V −B are the capital investors (borrowers). The depositors

offer funds to the intermediaries in return for deposit accounts, and the intermediaries offer

loan contracts to the capital investors in return for a share of investment earnings. The degree

to which an accepted offer results in satisfactory payoffs for the participants is determined

by the degree to which the deposit account and loan contract obligations are fulfilled.

Case 3: A Labor Market with Endogenously Determined Workers and Employers

The subsets B and S coincide, implying that each trader can both make and receive

trade offers. Each trader v can make up to Ov work offers to traders at other work sites and

receive up to Av work offers at his own work site. As in Case 1, the degree to which any

accepted work offer results in satisfactory payoffs for the participant traders is determined

by subsequent work site interactions. Ex post, four pure types of traders can emerge: (1)

pure workers, who work at the sites of other traders but have no traders working for them

at their own sites; (2) pure employers, who have traders working for them at their own sites

but who do not work at the sites of other traders; (3) unemployed traders, who make at least

one work offer to a trader at another site but who end up neither working at other sites nor
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having traders working for them at their own sites; and (4) inactive (out of the work force)

traders, who neither make nor accept any work offers.

The determination of trade partners in the TNG is currently implemented using a mod-

ified version of the well-known Gale-Shapley deferred acceptance mechanism [5]. This mod-

ified mechanism, hereafter referred to as the deferred choice and refusal (DCR) mechanism,

presumes that each buyer and seller currently associates an expected payoff with each po-

tential trade partner. Also, each buyer and seller is presumed to have an exogenously given

minimum tolerance level , in the sense that he will not trade with anyone whose expected

payoff lies below this level.

The DCR mechanism proceeds as follows. Each buyer m first makes trade offers to a

maximum of Om most-preferred sellers he finds tolerable, with at most one offer going to

any one seller. Each seller n in turn forms a waiting list consisting of a maximum of An of

the most preferred trade offers he has received to date from tolerable buyers; all other trade

offers are refused. For both buyers and sellers, selection among equally preferred options is

settled by a random draw. A buyer that has a trade offer refused receives a negative refusal

payoff , R; the seller who does the refusing is not penalized. A refused buyer immediately

submits a replacement trade offer to any tolerable next-most-preferred seller that has not yet

refused him. A seller receiving a new trade offer that dominates a trade offer currently on

his waiting list substitutes this new trade offer in place of the dominated trade offer, which

is then refused. A buyer ceases making trade offers when either he has no further trade

offers refused or all tolerable sellers have refused him. When all trade offers cease, each seller

accepts all buyer trade offers currently on his waiting list. A trader that neither submits nor

accepts trade offers during this matching process receives a wallflower payoff , W .

The buyer-seller matching outcomes generated by the DCR mechanism exhibit the usual

static optimality properties associated with Gale-Shapley type matching mechanisms [12].

First, any such matching outcome is core stable, in the sense that no subset of traders has

an incentive to block the matching outcome by engaging in a feasible rearrangement of trade

partners among themselves [15, Proposition 3.2]. Second, define a matching outcome to be

B-optimal if it is core stable and if each buyer matched under the matching outcome is at

least as well off as he would be under any other core stable matching outcome. Then, in
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Player 2
c d

c (C,C) (L,H)

Player 1

d (H,L) (D,D)

Table 3: Payoff Matrix for the Prisoner’s Dilemma Game

each TNG trade cycle, the DCR mechanism yields the unique B-optimal matching outcome

as long as each trader has a strict preference order over the potential trade partners he finds

tolerable [15, Proposition 3.3].

Trades are currently modelled in the TNG as prisoner’s dilemma (PD) games. For ex-

ample, a trade may involve the exchange of a good or service of a certain promised quality

in return for a loan or wage contract entailing various payment obligations. A buyer partic-

ipating in a trade may either cooperate (fulfill his trade obligations) or defect (renege on his

trade obligations), and similarly for a seller. The range of possible payoffs is the same for

each trade in each trade cycle: namely, L (the sucker payoff) is the lowest possible payoff,

received by a cooperative trader whose trade partner defects; D is the payoff received by a

defecting trader whose trade partner also defects; C is the payoff received by a cooperative

trader whose trade partner also cooperates; and H (the temptation payoff) is the highest

possible payoff, received by a defecting trader whose trade partner cooperates. More pre-

cisely, the payoffs are assumed to satisfy L < D < 0 < C < H, with (L +H)/2 < C. The

payoff matrix for the PD game is depicted in Table 3.

The TNG traders are currently assumed to use a simple form of learning algorithm to

update their expected payoffs on the basis of new payoff information. Specifically, whenever

a trader v receives a trade or refusal payoff P from an interaction with a potential trade

partner k, trader v forms an updated expected payoff for k by taking a convex combination

of this new payoff P and his previous expected payoff for k. In this way, trader v keeps a

running tab on the payoff outcomes of his interactions with k.

The trade behavior of each trader, whether he is a pure buyer in V −S, a buyer-seller in
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B ∩S, or a pure seller in V −B, is currently characterized by a finite-memory pure strategy

for playing a PD game with an arbitrary partner an indefinite number of times, hereafter

referred to as a trade strategy . Each trader thus has a distinct trading personality even if

he engages in both buying and selling activities. At the commencement of each trade cycle

loop, traders have no information about the trade strategies of other traders; they can only

learn about these strategies by engaging other traders in repeated trades and observing the

payoff histories that ensue. Moreover, each trader’s choice of an action in a current trade

with a potential trade partner is determined entirely on the basis of the payoffs obtained in

past trades with this same partner. Thus, each trader keeps separate track of the particular

state he is in with regard to each of his potential trade partners.

The evolution of the traders in each generation cycle is meant to reflect the formation and

transmission of new ideas rather than biological reproduction. Specifically, successful trade

strategies are mimicked, and unsuccessful trade strategies are replaced by variants of more

successful strategies. As clarified in the next section, this evolutionary process is currently

implemented by means of a standardly specified genetic algorithm employing both mutation

and two-point crossover operations.

4 TNG Implementation

This section describes the current SimBioSys implementation of the TNG, hereafter referred

to as the TNG platform. The static and dynamic structures of the TNG platform are

discussed in turn.

4.1 TNG Class Definitions and Relationships

The static structure of the TNG platform is expressed through definitions and relationships

for three principal classes:

• tngSimulation, which manages the overall simulation;

• tngPopulation, which manages the evolution of the traders;

• tngTradeBot, which simulates a single trader, either a pure buyer, a buyer-seller, or a

pure seller.
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These classes are derived from the SimBioSys abstract base classes discussed in Subsec-

tion 2.1. Specifically, referring to Figure 1, tngSimulation is derived from bioSimulation,

tngPopulation is derived from bioPopulation, and tngTradeBot is derived from bioPType,

which in turn is derived from bioAgent. The TNG platform constructs a single instance of

tngSimulation, which in turn constructs a single instance of tngPopulation; and tngPopula-

tion then constructs a collection of tngTradeBot instances hereafter referred to as tradebots.6

In the current implementation of the TNG, the only aspect of a tradebot that evolves

over time is its trade strategy for playing iterated prisoner’s dilemma games with other

tradebots. Consequently, this trade strategy is implemented as the tradebot’s program and

is constructed as a derived class instance of the SimBioSys class bioProgram.

Specifically, each trade strategy is represented as a finite state machine (FSM) with a

fixed starting state. The FSMs for two illustrative trade strategies are depicted in Figure 2.

The first trade strategy, Tit-for-Two-Tats, is a nice trade strategy that starts by cooperating

and only defects if defected against twice in a row. The second trade strategy, Rip-Off, is

an opportunistic trade strategy that evolved in an experiment7 with an initial population of

Tit-for-Two-Tats to take perfect advantage of the latter strategy by defecting every other

time.

— INSERT FIGURE 2 ABOUT HERE —

The heart of the TNG platform is the representation of each trader as a tradebot, i.e.,

as an instance of the class tngTradeBot. All of the trade-related activities of a tradebot

are implemented as tradebot methods, meaning they are implemented by means of member

functions of tngTradeBot.

A schematic description of the internal structure of a tradebot is given in Table 4. Three

features of this description are of particular interest. First, the general accessibility of each

member function or datum of a tradebot can be controlled by declaring it to be public,

protected, or private.8 Second, institutional constraints regarding the determination of trade

6Currently the TNG platform does not exploit the capability provided by the SimBioSys abstract base
class bioWorld to situate the tradebots in a virtual spatial environment subject both to biological processes
(e.g., plant growth) and to physical laws (e.g., conservation of energy).

7The experimental discovery of Rip-Off was made by Daniel Ashlock of Iowa State University during the
preparation of [13].

8Technically, however, any tradebot instance can access the private member functions and data of other
tradebots within the scope of a tngTradeBot method.
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class tngTradeBot
{

Public Access:
// Internalized Institutional Rules

Methods for determining my trade partners;
Methods for conducting my trades;

// Other Publicly Accessible Methods Used by This TradeBot
Methods for constructing my trade strategy;
Methods for updating my expected payoffs;
Methods for calculating my fitness score.

Private Access Only:
Data about myself;
Data I have recorded about other tradebots;

// Data permitting this tradebot to communicate with other tradebots
Addresses for all tradebots.

};

Table 4: Schematic Description of a Tradebot

partners and the conduct of trades are expressed through the form of the tradebot’s member

functions and data. Third, each tradebot stores an identifier for itself and for each other

tradebot, which permits the tradebot to identify itself to other tradebots it interacts with

and to pass messages to other tradebots at event-driven times. The particular importance of

these features for the implementation of trade activities in the TNG will be clarified below.

4.2 TNG User-Supplied Parameter Values

Prior to running the TNG platform, the user can supply values for the TNG parameters in

a configuration file, tng.ini. A sample specification of tng.ini is given in Table 5.

Note that tng.ini currently only accommodates identical offer quotas for all buyer trade-

bots, identical acceptance quotas for all seller tradebots, and identical initial expected payoff

levels for all tradebots. Also the minimum tolerance level for each tradebot does not currently

appear in tng.ini; it is hardcoded to 0.

The constraints on the user-supplied parameter values in tng.ini are as follows. GMax

and IMax can be any positive integers. RandomSeed can be any unsigned integer, and Mu-

tationRate can be any real number between 0 and 1. FsmStates and FsmMemory can be any

positive integers, and TraderCount can be any integer greater than 1; but hardware-specific

memory limits may further restrict FsmStates, FsmMemory, and TraderCount in practice.

SellerCount and BuyerCount can be any positive integers not exceeding TraderCount that

sum to a number at least as great as TraderCount. Elite can be any nonnegative integer not
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// VIRTUAL ENVIRONMENT PARAMETERS
GMax = 50 // Total number of generations.
IMax = 150 // Number of trade cycles in each trade cycle loop.
RandomSeed = 20 // Seed for pseudo-random number generator.
MutationRate = .005 // GA bit toggle probability.
FsmStates = 16 // Number of internal FSM states.
FsmMemory = 1 // FSM memory (in bits) allocated to past move recall.
TraderCount = 30 // Total number of tradebots.
SellerCount = 30 // Number of pure sellers and buyer-sellers.
BuyerCount = 30 // Number of pure buyers and buyer-sellers.
Elite = 20 // Number of elite tradebots.
RefusalPayoff = -0.6 // Payoff R received by a refused tradebot.
WallflowerPayoff = +0.0 // Payoff W received by an inactive tradebot.
BothCoop = +1.4 // Mutual cooperation PD payoff, C.
BothDefect = -0.6 // Mutual defection PD payoff, D.
Sucker = -1.6 // Lowest possible PD payoff, L.
Temptation = +3.4 // Highest possible PD payoff, H.

// TRADEBOT PARAMETERS
BuyerQuota = 1 // Buyer offer quota.
SellerQuota = 30 // Seller acceptance quota.
InitExpPayoff = +1.4 // Initial expected payoff level.

Table 5: Sample Specification for the TNG Configuration File

exceeding TraderCount. RefusalPayoff, WallflowerPayoff, BothCoop, BothDefect, Sucker,

and Temptation can be any real numbers. SellerQuota can be any nonnegative integer not

exceeding BuyerCount, BuyerQuota can be any nonnegative integer not exceeding Seller-

Count, and InitExpPayoff can be any real number.

The usage of these parameter values is discussed in the next section.

4.3 TNG Dynamic Structure

The TNG platform uses the SimBioSys hierarchy of simulation cycles shown in Table 1 to

implement the dynamic structure of the TNG shown in Table 2.

The first step executed by the TNG main program, Main(), is the creation of derived

instance of the class tngSimulation, called tng. Main() next invokes a tng member func-

tion, Init(), which configures the virtual environment with user-supplied parameter values

extracted from the configuration file tng.ini and constructs an initial generation of tradebots

with randomly determined trade strategies.

The generation cycle loop then commences. At the start of the first generation cycle,

Main() invokes a tng member function, InitGen(), that prompts each tradebot to configure

itself with user-supplied parameter values extracted from tng.ini. The result is that each
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tradebot is publicly identified as a pure buyer, a buyer-seller, or a pure seller, and each

tradebot is characterized by parameter values in accordance with its type. In particular,

in the current TNG implementation, each pure buyer and buyer-seller has an identical offer

quota, each pure seller and buyer-seller has an identical acceptance quota, and each tradebot

has an identical initial expected payoff level that represents its initial assessment for each of

its potential trade partners.

The initial generation of tradebots then successively participates in a trade cycle loop, an

environmental step, and an evolution step. During each trade cycle the tradebots determine

their trade partners, engage in trades, and update their expectations. During the environ-

mental step the current generation of tradebots is sorted by fitness scores. Finally, during

the evolution step, the trade strategies associated with the least fit tradebots are replaced by

variants of more successful trade strategies. The tradebots then enter into a new generation

cycle and the entire process repeats. The implementation of these cycle and step activities

will now be described in greater detail.

Implementation of TNG Trade Partner Determination

The determination of trade partners in the TNG platform is executed through the tng

member function MatchTraders(). The precondition of MatchTraders() is that each tradebot

associates an expected payoff with each of its potential trade partners. The postconditions

of MatchTraders() are first, that trade partners have been determined in such a way that no

offer or acceptance quota has been violated, and second, that refusal and wallflower payoffs

have been recorded by the tradebots that received them.9

MatchTraders() currently implements the DCR mechanism outlined in Section 3 with

the minimum tolerance level of each tradebot hardcoded to 0 for simplicity. The specialized

tradebot member functions that are invoked by MatchTraders() for the implementation of

the DCR mechanism are PrepareOffers(), SubmitOffers(), TakeOffer(), AcceptOffer(), and

OfferRejected().

MatchTraders() first invokes each buyer’s PrepareOffers() member function. This activa-

tion prompts each buyer to undertake certain preparatory actions for entering into a trade

9Preconditions and postconditions specify the interface (inputs and outputs) of a member function that
must be respected by all implementations of the member function.
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cycle. For example, each buyer sets the offer status of each of its potential trade partners to

NoOffer.

After each buyer has completed its preparations, MatchTraders() invokes each buyer’s

SubmitOffers() member function. This activation prompts each buyer to make trade offers

to tolerable most-preferred sellers with offer status NoOffer, one offer per seller, up to a

maximum number of offers as determined by its offer quota. In addition, each buyer changes

the offer status of all sellers receiving its trade offers to OfferMade. A buyer communicates

a trade offer to a seller by invoking the seller’s TakeOffer() member function, which prompts

the seller to provisionally add the buyer’s trade offer to its current waiting list. During this

offer process, each buyer keeps a running count of the current trade offers it has outstanding

to sellers so that it never exceeds its offer quota.

After all buyers have completed this first round of trade offers, MatchTraders() invokes

each seller’s AcceptOffers() member function. This activation prompts a seller to sort the

trade offers currently on its waiting list in accordance with expected payoffs, to provisionally

accept up to its maximally allowed number of tolerable most preferred trade offers as deter-

mined by its acceptance quota, and to refuse the rest. A seller communicates a refusal to

a buyer by invoking the buyer’s OfferRejected() member function. This activation prompts

the buyer to record a refusal payoff from this seller, to update its payoff count and payoff sum

with this seller, to change the offer status of this seller to OfferRejected, and to decrement

the number of its outstanding trade offers by one.

After all sellers have had a chance to issue refusals, MatchTraders() again invokes each

buyer’s SubmitOffers() member function. Buyers who have received refusals, and hence who

have fewer outstanding trade offers than permitted by their offer quotas, then enter into a

new offer round with sellers, and the entire process repeats. After a finite number of offer

rounds,10 a point is reached where buyers make no further trade offers to sellers. Each seller

then accepts the trade offers on its current waiting list, and MatchTraders() terminates the

10By Proposition 3.1 in Tesfatsion [15], the DCR mechanism always terminates on or before offer round
MN , where M is the number of buyers (both pure buyers and buyer-sellers) and N is the number of sellers
(both pure sellers and buyer-sellers).
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matching process.

Implementation of TNG Trades

Trade activity in the TNG platform is executed by the tng member function Trade()

with help from the auxiliary tng member functions MediateTrade() and DilemmaPayoff().

The precondition of Trade() is that all trade partners have been determined. The principal

postconditions of Trade() are: first, that each pair of trade partners has engaged in a trade;

second, that each tradebot has recorded its trade payoffs and its trade partners’ actions; and

third, that each tradebot has updated its payoff count, payoff sum, and expected payoff for

each tradebot with whom it has traded.

In the current TNG implementation, trades are implemented as prisoner’s dilemma (PD)

games. In particular, Trade() directs each seller to activate a specialized tradebot member

function, PlayPD(). This results in the subsequent activation of MediateTrade() for each

buyer on the seller’s current waiting list. For any particular buyer and seller pair, Medi-

ateTrade() activates the member functions GetAction() for both the buyer and the seller.

GetAction() queries a tradebot’s trade strategy regarding what action it should take in the

current trade (PD game). After actions have been retrieved for the buyer and seller, Medi-

ateTrade() activates DilemmaPayoff(), which retrieves PD payoffs for the buyer and seller

as a function of their actions. This action and payoff information is then passed back to the

buyer and seller through invocation of their Buy() and Sell() member functions, respectively,

which prompts them to record the actions taken by their trade partners and to update their

payoff counts, payoff sums, and expected payoffs for these trade partners.

Implementation of TNG Expectation Updating

The updating of expectations in the TNG platform is executed by the tradebot member

function UpdateExp(). For each tradebot, the preconditions of UpdateExp() are that this

tradebot has just received a payoff from an interaction with another tradebot, that it has

recorded this payoff, and that it has updated its payoff count with the other tradebot to

reflect the receipt of the new payoff. The postcondition of UpdateExp() is that this tradebot

has updated its expected payoff for the other tradebot.
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In the current TNG implementation, UpdateExp() uses a simple criterion filter11 to

implement the direct updating of expected payoffs as new payoffs are obtained. A tradebot’s

member function UpdateExp() is invoked each time the tradebot receives a payoff from an

interaction with another tradebot, whether this payoff is a trade payoff or a refusal payoff.

Suppose, for example, that a tradebot v receives a payoff P from an interaction with

another tradebot k, either a refusal payoff R transmitted through OfferRejected() or some

type of trade payoff transmitted through Buy() or Sell(). Tradebot v immediately updates

its current payoff count with k, Nv(k), via the assignment statement

Nv(k) ← Nv(k) + 1 . (1)

Tradebot v then invokes its member function UpdateExp(). This activation first results

in the updating of ωv(k), the memory weight that v currently associates with k, via the

assignment statement

ωv(k) ← Nv(k)/[Nv(k) + 1] . (2)

The expected payoff Uv(k) that v currently associates with k is then updated via the assign-

ment statement

Uv(k) ← ωv(k)Uv(k) + [1− ωv(k)]P . (3)

Relations (1) through (3) together imply that tradebot v gives equal weight to each payoff

that it has obtained in past interactions with tradebot k. Note, also, that an increase in

the memory weight ωv(k) implies an increase in the weight put on past payoffs relative to

the current payoff. Thus, larger memory weights lead to more inertia in the trade partner

selection process in the sense that it becomes increasingly difficult for current payoffs to

affect the expected payoffs of tradebots as payoff histories accumulate.

The trade strategies that characterize the trade behavior of any two potential trade

partners v and k in repeated trades are currently represented as finite state machines. Con-

sequently, trade strategies are restricted to having a finite memory depth, m, for some fixed

finite integer m as determined by user specification. That is, the move dictated for v in

any current trade with k can depend at most on the last m moves of k in previous trades

11As detailed in Tesfatsion [14], a criterion filter is an algorithm for the direct updating of an expected
return function on the basis of past return outcomes, without recourse to the usual interim updating of
probability assessments via Bayes’ rule.
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with v.12 It follows that the sequence of payoffs received by v and k in repeated trades must

eventually enter into a cycle of period no greater than 2m, the maximum number of distinct

memories (histories) concerning their trade partners’ past trades that v and k can have in

any given current trade. The expected payoff (3) thus converges to the true average payoff

obtained by v in interactions with k as the number of interactions between v and k becomes

arbitrarily large.

Implementation of a TNG Environmental Step

The environmental step in the TNG platform is executed by the tng member function

AssessFitness(). The precondition of AssessFitness() is that each tradebot has a positive

total payoff count. The postconditions of AssessFitness() are that the fitness score of each

tradebot has been calculated, various information about each tradebot has been printed out,

and the tradebots have been sorted by their fitness scores.

In the current TNG implementation, AssessFitness() first invokes each tradebot’s mem-

ber function CalcFitness(). This activation prompts the tradebot to calculate and record its

fitness score, measured by the total sum of payoffs divided by the total number of payoffs

received by this tradebot during the previous trade cycle loop. AssessFitness() next invokes

each tradebot’s member function Dump(), which prompts the tradebot to print out various

information it has recorded concerning each of its potential trade partners. Finally, Assess-

Fitness() invokes a bioPopulation member function SortByFitness(), which currently uses a

quick sort routine to sort the current tradebot generation by their fitness scores.

Implementation of a TNG Evolution Step

The evolution of tradebots in the TNG platform is executed by the tng member function

EvolveGen(). The precondition of EvolveGen() is that the current generation of tradebots

has been sorted by fitness scores. The postcondition of EvolveGen() is that the current

generation of tradebots has been replaced by a new generation of tradebots with evolved

trade strategies.

12In the current TNG implementation, if m is greater than the number of previous trades that v has
undertaken with k, then the actions of k in the non-existent trades are assumed to be cooperations. The
integer m is determined by the user’s specification of FSMmemory (the number of bits allocated to past
move recall) in the TNG configuration file.

21



In the current TNG implementation, EvolveGen() invokes a bioPopulation member,

Breed(), which applies a standardly specified genetic algorithm (GA) to the current tradebot

generation.13 In particular, the trade strategies associated with a certain number of the most

fit tradebots (the Elite as user-specified in the TNG configuration file tng.ini) are retained

unchanged for the next tradebot generation, and the remaining trade strategies are replaced

by genetically altered variants of selected parent trade strategies.

To illustrate, suppose tng.ini specifies that the total number of tradebots is 24, the elite

tradebots are the 16 most fit tradebots, and the mutation rate is .005. Then, in each evolution

step, eight parent pairs are selected (with replacement) from the current generation of 24

tradebots, where the probability that any particular tradebot is selected to be a parent is

proportional to its relative fitness within the current generation. The trade strategy (FSM)

associated with each parent tradebot is coded as a bit string.14 For each parent pair (mom

and dad), two bit positions x and y are randomly selected for mom, and the bits in positions

x through y for mom are exchanged with those of dad to obtain an offspring bit string of

the same length. Each bit in this offspring bit string is then mutated (toggled from 0 to 1

or vice versa) with probability .005.

The result of these genetic operations on the 8 parent pairs is the creation of 8 new

offspring bit strings which decode to 8 new offspring trade strategies (FSMs). The trade

strategies currently associated with the 8 least fit tradebots in the current generation are

then discarded and replaced with these 8 new offspring trade strategies, and the trade strate-

gies currently associated with the 16 elite tradebots in the current generation are retained

unchanged. Each of the 24 tradebots in the next generation is then assigned either an

offspring or an elite trade strategy initialized to its fixed starting state.

13See Goldberg [6] for a detailed discussion of the design and implementation of genetic algorithms.
14For example, suppose tng.ini specifies that each FSM has three internal states and a 1-bit memory; see,

e.g., the FSM representation of the Rip-Off trade strategy in Figure 2. Then, for any given FSM, one bit
is needed for the binary representation of the initial move, either cooperate (1) or defect (0), which always
results in a transition to the fixed starting state 1. Also, each of the three possible internal FSM states 1, 2,
and 3 has two labelled exit arrows, one determining a current move and next state if the previous move of the
current opponent was to cooperate, and one determining a current move and next state if the previous move
of the current opponent was to defect. The binary representation of the current move takes one bit and the
binary representation of the next state takes two bits. Consequently, letting the identification of the current
internal state be determined by ordered position in the bit string, a bit string of length [1+3×[2×(1+2)]] = 19
is sufficient to represent the FSM. The current TNG implementation is able to reduce this length by making
appropriate use of C++ bitwise operations.
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The elitism, recombination, and mutation operations performed on the bit string encod-

ings for the current generation of trade strategies have the following effects on these trade

strategies. Elitism preserves successful move combinations, recombination rearranges blocks

of move combinations with relatively little disruption of the blocks, and mutation changes

individual moves. Consequently, the behavioral effects of these genetic operations are that

successful trade strategies are mimicked, unsuccessful trade strategies are discarded, and

new trade strategies are introduced for experimentation.

5 Experimental Study of the TNG

The TNG platform detailed in the previous sections permits the experimental study of

TNG outcomes at three different levels of analysis. First, individual tradebot attributes can

be directly sampled to assess the evolution of trader types. Second, detailed information

concerning who is trading with whom can be collected to track the endogenous formation

and evolution of trade networks. Third, the fitness scores attained by the tradebots in each

successive generation can be used to assess social welfare.

With regard to the first level of analysis, the only attribute of a tradebot that evolves

in the current TNG implementation is its trade strategy. Trade strategies are represented

as finite state machines (FSMs), and genetic operations are applied to bit string encodings

of these FSMs to evolve the trade strategies over time. These bit string encodings can be

directly examined to determine each tradebot’s attitude toward strangers and to assess the

type of trade behavior that it is potentially capable of expressing in repeated trades.15

To illustrate, the FSM representation for a Rip-Off tradebot in Figure 2(b) reveals that

a Rip-Off initially defects against any previously untested trade partner but is capable of

expressing a wide variety of behaviors in repeated trades. For example, a Rip-Off ends up

mutually cooperating with another Rip-Off, repeatedly alternating cooperations and defec-

tions with a Tit-for-Two-Tats as in Figure 2(a), and mutually defecting with a trade partner

that always defects. Consequently, the “type” of trader represented by a Rip-Off is not sim-

ple to characterize; the expressed trade behavior of a Rip-Off depends on the trade strategy

15The feasibility of carrying out the latter assessment in a thorough way of course decreases sharply as
the number of states permitted in the FSM representations is increased. In the current implementation the
number of FSM states is essentially arbitrary, limited only by hardware-specific memory limits.
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of its trade partner and the particular trade history that they currently share.

A direct examination of the trade strategies of individual tradebots can therefore yield

useful and interesting information concerning their potential trade behavior, information that

is not always possible to infer from their expressed trade behavior. In some circumstances,

this information may even permit the analytical determination of trade networks, i.e., who

will actually end up trading with whom during the course of a trade cycle loop.

For example, Figure 3 depicts the four possible trade networks that can ultimately form

among three Rip-Off (Rip) tradebots and two Tit-for-Two-Tats (TFTT) tradebots during the

course of an arbitrarily long trade cycle loop, assuming the refusal payoffR is strictly negative

and that each tradebot has a buyer offer quota 1 and a seller acceptance quota 4. Each TFTT

ultimately submits its trade offers only to other TFTTs, for TFTTs mutually cooperate with

each other whereas a Rip defects against a TFTT every other time. Nevertheless, as the

exogenously given initial expected payoff level Uo is increased, the TFTTs are ultimately

unable to refuse trade offers directed at them by the predacious Rips. The reason is that a

TFTT with a high Uo value is overly optimistic with regard to the payoff it initially expects

from a Rip. Although the TFTT subsequently lowers this expected payoff each time the Rip

defects against it, for sufficiently high Uo values these defections are infrequent enough to

guarantee that the expected payoff never falls below the TFTT’s zero minimum tolerance

level. Consequently, as Uo increases, the Rips are increasingly able to parasitize the TFTTs

and hence secure a relatively higher fitness level.16

— INSERT FIGURE 3 ABOUT HERE —

In general, however, the ability to choose and refuse trade partners on the basis of contin-

ually updated expected payoffs results in such complicated contingencies that the prediction

of trade network formation from an a priori assessment of individual trade strategies is ex-

tremely difficult. It is therefore important to be able to obtain information on the trade

networks that form during each TNG simulation run.

To aid in this second level task, at the end of each trade cycle loop the tng member

function AssessFitness() prompts each tradebot to output the data it currently has stored

for each of its potential trade partners. This data includes: the sum of payoffs received

16See Tesfatsion [15, Section 5] for a more detailed analysis of this 5-tradebot TNG.
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from interactions with this potential trade partner; the number of payoffs received from

interactions with this potential trade partner; the current expected payoff associated with

this potential trade partner; the number of trades actually undertaken with this potential

trade partner; and, if trades have taken place, a complete ordered list of the trade partner’s

actions (cooperate or defect) in each of these trades. The user can thus observe who has

traded with whom, and how often, during the course of the trade cycle loop, as well as

the degree to which the trades have resulted in mutual cooperation, exploitation (successful

defection against a cooperating partner), or mutual defection.

Finally, with regard to the third level of analysis, social welfare, various fitness statistics

can be calculated for each successive generation of tradebots. For example, in the current

implementation of the TNG the minimum, average, and maximum fitness scores attained by

the tradebots during the course of each trade cycle loop are calculated and recorded. These

fitness scores give a rough idea of the level of social welfare attained by each successive

generation of tradebots.

To illustrate, Figure 4 depicts the minimum, average, and maximum fitness scores at-

tained by 50 successive generations of tradebots starting from initially random trade strate-

gies, given the parameter settings in Table 5. These parameter settings were chosen to match

as closely as possible the “standard scenario” used as a benchmark case by Ashlock et al. [1,

Table 3] for an IPD game with choice and refusal of partners. The latter authors found that

rapid convergence to mutual cooperation took place for this benchmark case, and the TNG

results qualitatively replicate this finding. The reason for this rapid convergence becomes

clear from an inspection of individual strategies: the refusal mechanism helps cooperative

players protect themselves against defectors without having to defect themselves, and the

choice mechanism helps cooperative players direct their offers to other cooperative types.

Consequently, nice players are not as evolutionarily disadvantaged as they tend to be with

random or round-robin partner matching.

— INSERT FIGURE 4 ABOUT HERE —

More generally, the fitness scores attained by the tradebots can be used to judge the

relative merits of alternative market structures with regard to inducing good social outcomes.

For example, preliminary TNG experimental findings reported in Tesfatsion [15] suggest that
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the conventional optimality properties used by economists to evaluate market structures in

static contexts, such as core stability and Pareto efficiency, may be inadequate measures of

optimality from an evolutionary perspective. In particular, use of the deferred choice and

refusal (DCR) partner matching mechanism detailed above in sections 3 and 4 imposes high

transactions costs on the tradebots that these standard measures do not take into account.

6 Concluding Remarks

The TNG platform has been developed to facilitate the study of trade in decentralized market

economies from a bottom-up perspective. The key feature of the TNG platform is that

traders are modelled as autonomous endogenously interacting software agents (“tradebots”)

with internally stored data and with internal behavioral functions that can evolve over time.

The platform design is modular and extensible, reflecting the view that the current

implementation is only a first step in a long journey to come. Specifically, in the current

implementation the tradebots are market situated, but explicit price setting behavior has

not yet been introduced. In addition, no attempt has yet been made to exploit the capability

of the underlying SimBioSys abstract base classes to situate the tradebots within a virtual

spatial environment.

In the past, tractability issues have generally forced economists to focus their attention

on specialized aspects of economic behavior, without detailed consideration of psychologi-

cal, sociological, biological, or physical constraints. The recent development of agent-based

frameworks such as the TNG platform raise new questions concerning the appropriate bounds

of economic analysis, for these frameworks can potentially model social activity from a much

more inclusive perspective. Indeed, as stressed in Epstein and Axtell [3], such frameworks

may at last provide a common paradigm for social science as a whole.
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Figure 1. Static Structure of SimBioSys: Class Relationships
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Figure 2. The FSM Representations for Two Illustrative Trade Strategies: (a) A nice trade
strategy that starts by cooperating and only defects if defected against twice in a row; (b)
An opportunistic trade strategy that starts by defecting and defects every other time unless
defected against. An arrow label x/y means that y is the next move to be taken in response
to x, the last move of one’s opponent.
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(c) −L ≤ C with
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(d) −L ≤ C with

(H + C)/2 ≤ U 

Figure 3. Long-Run Trade Networks for an Illustrative 5-Tradebot TNG as a function of
the initial expected payoff U0 and the PD payoffs L < D < 0 < C < H. A directed arrow
indicates the submission of a trade offer. A relatively larger box indicates a definitely higher
fitness score for a sufficiently long trade cycle loop. In case (d), the Rip-TFTT interactions
are stochastic if (H + C)/2 = U0 and deterministic if (H + C)/2 < U0.



Figure 4. TNG simulation run depicting the minimum, average, and maximum fitness scores
attained by 50 successive generations of tradebots starting from initially random trade strate-
gies. By generation 25 the average and maximum fitness scores closely fluctuate around the
mutually cooperative level 1.4. The parameter settings for this run are explained more fully
in Table 5.


