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Positive Mathematical Programming with Generalized Risk 

Quirino Paris 

April 2014 

Introduction 

The treatment of risk in a mathematical programming framework has been confined to an 

exponential utility function with a constant absolute risk aversion coefficient.  This is the 

strategy originally proposed by Freund (1956) who appealed to the expected utility (EU) 

approach and assumed that random prices were normally distributed. These assumptions 

lead to a linear mean-variance specification of expected net revenue defined as total 

expected revenue minus a risk premium that corresponds to half the variance of revenue 

multiplied by the constant absolute risk aversion coefficient. This mathematical 

programming approach has serious limitations as only a rare entrepreneur may possess risk 

preferences that exhibit constant absolute risk aversion regardless of the firm size and the 

market environment. 

 Many other approaches have been proposed in the literature to deal with risk and 

uncertainty. Among them, the mean-standard deviation (MS) approach has had a long 

history [Fisher (1906), Hicks (1933), Tintner (1941), Markowitz (1952), Tobin (1958)] but 

it has not been applied in a mathematical programming context.  Meyer (1987) presented a 

remarkable reconciliation between the EU and the MS approaches that may be fruitful in a 

PMP analysis of economic behavior under risk. The major objective of Meyer is to find 

consistency conditions between the EU and the MS approaches in such a way that an agent 

who ranks the alternatives according to the value of some function defined over the first two 

moments of the random payoff would rank in the same way those alternatives by means of 



 3 

the expected value of some utility function defined over the same payoffs. It turns out that 

the location and scale (LS) condition is the crucial link to establish the consistency between 

the EU and the MS approaches. We reproduce here Meyer’s argument (1987, p. 423): 

 “Assume a choice set in which all random variables Yi   (with finite means and 

variances) differ from one another only by location and scale parameters. Let X  be the 

random variable obtained from one of the Yi  using the normalizing transformation 

X = (Yi ! µi ) /" i  where µi  and ! i  are the mean and standard deviation of Yi .  All Yi , no 

matter which was selected to define X , are equal in distribution to µi +! iX . Hence, the 

expected utility from Yi  for any agent with utility function u( ) can be written as 

(1)  
EU(Yi ) = u(µi +! i x)dF(x)

a

b

"
           #V (µi ,! i ),

 

where a  and b  define the interval containing the support of the normalized random variable 

X .” 

 “… under the LS condition, various popular and interesting hypotheses concerning 

absolute and relative risk-aversion measures in the EU setting can be translated into 

equivalent properties concerning V (µi ,! i ) .” 

 The structure of absolute risk is measured by the slope of the indifference curves in 

the (µ,! ) space that is represented as 

(2)  AR(µ,! ) = "V! (µ,! )
Vµ (µ,! )

  

where Vµ (µ,! )  and V! (µ,! ) are first partial derivatives of the V (µ,! )  function. Some 

properties of this risk measure are as follows: 
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1. Risk aversion is associated with AR(µ,! ) > 0 , risk neutrality with AR(µ,! ) = 0  

and risk propensity with AR(µ,! ) < 0 . 

2. If u(µ +! x)  displays decreasing (constant, increasing) absolute risk aversion for 

all µ +! x , then !AR(µ," )
!µ

< (=,>) 0 for all µ  and ! > 0 . 

3. If u(µ +! x)  displays increasing (constant, decreasing) relative risk aversion for 

all µ +! x , then !AR(tµ,t" )
!t

> (=,<) 0  for t > 0 . 

Saha (1997) formulated an MS utility function that conforms to Meyer’s 

specification 

(3)  V (µ,! ) = µ" #! $  

and assumed that ! > 0 . According to this MS utility function, the absolute risk measure 

(AR) is specified as 

(4)  AR(µ,! ) = "V! (µ,! )
Vµ (µ,! )

= #
$
µ (1"$ )! (# "1) . 

Hence, risk aversion, risk neutrality and risk propensity are associated with ! > (=,<) 0 , 

respectively.  

 Decreasing, constant and increasing absolute risk aversion (with ! > 0 ) is defined by  

(5)  !AR(µ," )
!µ

= (1#$ )%
$

µ#$" (1#% ) < (=,>) 0  

and, therefore, by ! >1,! = 1,! <1 , respectively. Decreasing, constant and increasing 

absolute risk (with ! < 0 ) is defined by ! <1,! = 1,! >1 .  

 Decreasing, constant and increasing relative risk aversion is defined (with ! > 0 ) by 
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(6)  !AR(tµ,t" )
!t

|t=1= (# $% )AR < (=,>) 0  

and, therefore, by ! > " ,! = " ,! < " , respectively. 

 The risk analysis of Meyer (1987) describes and admits all possible combinations of 

risk behavior. Saha’s (1997) implementation of it, for example, admits absolute risk 

aversion behavior that may be decreasing, when ! >1 and " > 0 , in association with either 

increasing relative risk aversion when ! >" > 0 or decreasing relative risk aversion when 

0 < ! <" .  In any given sample of economic agents’ performance, therefore, the prevailing 

combination of risk behavior is an empirical question. 

 

Application to PMP 

Suppose N  farmers produce J  crops using I  limiting inputs and a linear technology. Let 

us assume that the (J !1)  vector of crops’ market prices is a random variable  !p  with mean 

 E( !p)  and variance-covariance matrix ! p . A (J !1)  vector c  of accounting unit variable 

costs is also known.  Farmer’s availability of limiting resources is given by the (I !1)  

vector b . The linear technology is specified by the (I ! J )  matrix A .  The unknown output 

levels are given by the (J !1) vector x . Furthermore, farmer has knowledge of previously 

realized levels of outputs that are listed as xobs .  Random wealth is defined by previously 

accumulated wealth, w , augmented by the current net revenue. Assuming a MS utility 

function under this scenario, mean wealth is defined as  µ = w + (E( !p)! c ") x  with standard 

deviation equal to ! = ( "x # px)
1/2 .  

 Then, a primal PMP-MS model is specified as follows: 
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(7)   maxx,! ," ,h V (µ,# ) = µ! $# " = [w + (E( !p)$ c %) x)]! $ ( %x & px)
" /2  

 subject to    
Ax ! b                   dual variable   y
  x = xobs + h          dual variable   "

  

where h  is a vector of deviations from the realized and known output levels.  The first set of 

constraints forms the structural (technological) relations while the second set constitutes the 

calibration constraints. The corresponding dual constraints turn out to be 

(8)   ! ( "x # px)
(! /2$1)# px + "A y + % &'[w + (E( !p)$ c ") x]('$1)[E( !p)$ c] . 

The complexity of the estimation problem becomes clear by considering the nonlinearity of 

relation (8). Parameters !  and " are usually unknown as are the optimal output levels,x , the 

deviations, h , from the observed output levels,xobs , the optimal dual variables, y , and the 

Lagrange multipliers, ! . Furthermore, it is often the case that also the market price of some 

input – say land – is known for a homogeneous area or even for a single farm. The PMP 

methodology, therefore, should use this information, yobs , that will be treated in the form of 

the observed output levels as  

(9)   y = yobs + u  

where u  is an ( I !1) vector of deviations from the observed input prices. Using a least-

squares approach for the estimation of deviations h and u , it turns out that, by the 

symmetric duality of least squares (LS), h = !  and u =! , where !  is the vector of 

Lagrange multipliers associated with constraint (9). To show this result, consider the 

following LS problem 

(10)   
          minLS = !h h / 2 + !u u / 2
subject to               x = xobs + h                dual variables "
                              y = yobs + u                dual variables #
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The corresponding Lagrangean function is 

(11)             L = !h h / 2 + !u u / 2 + !" (x # xobs # h)+ !$ (y #  yobs # u)  

and first order necessary conditions of L  with respect to h and u  are 

(12)   

!L
!h

= h" # = 0

!L
!u

= u"$ = 0                         Q.E.D.
 

 A crucial issue regards parameters !  and " . On the one hand, an economic 

entrepreneur wishes to maximize her utility of wealth while minimizing the disutility of its 

risk. On the other hand, it is a fact that high levels of wealth are associated with high risk. 

Another fact is that this entrepreneur has already made her choices of a production plan, 

xobs , in the face of output price risk. It is also likely that she does not know (or that she is 

not even aware of) parameters !  and " . The challenge, therefore, is to infer – from her 

decisions – the values of parameters !  and " that could explain the behavior of this 

entrepreneur in a rational and reasonable fashion.  

We will assume that this entrepreneur is risk averse, implying that ! > 0 and " > 0 . 

Furthermore, for any given level of expected wealth, a high level of utility will be achieved 

with the highest admissible level of parameter ! , where admissibility depends on the 

technology, the limiting input constraints, the observed production plan and the observed 

input prices.  

           An alternative viewpoint, one that mimics the relationship – referred to above – 

between high levels of wealth and high levels of its standard deviation, would postulate that 

high levels of utility (of wealth) are associated with high levels of its risk disutility. 
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Therefore, for any given level of the standard deviation of wealth, the parameter !  should 

acquire the highest admissible value, given the observed production plan and input prices.  

 

 

Phase I PMP Model 

Thus, for estimation purposes, we assume that parameters !  and "  will be maximized 

together with the minimization of deviations h and u  in a least-squares objective function 

subject to relevant primal and dual constraints and their associated complementary slackness 

conditions. This choice leads to the following phase I model 

(13)           minLS = !h h / 2 + !u u / 2 "# 2 "$ 2  

subject to   

 

 

(14)                                                 Ax ! b + u
(15)   "[w + (E( !p)# c $) x]("#1)[E( !p)# c]! $A y + h+ % ( $x & px)(% /2#1) & px
(16)                                                    x = xobs + h
(17)                                                    y = yobs + u
(18)                                $y (b + u# Ax) = 0
(19)     $x { $A y + h+ % ( $x & px)(% /2#1) & px #"[w + (E( !p)# c $) x]("#1)[E( !p)# c]} = 0
(20)                               $h (xobs + h# x) = 0
(21)                               $u (yobs + u# y) = 0

  

with x ! 0,y ! 0," ! 0,# ! 0,  h and u free .  Constraints (20) and (21) are redundant and can 

be omitted without loss of information.  

 Constraints (14) represent the structural (technological) relations of input demand 

being less-than-or-equal to the effective input supply. Constraints (15) represent the dual 

relations with marginal utility of the production plan being less-than-or-equal to its marginal 

cost. Here marginal cost has two parts: the marginal cost due to limiting and variable inputs, 
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!A y + h , and the marginal cost of risk due to the random variability of output prices, 

! ( "x # px)
(! /2$1)# px . Constraints (16) and (17) are the calibration relations. Constraints (18) 

– (21) are the corresponding complementary slackness conditions. 

 Judging from the dual constraint (15), the input shadow prices are measured in utility 

units.  To achieve a dollar measure of these input prices, y , it is sufficient to divide them by 

the quantity  ![w + (E( !p)" c #) x](!"1) .  

Phase II PMP Model 

 Phase II of the PMP methodology deals with the estimation of a cost function that 

embodies all the technological and behavioral information revealed in phase I. Typically, a 

marginal cost function expresses a portion of the dual constraints in a phase I PMP model. 

In the absence of risk, PMP marginal cost is defined as !A y + (c + h) , where !A y  stands for 

the marginal cost due to limiting inputs and (c + h)  for the effective marginal cost due to 

variable inputs. In this risky case, marginal cost is given by right-hand-side of relation (15) 

where all the elements are measured in utility units. We desire to obtain a dollar expression 

of marginal cost, as in the familiar relation  MC ! E( !p) . To achieve this result, the elements 

of relation (15) will be divided by the term  ![w + (E( !p)" c #) x](!"1)  to write 

 

(22)                                                                                                                 MC ! E( !p)

  c + 1
"

[w + (E( !p)# c $) x](1#" )[ $A y + h]+ %
"

[w + (E( !p)# c $) x](1#" )( $x & px)(% /2#1) & px ! E( !p).
 

 In relation (22), all the monetary terms are measured in dollars. The marginal cost of 

limiting and variable inputs is represented by 
 
c + 1

!
[w + (E( !p)" c #) x](1"! )[ #A y + h]$

%
&

'
(
)

. The 

marginal cost of risky output prices is given by 
 

!
"
[w + (E( !p)# c $) x](1#" )( $x % px)

(! /2#1)% px
&
'
(

)
*
+

. 
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 The cost function selected to synthesize the technological and behavioral relations of 

phase I is expressed as a modified Leontief cost function such as  

(23)  C(x,y) = ( !f x)( !g y)+ ( !g y)( !x Qx) / 2 + ( !f x)[(y1/2 !) Gy1/2 ] . 

A cost function is linear homogeneous and concave in input prices, y . Therefore, matrix G  

is negative definite. Furthermore, a cost function is increasing in output levels. Thus, matrix 

Q  is positive definite. Parameters f  and g  are introduced to give flexibility to the cost 

function. 

 The marginal cost function associated with cost function (23) is given by 

(24)  MCx =
!C
!x

= ( "g y)f + ( "g y)Qx + f[(y1/2 ") Gy1/2 ] . 

The derivative of the cost function with respect to input prices corresponds to Shephard 

lemma that produces the demand function for inputs: 

(25)  !C
!y

= ( "f x)g + g( "x Qx) / 2 + ( "f x)[#(y$1/2 ") Gy1/2 ]= Ax  

where the term !(y"1/2 ) represents a diagonal matrix with elements yi
!1/2  on the main 

diagonal.  

 With knowledge of the solution components resulting from the phase I model (13)-

(21), x̂, ŷ, ĥ, û,!̂ ,"̂ , a phase II model’s objective is to estimate the parameters of the cost 

function, f ,g,Q,G . This task is accomplished by means of the following specification 
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(26)                          minAux = !f f / 2 + !g g / 2
subject to             
(27)            ( !g ŷ)f + ( !g ŷ)Qx̂ + f[(ŷ1/2 !) Gŷ1/2 ]=

             c + 1
"̂

[w + (E( !p)# c !) x̂](1#"̂ )[ !A ŷ + ĥ]+ $̂
"̂

[w + (E( !p)# c !) x̂](1#"̂ )( !x̂ % px̂)($̂ /2#1) % px̂ & E( !p)

(28)           ( !f x̂)g + g( !x̂ Qx̂) / 2 + ( !f x̂)['(ŷ#1/2 !) Gŷ1/2 ]= Ax̂
(29)            Q = LD !L

(30)            I =QQ#1

(31)            !f x̂ & 0
(32)           !g ŷ & 0

 

with D ! 0, f  and g free . The minimization of the f  and g  parameters is a reasonable 

objective given that f  and g  are introduced merely to give flexibility to the cost function 

and act as intercepts of the marginal cost and the input demand functions, respectively. 

 Relation (27) represents  MC ! E( !p) . Relation (28) is Shephard lemma. Relation 

(29) is the Cholesky factorization of the Q  matrix with D  as a diagonal matrix with 

positive  elements on the main diagonal and L  is a unit lower triangular matrix. Relation 

(30) defines the inverse of the Q  matrix. This operation is of interest for computing the 

supply elasticities of the various outputs. Relations (31) and (32) guarantee that the cost 

function is increasing in output.   Finally, the objective function (26) defines a least-squares 

approach for the estimation of parameters f  and g . 

Calibrating Equilibrium Model 

With the parameter estimates of the cost function derived from phase II model (26)-(32), 

f̂ , ĝ,Q̂,Ĝ , it is possible to set up a calibrating equilibrium model to be used for policy 

analysis. Such a model takes on the following structure 
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(33)                                                                      minCSC = !y z p + !x zd = 0
                 subject to 

(34)                                     ( !f̂ x)ĝ + ĝ( !x Q̂x) / 2 + ( !f̂ x)["(y#1/2 !) Ĝy1/2 ]+ z p = b + û

(35)                                                          ( !ĝ y)f̂ + ( !ĝ y)Q̂x + f̂[(y1/2 !) Ĝy1/2 ]= E( !p)+ zd

 

with x ! 0,y ! 0,z p ! 0,zd ! 0 . The objective function represents the complementary 

slackness conditions (CSC) of constraints (34) and (35) with an optimal value of zero. The 

variables z p  and zd are surplus variables of the primal and the dual constraints, respectively.  

The solution of model (33)-(35) calibrates precisely the solution obtained from the phase I 

model (13)-(21), that is x̂LS = x̂CSC  and ŷLS = ŷCSC . The calibrating model, then, can be used 

to trace the response to changes in the output expected prices and the supply of limiting 

inputs.  

PMP with Generalized Risk and Price Supply Elasticities 

It may be of interest to estimate price supply elasticities for the various commodity outputs 

involved in a PMP approach. The supply function for outputs is derivable from relation (24) 

by equating it to the expected market output prices,  E( !p) , and inverting the marginal cost 

function: 

(36)  x = !Q!1f !Q!1f[(y1/2 ") G(y1/2 )] / ( "g y)+ [1 / ( "g y)]Q!1E( !p)  output supply function      

that leads to the supply elasticity matrix 

(37) 
 
! = "[E( !p)] #x

#E( !p)
$
%&

'
()
"[(x*1)]= "[E( !p)]Q*1"[(x*1)] / ( +g y)  output supply elasticities  

where matrices  ![E( !p)]   and ![x"1]  are diagonal with elements  E( !pj ) and x j
!1 , respectively, 

on the main diagonals. Relation (37) includes all the own- and cross-price elasticities for all 

the output commodities admitted in the model.  
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Endogenous and Disaggregated Output Supply Elasticities 

PMP has been applied frequently to analyze farmers’ behavior to changes in agricultural 

policies. A typical empirical setting is to map out several areas in a region (or state) and to 

assemble a representative farm for each area (or to treat each area as a large farm). When 

supply elasticities are exogenously available (say the own-price elasticities of crops) at the 

regional (or state) level (via econometric estimation or other means), a connection of all area 

models can be specified by establishing a weighted sum of all the areas endogenous own-

price elasticities and the given regional elasticities.  The weights are the share of each area’s 

expected revenue over the total expected revenue of the region.  

Let us suppose that exogenous own-price elasticities of supply are available at the 

regional level for the all the J crops, say . Then, the relation among these 

exogenous own-price elasticities and the corresponding areas’ endogenous elasticities can 

be established as a weighted sum such as  

(38)           

where the weights are the areas’ expected revenue shares in the region (state) 

(39)  wnj =
E(pnj )xnj
E(ptj )xtjt=1

N!
        

and  

(40)    !nj = E( !pnj )Qn
jj xnj

"1 / ( #gnyn )        

where Qn
jj  is the jth element of the nth farm (area) on the main diagonal in the inverse of the 

Qn  matrix. The phase II model that executes the estimation of the disaggregated 

! j , j = 1,..., J

! j = wnj
n=1

N

" !nj
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(endogenous) output supply elasticities for a region (state) that is divided into N areas takes 

on the following specification:   

 

(41)                          minAux = !f f / 2 + !g g / 2
subject to             
(42)            ( !g ŷ)f + ( !g ŷ)Qx̂ + f[(ŷ1/2 !) Gŷ1/2 ]=

             c + 1
"̂

[w + (E( !p)# c !) x̂](1#"̂ )[ !A ŷ + ĥ]+ $̂
"̂

[w + (E( !p)# c !) x̂](1#"̂ )( !x̂ % px̂)($̂ /2#1) % px̂ & E( !p)

(43)           ( !f x̂)g + g( !x̂ Qx̂) / 2 + ( !f x̂)['(ŷ#1/2 !) Gŷ1/2 ]= Ax̂
(44)            Q = LD !L

(45)            I =QQ#1

(46)            !f x̂ & 0
(47)            !g ŷ & 0
(48)            ( = '[E( !p)]Q#1'[x̂#1] / ( !g ŷ)        endogenous own- and cross supply elasticities

(49)            wnj =
E( !pnj )x̂nj
E( !ptj )x̂tjt=1

N)
                  expected revenue weights

(50)            *nj = E( !pnj )Qn
jj x̂nj

#1                        endogenous own-price elasticities

(51)            * j = wnj*nj
n=1

N

)                             disaggregation of exogenous elasticities

 

with Dn > 0,g and f  free  and   !f x > 0 and !g y > 0.  

 

Empirical Implementation of PMP_MDS with Supply Elasticities – Large Farms 

The PMP-MS approach described in previous sections was applied to three samples of 

representative farms (small, medium and large) with N = 14 observations in each sample. 

We report the estimates of the large-farm sample.  There are four crops: sugar beet (BRB), 

soft wheat (TEN), corn (MAS) and barley (ORZ). There is only one limiting input: land. 

From Phase I Model (13)-(21) 

----   1014 VARIABLE theta.L  coefficient of the Mean 
PARAMETER  !̂  
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1   1.0477336,     2  1.0539034,     3  1.0790223,     4  1.0726528,     5  1.0008581 
6   1.0386790,     7  1.0782421,     8  1.0819357,     9  1.0842247,    10 1.0667055 
11 1.0707482,    12 1.0092212,    13 1.0015747,    14 1.0398168 
 
PARAMETER !̂  
 
1   1.2445509,     2  1.2534702,     3  1.2445841,     4  1.2582925,     5  1.1532393 
6   1.2118774,     7  1.2747046,     8  1.2746439,     9  1.3160656,    10 1.2601629 
11 1.2541866,    12 1.1653607,    13 1.1526221,    14 1.2162482 
 
All fourteen farmers exhibit decreasing absolute risk aversion, !̂ >1 . All farmers exhibit 
increasing relative risk aversion, !̂ > "̂ .   
 
PARAMETER  risk aversion   
 
1   0.0123526,     2  0.0066949,     3  0.0052539,     4  0.0038768,     5  0.0072606 
6   0.0037938,     7  0.0053129,     8  0.0036410,     9  0.0109963,    10 0.0051071 
11 0.0057658,    12 0.0040152,    13 0.0069743,    14 0.0040743 
 
PARAMETER wealth derivative of absolute risk aversion  
 
1   -0.0008419,     2  -0.0005320,     3  -0.0010481,     4  -0.0006543 
5   -0.0000427,     6  -0.0007684,     7  -0.0007369,     8  -0.0005705 
9   -0.0006823,    10 -0.0006540,    11 -0.0009364,    12 -0.0002642 
13 -0.0000770,    14 -0.0007285 
 
 
PARAMETER xobs  observed output levels 
 
           BRB            TEN               MAS              ORZ 
1  1.133424E+3 305.4032351 341.3693403  18.2398722 
2  3.103783E+3 861.7445535 478.4465107  59.8025522 
3  1.547978E+3 450.7937871 881.9748433   7.6887358 
4  3.488354E+3 821.3934271 1.493332E+3  51.1247151 
5  959.1102412 468.2848696 478.9261801  28.2406037 
6  942.2039951 801.1288268 1.283591E+3 152.5812215 
7  1.600731E+3 695.8293118 899.4739570  66.9718421 
8  3.507549E+3 1.212855E+3 1.237584E+3  98.0497703 
9  1.050537E+3 332.3773404 498.0150725  63.6696198 
10 3.473678E+3 952.5199370 774.7402863  84.0070376 
11 1.245722E+3 765.1689195 501.9673305  59.5366249 
12 3.276145E+3 1.100168E+3 742.9419407 177.9744313 
13 877.0970595 380.9171917 564.6091640  76.2122654 
14 1.430946E+3 768.6901276 1.309392E+3  67.7906102 
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PARAMETER x̂  - optimal crop levels in phase I model 
 
           BRB             TEN               MAS             ORZ 
1  1.133841E+3  304.9003333  341.8497521  18.1976713 
2  3.104476E+3  861.6030580  478.2897000  60.0045325 
3  1.548519E+3  450.5967725  881.6756889    8.0748979 
4  3.488766E+3  820.9405594 1.493348E+3   51.5339016 
5  959.3913739  467.6686456  479.2238883   28.4105088 
6  942.7001436  800.6885278 1.283737E+3  152.8370373 
7  1.601383E+3 695.5367076  899.7048529   67.0263115 
8  3.508096E+3 1.213032E+3 1.237782E+3   97.6121283 
9  1.051278E+3  332.5400598 497.9904886   63.4433605 
10 3.474201E+3 952.0932429 774.8693405   84.2813824 
11 1.246301E+3 764.7621817 502.2088444   59.6874786 
12 3.276536E+3 1.099640E+3 743.0977719 178.2457393 
13 877.3783649  380.3006737 564.9044723   76.3831745 
14 1.431446E+3 768.2501195 1.309532E+3   68.0502120 
 
PARAMETER ĥ  - deviations from xobs  
 
           BRB            TEN           MAS           ORZ 
1    0.4174666  -0.5029018   0.4804118  -0.0422010 
2    0.6929796  -0.1414955  -0.1568107   0.2019803 
3    0.5410446  -0.1970146  -0.2991544   0.3861621 
4    0.4118370  -0.4528677   0.0164491   0.4091865 
5    0.2811327  -0.6162240   0.2977082   0.1699051 
6    0.4961485  -0.4402990   0.1464425   0.2558158 
7    0.6521659  -0.2926042   0.2308959   0.0544695 
8    0.5473309   0.1770229   0.1981659  -0.4376420 
9    0.7415965   0.1627194  -0.0245839  -0.2262593 
10   0.5230429  -0.4266941   0.1290542   0.2743447 
11   0.5790732  -0.4067378   0.2415139   0.1508537 
12   0.3910239  -0.5283951   0.1558312   0.2713080 
13   0.2813054  -0.6165180   0.2953083   0.1709091 
14   0.4999870  -0.4400081   0.1403054   0.2596018 
 
PARAMETER yobs   - observed land price 
 
          land 
1    0.7488488 
2    0.6918612 
3    0.6875297 
4    0.6751747 
5    0.5976591 
6    0.5482897 
7    0.7807244 
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8    0.9028318 
9    0.7826706 
10   0.8180012 
11   0.6382583 
12   0.6690701 
13   0.6482950 
14   0.4651773 
 
PARAMETER ŷ  - optimal land shadow price 
 
          land 
1    0.7011229 
2    0.6918300 
3    0.7039447 
4    0.6752100 
5    0.5592771 
6    0.5418763 
7    0.7850682 
8    0.8798274 
9    0.7883638 
10   0.8300010 
11   0.6320721 
12   0.6334454 
13   0.6095794 
14   0.4586504 
 
PARAMETER û  - deviations from yobs  
 
          land 
1   -0.0477259 
2   -0.0000312 
3    0.0164150 
4    0.0000353 
5   -0.0383820 
6   -0.0064134 
7    0.0043438 
8   -0.0230044 
9    0.0056932 
10   0.0119998 
11  -0.0061862 
12  -0.0356247 
13  -0.0387156 
14  -0.0065269 
 
 
From Phase II Model (41)-(51) 
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PARAMETER  f̂ - cost function 
 
           BRB           TEN            MAS          ORZ 
1    0.0000653   0.0001451  -0.0000117   0.0000331 
2    0.0000034   0.0001862  -0.0000184   0.0000266 
3    0.0000520  -0.0000421   0.0001262  -0.0000431 
4    0.0000984   0.0000557   0.0000454  -0.0000180 
5   -0.0000004   0.0001434  -0.0000043   0.0000279 
6   -0.0000017   0.0000817   0.0001031   0.0000653 
7    0.0000149   0.0001685   0.0001578   0.0000861 
8    0.0000302   0.0000661   0.0000133  -0.0000755 
9    0.0000027   0.0000918   0.0000552   0.0000650 
10   0.0000255  -0.0000454   0.0001127  -0.0000021 
11   0.0000091   0.0000534   0.0000004   0.0001596 
12   0.0001058   0.0000472  -0.0000977   0.0001108 
13   0.0000470   0.0001276   0.0000847   0.0000720 
14  -0.0000201   0.0000823   0.0000628   0.0000800 
PARAMETER  ĝ - cost function 
 
          land 
1    0.0003585 
2    0.0002878 
3    0.0002938 
4    0.0003300 
5    0.0002626 
6    0.0004394 
7    0.0001911 
8    0.0002395 
9    0.0002208 
10   0.0001927 
11   0.0002067 
12   0.0002257 
13   0.0004519 
14   0.0004226 
 
PARAMETER  Q̂  - output Q cost matrix 
 
                 BRB              TEN            MAS           ORZ 
1 .BRB   3.5766596   2.0304287   2.0500501   0.6164998 
1 .TEN   2.0304287  47.8437788   0.3102451  -2.5415393 
1 .MAS   2.0500501   0.3102451  14.9656720  -0.9009641 
1 .ORZ   0.6164998  -2.5415393  -0.9009641 564.1352158 
 
2 .BRB   0.8435185   0.1292506   0.1331886   1.2845607 
2 .TEN   0.1292506  43.8267742  -0.7140416  -0.4320476 
2 .MAS   0.1331886  -0.7140416  24.7303847 -31.4843316 
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2 .ORZ   1.2845607  -0.4320476 -31.4843316 445.7819448 
 
3 .BRB   3.8648558  -3.0660507   1.7800281   0.3514769 
3 .TEN  -3.0660507  26.9534000  -0.1935468   0.0885825 
3 .MAS   1.7800281  -0.1935468  19.2685997  -0.1701037 
3 .ORZ   0.3514769   0.0885825  -0.1701037 698.7678037 
 
4 .BRB   6.6813868 -30.8158856   7.1415274 -27.2223751 
4 .TEN -30.8158856 265.7267571 -64.3143559  -6.5562355 
4 .MAS   7.1415274 -64.3143559  27.2730941  -4.4670674 
4 .ORZ -27.2223751  -6.5562355  -4.4670674 2.258088E+3 
 
5 .BRB   3.7016579  -1.3363396  -1.2132346   5.7027102 
5 .TEN  -1.3363396  98.6132833  -0.8253365  -8.5565144 
5 .MAS  -1.2132346  -0.8253365  28.7377785  -2.2994488 
5 .ORZ   5.7027102  -8.5565144  -2.2994488 676.4951271 
 
6 .BRB   4.6186034   2.5868735  -3.2956426  -3.4178200 
6 .TEN   2.5868735  33.3589173  -8.5447821  -0.8719286 
6 .MAS  -3.2956426  -8.5447821  27.5221995 -38.7808014 
6 .ORZ  -3.4178200  -0.8719286 -38.7808014 458.5303488 
 
7 .BRB   2.0576087   2.0717072  -1.6564472   5.2831453 
7 .TEN   2.0717072  44.7863761  -5.4215109  -7.0962166 
7 .MAS  -1.6564472  -5.4215109  46.1100101 -1.20101E+2 
7 .ORZ   5.2831453  -7.0962166 -1.20101E+2 1.867644E+3 
 
8 .BRB   7.5378978 -13.5542979  -1.8241472 -12.1807925 
8 .TEN -13.5542979  57.7520158  -0.8422275  -0.2635546 
8 .MAS  -1.8241472  -0.8422275  15.2211084  -0.4430574 
8 .ORZ -12.1807925  -0.2635546  -0.4430574 430.6839545 
 
9 .BRB   0.9484116   1.7191084   2.0590982   3.0688872 
9 .TEN   1.7191084  86.0603983  -1.2719675  -0.1352004 
9 .MAS   2.0590982  -1.2719675  40.5260275  -1.4666695 
9 .ORZ   3.0688872  -0.1352004  -1.4666695 330.0746279 
 
10.BRB   9.3084306 -28.3240064   2.3871528   2.0422720 
10.TEN -28.3240064 115.8447614   0.3047887 -94.0965509 
10.MAS   2.3871528   0.3047887  61.7031154 -2.41502E+2 
10.ORZ   2.0422720 -94.0965509 -2.41502E+2 3.354817E+3 
 
11.BRB   5.8989199  -1.7047572  -3.5498756  32.4758510 
11.TEN  -1.7047572  49.5014397   1.2219108  -6.2735772 
11.MAS  -3.5498756   1.2219108  38.0966888  -5.4214388 
11.ORZ  32.4758510  -6.2735772  -5.4214388 677.4220909 
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12.BRB  20.6277152 -41.6116112  -6.2709677  -7.2622065 
12.TEN -41.6116112 143.2772995   1.3017304  -7.6196831 
12.MAS  -6.2709677   1.3017304  31.2555880   0.2639772 
12.ORZ  -7.2622065  -7.6196831   0.2639772 341.9679113 
 
13.BRB   8.6677069  -0.7066885  -4.9818734  -8.4910604 
13.TEN  -0.7066885  38.0117053   0.2173645   0.0006766 
13.MAS  -4.9818734   0.2173645  29.5682186 -12.4291226 
13.ORZ  -8.4910604   0.0006766 -12.4291226 334.5387765 
 
14.BRB   3.2058314  -4.4309557  -2.5932924   2.9317909 
14.TEN  -4.4309557  49.5956557  -1.5069791  -3.8834446 
14.MAS  -2.5932924  -1.5069791  22.7353560  -6.7900495 
14.ORZ   2.9317909  -3.8834446  -6.7900495 539.4756237 
 
 
PARAMETER  Q̂!1  - Q  inverse matrix 
 
                  BRB            TEN            MAS            ORZ 
1 .BRB   0.3113363  -0.0129625  -0.0424073  -0.0004664 
1 .TEN  -0.0129625   0.0214488   0.0013378   0.0001129 
1 .MAS  -0.0424073   0.0013378   0.0726111   0.0001683 
1 .ORZ  -0.0004664   0.0001129   0.0001683   0.0017739 
 
2 .BRB   1.1945217  -0.0037608  -0.0120084  -0.0042939 
2 .TEN  -0.0037608   0.0228420   0.0007931   0.0000890 
2 .MAS  -0.0120084   0.0007931   0.0445768   0.0031837 
2 .ORZ  -0.0042939   0.0000890   0.0031837   0.0024806 
 
3 .BRB   0.2980208   0.0337062  -0.0271939  -0.0001608 
3 .TEN   0.0337062   0.0409159  -0.0027030  -0.0000228 
3 .MAS  -0.0271939  -0.0027030   0.0543832   0.0000273 
3 .ORZ  -0.0001608  -0.0000228   0.0000273   0.0014312 
 
4 .BRB   0.3639290   0.0452692   0.0122006   0.0045429 
4 .TEN   0.0452692   0.0144081   0.0222262   0.0006315 
4 .MAS   0.0122006   0.0222262   0.0859468   0.0003816 
4 .ORZ   0.0045429   0.0006315   0.0003816   0.0005002 
 
5 .BRB   0.2787983   0.0036795   0.0116947  -0.0022639 
5 .TEN   0.0036795   0.0102029   0.0004563   0.0000996 
5 .MAS   0.0116947   0.0004563   0.0353064   0.0000272 
5 .ORZ  -0.0022639   0.0000996   0.0000272   0.0014986 
 
6 .BRB   0.2495785  -0.0107594   0.0330801   0.0046377 
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6 .TEN  -0.0107594   0.0334745   0.0103098   0.0008554 
6 .MAS   0.0330801   0.0103098   0.0498071   0.0044787 
6 .ORZ   0.0046377   0.0008554   0.0044787   0.0025959 
 
7 .BRB   0.5219096  -0.0224922   0.0144580  -0.0006321 
7 .TEN  -0.0224922   0.0237695   0.0028681   0.0003384 
7 .MAS   0.0144580   0.0028681   0.0269857   0.0017053 
7 .ORZ  -0.0006321   0.0003384   0.0017053   0.0006482 
 
8 .BRB   0.2676269   0.0633686   0.0358022   0.0076447 
8 .TEN   0.0633686   0.0323338   0.0094364   0.0018217 
8 .MAS   0.0358022   0.0094364   0.0705428   0.0010909 
8 .ORZ   0.0076447   0.0018217   0.0010909   0.0025403 
 
9 .BRB   1.2873488  -0.0267206  -0.0666922  -0.0122765 
9 .TEN  -0.0267206   0.0121798   0.0017494   0.0002612 
9 .MAS  -0.0666922   0.0017494   0.0281460   0.0007459 
9 .ORZ  -0.0122765   0.0002612   0.0007459   0.0031472 
 
10.BRB   0.4484414   0.1114373  -0.0093765   0.0021776 
10.TEN   0.1114373   0.0365998  -0.0010298   0.0008846 
10.MAS  -0.0093765  -0.0010298   0.0229499   0.0016289 
10.ORZ   0.0021776   0.0008846   0.0016289   0.0004388 
 
11.BRB   0.2485566   0.0065536   0.0212876  -0.0116848 
11.TEN   0.0065536   0.0204127  -0.0000619  -0.0001256 
11.MAS   0.0212876  -0.0000619   0.0281213  -0.0007961 
11.ORZ  -0.0116848  -0.0001256  -0.0007961   0.0020288 
 
12.BRB   0.1394363   0.0404619   0.0262582   0.0038424 
12.TEN   0.0404619   0.0187317   0.0073272   0.0012710 
12.MAS   0.0262582   0.0073272   0.0369516   0.0006924 
12.ORZ   0.0038424   0.0012710   0.0006924   0.0030336 
 
13.BRB   0.1337547   0.0023475   0.0243257   0.0042986 
13.TEN   0.0023475   0.0263500   0.0002304   0.0000681 
13.MAS   0.0243257   0.0002304   0.0387822   0.0020583 
13.ORZ   0.0042986   0.0000681   0.0020583   0.0031748 
 
14.BRB   0.4038351   0.0374391   0.0481508  -0.0013191 
14.TEN   0.0374391   0.0236890   0.0058528   0.0000407 
14.MAS   0.0481508   0.0058528   0.0499869   0.0004096 
14.ORZ  -0.0013191   0.0000407   0.0004096   0.0018663 
 
PARAMETER Ĝ  -  input G cost matrix 
 



 22 

               land 
1 .land -2.08452E+4 
2 .land -3.94773E+4 
3 .land -2.44938E+4 
4 .land -1.95820E+4 
5 .land -5.62237E+4 
6 .land -4.46220E+4 
7 .land -1.62368E+4 
8 .land -3.65667E+4 
9 .land -4.04197E+4 
10.land -4.02674E+4 
11.land -7.51964E+4 
12.land -2.59564E+4 
13.land -2.39889E+4 
14.land -9.01456E+4 
 
 
PARAMETER !f̂ x̂  
 
1  0.1148425,    2  0.1636634,    3  0.1725346,    4  0.4557730,    5  0.0654597 
6  0.2061026,    7  0.2888122,    8  0.1951070,    9  0.0649497,    10 0.1325372 
11 0.0618992,    12 0.3457535,    13 0.1430823,    14 0.1221670 
 
PARAMETER  !ĝ ŷ  
 
1  0.0002513,    2  0.0001991,    3  0.0002068,    4  0.0002228,    5  0.0001469 
6  0.0002381,    7  0.0001500,    8  0.0002107,    9  0.0001740,    10 0.0001600 
11 0.0001306,    12 0.0001430,    13 0.0002755,    14 0.0001938 
 
PARAMETER !̂  - supply elasticity matrix 
 
                   BRB            TEN            MAS          ORZ 
1 .BRB   0.4370057  -0.0676613  -0.1974308  -0.0407865 
1 .TEN  -0.0973419   0.5989745   0.0333212   0.0528408 
1 .MAS  -0.3065527   0.0359626   1.7409426   0.0758189 
1 .ORZ  -0.0032730   0.0029474   0.0039185   0.7757036 
 
2 .BRB   0.9275877  -0.0105225  -0.0605262  -0.1725105 
2 .TEN  -0.0148452   0.3248811   0.0203195   0.0181736 
2 .MAS  -0.0474018   0.0112797   1.1421315   0.6502004 
2 .ORZ  -0.0161160   0.0012034   0.0775601   0.4816843 
 
3 .BRB   0.3535859   0.1374318  -0.0566667  -0.0365850 
3 .TEN   0.2336297   0.9746281  -0.0329056  -0.0303049 
3 .MAS  -0.1604718  -0.0548150   0.5636361   0.0308481 
3 .ORZ  -0.0010041  -0.0004893   0.0002990   1.7138346 
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4 .BRB   0.1498236   0.0792003   0.0117342   0.1266127 
4 .TEN   0.1421042   0.1922074   0.1629968   0.1342106 
4 .MAS   0.0346885   0.2685535   0.5708824   0.0734581 
4 .ORZ   0.0135593   0.0080106   0.0026611   0.1010721 
 
5 .BRB   0.7519677   0.0203591   0.0631472  -0.2061992 
5 .TEN   0.0517109   0.2941533   0.0128389   0.0472601 
5 .MAS   0.1593730   0.0127575   0.9632467   0.0125159 
5 .ORZ  -0.0321378   0.0029000   0.0007729   0.7184072 
 
6 .BRB   0.4892820  -0.0248342   0.0476229   0.0560784 
6 .TEN  -0.1112182   0.4073913   0.0782588   0.0545393 
6 .MAS   0.3154131   0.1157368   0.3487402   0.2633955 
6 .ORZ   0.0479386   0.0104106   0.0339966   0.1655064 
 
7 .BRB   0.7604396  -0.0754531   0.0374950  -0.0220037 
7 .TEN  -0.2078675   0.5057651   0.0471786   0.0747142 
7 .MAS   0.1227837   0.0560792   0.4079067   0.3460141 
7 .ORZ  -0.0052627   0.0064864   0.0252720   0.1289352 
 
8 .BRB   0.1484611   0.1016614   0.0562885   0.1524102 
8 .TEN   0.2049137   0.3023802   0.0864834   0.2117115 
8 .MAS   0.0954277   0.0727399   0.5328994   0.1045020 
8 .ORZ   0.0217211   0.0149692   0.0087849   0.2594045 
 
9 .BRB   2.8143152  -0.1846698  -0.3077856  -0.4447153 
9 .TEN  -0.3300430   0.4755956   0.0456149   0.0534597 
9 .MAS  -0.7435700   0.0616603   0.6624602   0.1377950 
9 .ORZ  -0.1341901   0.0090259   0.0172107   0.5700326 
 
10.BRB   0.2662527   0.2414317  -0.0249606   0.0532964 
10.TEN   0.4390854   0.5262271  -0.0181933   0.1436754 
10.MAS  -0.0337400  -0.0135222   0.3702642   0.2416150 
10.ORZ   0.0085020   0.0126023   0.0285139   0.0706232 
 
11.BRB   0.5801062   0.0249263   0.1232958  -0.5694353 
11.TEN   0.0869422   0.4413164  -0.0020388  -0.0348018 
11.MAS   0.2588757  -0.0012273   0.8486678  -0.2021372 
11.ORZ  -0.1435328  -0.0025150  -0.0242667   0.5203708 
 
12.BRB   0.1577737   0.1364173   0.1310066   0.0799211 
12.TEN   0.1900428   0.2621488   0.1517444   0.1097347 
12.MAS   0.1233306   0.1025435   0.7652580   0.0597780 
12.ORZ   0.0190317   0.0187576   0.0151210   0.2762043 
 



 24 

13.BRB   0.2102844   0.0085146   0.0593984   0.0776281 
13.TEN   0.0192303   0.4979895   0.0029319   0.0064071 
13.MAS   0.1932327   0.0042231   0.4784756   0.1878072 
13.ORZ   0.0355694   0.0012999   0.0264523   0.3017488 
 
14.BRB   0.6404801   0.1106366   0.0834764  -0.0440072 
14.TEN   0.3130847   0.3691093   0.0535008   0.0071644 
14.MAS   0.3714208   0.0841200   0.4214809   0.0664628 
14.ORZ  -0.0110310   0.0006346   0.0037443   0.3282892 
 
PARAMETER ŵ  - expected revenue weights 
 
           BRB           TEN            MAS         ORZ 
1    0.0406137   0.0290924   0.0295132   0.0164307 
2    0.1334411   0.0937356   0.0489096   0.0628467 
3    0.0526939   0.0446014   0.0698368   0.0072908 
4    0.0999728   0.0893119   0.1383142   0.0539749 
5    0.0326467   0.0412868   0.0385614   0.0256519 
6    0.0371438   0.0828246   0.1151340   0.1600763 
7    0.0501907   0.0688463   0.0769208   0.0605182 
8    0.1287999   0.1292641   0.1021937   0.0925409 
9    0.0376563   0.0335089   0.0425760   0.0572831 
10   0.1026666   0.0929675   0.0649489   0.0825661 
11   0.0424099   0.0736526   0.0416738   0.0538919 
12   0.1555074   0.1078650   0.0685144   0.1866885 
13   0.0298559   0.0335738   0.0454558   0.0689665 
14   0.0564011   0.0794691   0.1174474   0.0712735 
 

The exogenous own-price supply elasticities for the region (state) were taken as 
sugar beets = 0.5; soft wheat = 0.4; corn = 0.6; barley = 0.3.  For a sample of 14 areas 
(representative large farms), the endogenous disaggregated elasticities are  
 
Supply elasticities 
           Sugar        Soft              Corn            Barley 
           Beets        Wheat                        
          0.5               0.4               0.6                0.3        exogenous regional (state) own-price 
                elasticities 
PARAMETER !̂  - disggregated own-price supply elasticities 
 
           BRB           TEN           MAS            ORZ 
1    0.4370057   0.5989745   1.7409425   0.7757036 
2    0.9275876   0.3248811   1.1421314   0.4816843 
3    0.3535859   0.9746280   0.5636361   1.7138345 
4    0.1498236   0.1922074   0.5708824   0.1010721 
5    0.7519677   0.2941533   0.9632466   0.7184071 
6    0.4892820   0.4073913   0.3487402   0.1655063 
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7    0.7604396   0.5057651   0.4079066   0.1289352 
8    0.1484611   0.3023802   0.5328994   0.2594045 
9    2.8143151   0.4755956   0.6624602   0.5700326 
10   0.2662527   0.5262271   0.3702642   0.0706232 
11   0.5801061   0.4413163   0.8486677   0.5203707 
12   0.1577737   0.2621488   0.7652579   0.2762043 
13   0.2102844   0.4979895   0.4784756   0.3017488 
14   0.6404800   0.3691093   0.4214809   0.3282892 
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