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Abstract

Price risk in a mathematical programming framework has been confined for a long time to a
constant risk aversion specification originally introduced by Freund in 1956. This paper
extends the treatment of risk in a mathematical programming framework along the lines
suggested by Meyer (1987) who demonstrated the equivalence of expected utility and a
wide class of probability distributions that differ only by location and scale. This paper
shows how to formulate a PMP specification that allows the estimation of the preference
parameters and calibrates the model to the base data within an admissible small deviation.
The PMP approach under generalized risk allows also the estimation of output supply
elasticities. The approach is applied to a sample of large farms.
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Introduction
The treatment of risk in a mathematical programming framework has been confined to an
exponential utility function with a constant absolute risk aversion coefficient. This is the
strategy originally proposed by Freund (1956) who appealed to the expected utility (EU)
approach and assumed that random prices were normally distributed. These assumptions
lead to a linear mean-variance specification of expected net revenue defined as total
expected revenue minus a risk premium that corresponds to half the variance of revenue
multiplied by the constant absolute risk aversion coefficient. This mathematical
programming approach has serious limitations as only a rare entrepreneur may possess risk
preferences that exhibit constant absolute risk aversion regardless of the firm size and the
market environment.

Many other approaches have been proposed in the literature to deal with risk and
uncertainty. Among them, the mean-standard deviation (MS) approach has had a long
history [Fisher (1906), Hicks (1933), Tintner (1941), Markowitz (1952), Tobin (1958)] but
it has not been applied in a mathematical programming context. Meyer (1987) presented a
remarkable reconciliation between the EU and the MS approaches that may be fruitful in a
PMP analysis of economic behavior under risk. The major objective of Meyer is to find
consistency conditions between the EU and the MS approaches in such a way that an agent
who ranks the alternatives according to the value of some function defined over the first two

moments of the random payoff would rank in the same way those alternatives by means of



the expected value of some utility function defined over the same payoffs. It turns out that
the location and scale (LS) condition is the crucial link to establish the consistency between
the EU and the MS approaches. We reproduce here Meyer’s argument (1987, p. 423):
“Assume a choice set in which all random variables Y; (with finite means and
variances) differ from one another only by location and scale parameters. Let X be the
random variable obtained from one of the Y, using the normalizing transformation
X=(,—u,)/ o, where u, and o, are the mean and standard deviation of Y;. All Y;,no

matter which was selected to define X , are equal in distribution to |, +0,X . Hence, the

expected utility from Y, for any agent with utility function u( ) can be written as

" EU() = [ u(y, +0,x)dF(x)

=V(u,.0,).
where a and b define the interval containing the support of the normalized random variable
X
“... under the LS condition, various popular and interesting hypotheses concerning
absolute and relative risk-aversion measures in the EU setting can be translated into
equivalent properties concerning V(U,,0;) .”
The structure of absolute risk is measured by the slope of the indifference curves in

the (u,0) space that is represented as

-V, (1,0)
2 AR(U,0)=—2"22
2 (u,0) V. (1.0)

where v, (u,0) and V_(u,o0) are first partial derivatives of the V(u,0) function. Some

properties of this risk measure are as follows:



1. Risk aversion is associated with AR(tt,0) >0, risk neutrality with AR(11,0)=0
and risk propensity with AR(u,0)<0.
2.If u(u+ox) displays decreasing (constant, increasing) absolute risk aversion for

JAR(U,0)

all u+ox,then <(=,>)Oforall g and 0>0.

3.If u(u+ox) displays increasing (constant, decreasing) relative risk aversion for

0AR(tl,t0)

all u+ox,then >(=,<) 0 for r>0.

Saha (1997) formulated an MS utility function that conforms to Meyer’s
specification
(3) V(u.0)=p’ -0’
and assumed that 6 >0 . According to this MS utility function, the absolute risk measure

(AR) is specified as

V(o) Y 1o -1
4 AR(u,0)=—2"—"—=*% o,
4) (u,0) V(o) 6

Hence, risk aversion, risk neutrality and risk propensity are associated with y >(=,<) 0,

respectively.

Decreasing, constant and increasing absolute risk aversion (with ¥ >0 ) is defined by

JAR(U, 1-0)y
(wo)_( )7#

o 5 o <(=>)0

(&)

and, therefore, by 0 >1,0 =1,0 <1, respectively. Decreasing, constant and increasing
absolute risk (with ¥ <0) is defined by 6 <1,0=1,0>1.

Decreasing, constant and increasing relative risk aversion is defined (with y >0 ) by



0AR(tl,t0) |

(©) ot

== —0)AR<(=>) 0

and, therefore, by 6 >vy,0 =7,0 <7, respectively.
The risk analysis of Meyer (1987) describes and admits all possible combinations of
risk behavior. Saha’s (1997) implementation of it, for example, admits absolute risk

aversion behavior that may be decreasing, when 6 >1 and y >0 , in association with either
increasing relative risk aversion when y > 6 > 0 or decreasing relative risk aversion when
0 <y <0. Inany given sample of economic agents’ performance, therefore, the prevailing

combination of risk behavior is an empirical question.

Application to PMP
Suppose N farmers produce J crops using / limiting inputs and a linear technology. Let

us assume that the (J x1) vector of crops’ market prices is a random variable p with mean
E(p) and variance-covariance matrix 2 . A (Jx1) vector ¢ of accounting unit variable
costs is also known. Farmer’s availability of limiting resources is given by the (I x1)
vector b . The linear technology is specified by the (/X J) matrix A. The unknown output
levels are given by the (J X 1) vector X . Furthermore, farmer has knowledge of previously
realized levels of outputs that are listed as x , . Random wealth is defined by previously

accumulated wealth, w , augmented by the current net revenue. Assuming a MS utility

function under this scenario, mean wealth is defined as u=w+ (E(p)—¢)’x with standard

deviation equal to 0 = (x'Y px)” 2.

Then, a primal PMP-MS model is specified as follows:



(7 max, ,., V(U,0)= w—o’ =[w+EP)-c)yx)’ - (X’ZPX)W2

Ax<b dual variable y

bject t
subject to x=X +h dual variable A

obs

where h is a vector of deviations from the realized and known output levels. The first set of
constraints forms the structural (technological) relations while the second set constitutes the

calibration constraints. The corresponding dual constraints turn out to be
’ (y/2-1) ’ — ~ 7 7(6-1) ~
(8) y(X'Z x)"TVE x+ Ay + A2 00w+ (EP)-c¢)x]” [E(P)-c].

The complexity of the estimation problem becomes clear by considering the nonlinearity of

relation (8). Parameters 6 and y are usually unknown as are the optimal output levels,x , the

deviations, h, from the observed output levels,x , , the optimal dual variables, y, and the

obs
Lagrange multipliers, A . Furthermore, it is often the case that also the market price of some
input — say land — is known for a homogeneous area or even for a single farm. The PMP

methodology, therefore, should use this information, y , , that will be treated in the form of

obs

the observed output levels as

©) Y=Y tu

where u is an (/X 1) vector of deviations from the observed input prices. Using a least-
squares approach for the estimation of deviations h and u, it turns out that, by the
symmetric duality of least squares (LS), h=A4 and u=y , where y is the vector of
Lagrange multipliers associated with constraint (9). To show this result, consider the
following LS problem

minLS=h’h/2+u'u/2
(10) subject to x=x, +h dual variables A4
Y=Y, tu dual variables y



The corresponding Lagrangean function is
(11) L=hh/2+u'u/2+A(x-x,-h)+y'(y-y,, -0

and first order necessary conditions of L with respect to h and u are

%E:h-azo
(12) alLl
Ju

A crucial issue regards parameters 6 and 7y . On the one hand, an economic

entrepreneur wishes to maximize her utility of wealth while minimizing the disutility of its
risk. On the other hand, it is a fact that high levels of wealth are associated with high risk.
Another fact is that this entrepreneur has already made her choices of a production plan,

X,,, » in the face of output price risk. It is also likely that she does not know (or that she is

obs

not even aware of) parameters 6 and y . The challenge, therefore, is to infer — from her
decisions — the values of parameters 6 and y that could explain the behavior of this

entrepreneur in a rational and reasonable fashion.

We will assume that this entrepreneur is risk averse, implying that 6 >0 and y >0 .

Furthermore, for any given level of expected wealth, a high level of utility will be achieved
with the highest admissible level of parameter 6 , where admissibility depends on the
technology, the limiting input constraints, the observed production plan and the observed
input prices.

An alternative viewpoint, one that mimics the relationship — referred to above —
between high levels of wealth and high levels of its standard deviation, would postulate that

high levels of utility (of wealth) are associated with high levels of its risk disutility.



Therefore, for any given level of the standard deviation of wealth, the parameter ¥ should

acquire the highest admissible value, given the observed production plan and input prices.

Phase I PMP Model
Thus, for estimation purposes, we assume that parameters 0 and y will be maximized
together with the minimization of deviations h and u in a least-squares objective function
subject to relevant primal and dual constraints and their associated complementary slackness

conditions. This choice leads to the following phase I model

(13) minLS=h’h/2+u'u/2-6>-y>
subject to
(14) Ax<b+u
(15) O[w+(EP)—e)x]“V[E@)—c]<Ay+h+yx'Z x)"* VX x
(16) x=x, +h
(17) y = yobs + u
(18) y(b+u-Ax)=0
19) x{Ay+h+yXZ x)"*"Z x-0[w+(EP)—c)x]“"[EP)-c]}=0
(20) hW(x, +h-x)=0
(21) u'(y,, +tu-y)=0

with x>0,y >0,0 >0,y 20, h and u free . Constraints (20) and (21) are redundant and can
be omitted without loss of information.

Constraints (14) represent the structural (technological) relations of input demand
being less-than-or-equal to the effective input supply. Constraints (15) represent the dual
relations with marginal utility of the production plan being less-than-or-equal to its marginal

cost. Here marginal cost has two parts: the marginal cost due to limiting and variable inputs,



A’y +h, and the marginal cost of risk due to the random variability of output prices,
140. € px)(y/ Dy ,X . Constraints (16) and (17) are the calibration relations. Constraints (18)

— (21) are the corresponding complementary slackness conditions.
Judging from the dual constraint (15), the input shadow prices are measured in utility
units. To achieve a dollar measure of these input prices, y, it is sufficient to divide them by

(6-1)

the quantity 6[w + (E(p)—c¢)'x]
Phase II PMP Model
Phase II of the PMP methodology deals with the estimation of a cost function that
embodies all the technological and behavioral information revealed in phase I. Typically, a
marginal cost function expresses a portion of the dual constraints in a phase I PMP model.

In the absence of risk, PMP marginal cost is defined as A’y +(¢+h), where A’y stands for
the marginal cost due to limiting inputs and (¢ +h) for the effective marginal cost due to

variable inputs. In this risky case, marginal cost is given by right-hand-side of relation (15)
where all the elements are measured in utility units. We desire to obtain a dollar expression

of marginal cost, as in the familiar relation MC = E(p) . To achieve this result, the elements
of relation (15) will be divided by the term 8] +(E(p)—c¢)'x]°" to write

(22) MC =z E(p)

1 — ~ ’ — ’ — = ’ — ’ - n
c+ g[w +(E@)-c)x]"P[A’y +h]+ %[w +(E(P)-o/x]""x'Z x)"* " E x> E(p).
In relation (22), all the monetary terms are measured in dollars. The marginal cost of

1
limiting and variable inputs is represented by {c + P [w+(E(P)—c)x]"V[Ay + h]} . The

marginal cost of risky output prices is given by {%[W +(E(@)-co/x"(x'Z x)"* TV E px} :



The cost function selected to synthesize the technological and behavioral relations of

phase I is expressed as a modified Leontief cost function such as

(23) C(x,y)=(Ex)(gY)+(E@VX0x)/2+{E®(y"”) Gy 1.

A cost function is linear homogeneous and concave in input prices, y . Therefore, matrix G
is negative definite. Furthermore, a cost function is increasing in output levels. Thus, matrix
Q is positive definite. Parameters f and g are introduced to give flexibility to the cost
function.

The marginal cost function associated with cost function (23) is given by

(24) MC, = 3—§ = (g'y)f +(gy)Ox+f[(y")YGy"].

The derivative of the cost function with respect to input prices corresponds to Shephard

lemma that produces the demand function for inputs:
ac 2, ’ 2, -1/2\7 172
(25) oy (Fx)g+g(x'0x)/2+(X)[A(y ") Gy "= Ax

-1/2 2

where the term A(y "*)represents a diagonal matrix with elements y;"* on the main

diagonal.

With knowledge of the solution components resulting from the phase I model (13)-
(21), i,&,fl,ﬁ,é,? , a phase I model’s objective is to estimate the parameters of the cost

function, f,g2,0,G . This task is accomplished by means of the following specification

10



(26) min Aux=ff/2+g’g/2
subject to

27) @ +(E@POX+EI(F"7)GY" 1=

c+%UH{E@yaymW%A§+M+%UqumyqyﬂW%yz§W”“z§zE@)

(28)  (FRg+a®00/2+ERIAG "G 1= A%
(29) Q=LDL’

(30)  1=00"

(31) £ >0

(2 g§20

with D >0,f and g free . The minimization of the f and g parameters is a reasonable
objective given that f and g are introduced merely to give flexibility to the cost function

and act as intercepts of the marginal cost and the input demand functions, respectively.

Relation (27) represents MC = E(p) . Relation (28) is Shephard lemma. Relation
(29) is the Cholesky factorization of the QO matrix with D as a diagonal matrix with
positive elements on the main diagonal and L is a unit lower triangular matrix. Relation
(30) defines the inverse of the O matrix. This operation is of interest for computing the
supply elasticities of the various outputs. Relations (31) and (32) guarantee that the cost
function is increasing in output. Finally, the objective function (26) defines a least-squares
approach for the estimation of parameters f and g .

Calibrating Equilibrium Model

With the parameter estimates of the cost function derived from phase II model (26)-(32),
A,Q,Q,é , 1t is possible to set up a calibrating equilibrium model to be used for policy

analysis. Such a model takes on the following structure

11



(33) minCSC=y'z, +x'z,=0
subject to
YIRS Ac oA Py —1/2N\2 A 12 A
(34) fx)g+g(x’0x)/ 2+ (fX)[A(y ") Gy' l+z,=b+1
(35) &Yf+@&y)0x+[(y"”)Gy” 1= E(p)+2,

with x>0,y 20,2z, >0,z, >0 . The objective function represents the complementary

slackness conditions (CSC) of constraints (34) and (35) with an optimal value of zero. The

variables z, and z, are surplus variables of the primal and the dual constraints, respectively.

The solution of model (33)-(35) calibrates precisely the solution obtained from the phase I
model (13)-(21), that is X,; =X and ¥, = ¥, - The calibrating model, then, can be used
to trace the response to changes in the output expected prices and the supply of limiting
inputs.

PMP with Generalized Risk and Price Supply Elasticities
It may be of interest to estimate price supply elasticities for the various commodity outputs
involved in a PMP approach. The supply function for outputs is derivable from relation (24)

by equating it to the expected market output prices, E(P), and inverting the marginal cost
function:

36) x=-0'f-Qfl(y"YG(y")/(gy)+[1/(g'VIQ E(P) output supply function
that leads to the supply elasticity matrix

37 E= A[E(f))]{ag—;}))}A[(x_1 M= AE(P)IQ'A[(x )]/ (g"y) output supply elasticities

where matrices A[E(P)] and A[x'] are diagonal with elements E(p;) and x;' , respectively,

on the main diagonals. Relation (37) includes all the own- and cross-price elasticities for all

the output commodities admitted in the model.

12



Endogenous and Disaggregated Output Supply Elasticities

PMP has been applied frequently to analyze farmers’ behavior to changes in agricultural
policies. A typical empirical setting is to map out several areas in a region (or state) and to
assemble a representative farm for each area (or to treat each area as a large farm). When
supply elasticities are exogenously available (say the own-price elasticities of crops) at the
regional (or state) level (via econometric estimation or other means), a connection of all area
models can be specified by establishing a weighted sum of all the areas endogenous own-
price elasticities and the given regional elasticities. The weights are the share of each area’s
expected revenue over the total expected revenue of the region.

Let us suppose that exogenous own-price elasticities of supply are available at the

regional level for the all the J crops, say 77,,j=1,...,J . Then, the relation among these

exogenous own-price elasticities and the corresponding areas’ endogenous elasticities can

be established as a weighted sum such as

N
(38) ,=>w,,

n=1

where the weights are the areas’ expected revenue shares in the region (state)

E(p )x. .
(39) ot
Zle E(p,)x,
and
(40) nnj = E(ﬁnj )Q;{j'x;:j] /(g:zYn)

where Q}f’ is the jth element of the nth farm (area) on the main diagonal in the inverse of the

Q, matrix. The phase II model that executes the estimation of the disaggregated

13



(endogenous) output supply elasticities for a region (state) that is divided into N areas takes

on the following specification:

(41) minAux=ff/2+g'g/2
subject to
(42) Y +(gV)OX+(¥°)GY"]=
1 T NP SR 4 - A (1) A AN A -
c+ g[w +(E@)-c)x]" P[4’y +h]+ %[W +(E(P)-oyx[""R®'Z %)V E x> E(p)
(43  ((Rg+e®OR)/2+ERIAG )Gy = A%
(44) Q=LDL’
(45) 1=00"
(46) x>0
47) gy=>0
(48) ZE=AE(D)IO0'AIX'/(gy) endogenous own- and cross supply elasticities
E(p )X, .

(49) W, = N(L)NX”’A expected revenue weights

Z,:IE (D)X,

_ ~ iiA—1 . . e

(50) n, = E(p,)0;) X, endogenous own-price elasticities

N
(51 n, = Zannnj disaggregation of exogenous elasticities

n=1

with D, >0,g and f free and fXx>0 and g’y >0.

Empirical Implementation of PMP_MDS with Supply Elasticities — Large Farms

The PMP-MS approach described in previous sections was applied to three samples of

representative farms (small, medium and large) with N = 14 observations in each sample.

We report the estimates of the large-farm sample. There are four crops: sugar beet (BRB),

soft wheat (TEN), corn (MAS) and barley (ORZ). There is only one limiting input: land.

From Phase I Model (13)-(21)

1014 VARIABLE theta.lL coefficient of the Mean

PARAMETER 6

14



1 1.0477336, 2 1.0539034, 3 1.0790223, 4 1.0726528, 5 1.0008581
6 1.0386790, 7 1.0782421, 8 1.0819357, 9 1.0842247, 10 1.0667055
11 1.0707482, 121.0092212, 131.0015747, 14 1.0398168

PARAMETER ¥

1 1.2445509, 2 1.2534702, 3 1.2445841, 4 1.2582925, 5 1.1532393
6 12118774, 7 1.2747046, 8 1.2746439, 9 1.3160656, 10 1.2601629
11 1.2541866, 12 1.1653607, 13 1.1526221, 14 1.2162482

All fourteen farmers exhibit decreasing absolute risk aversion, 6 > 1. All farmers exhibit
increasing relative risk aversion, 7 >0 .

PARAMETER risk aversion

1 00123526, 2 0.0066949, 3 0.0052539, 4 0.0038768, 5 0.0072606
6 0.0037938, 7 0.0053129, 8 0.0036410, 9 0.0109963, 100.0051071
11 0.0057658, 120.0040152, 130.0069743, 14 0.0040743

PARAMETER wealth derivative of absolute risk aversion

1 -0.0008419, 2 -0.0005320, 3 -0.0010481, 4 -0.0006543
5 -0.0000427, 6 -0.0007684, 7 -0.0007369, 8 -0.0005705
9 -0.0006823, 10-0.0006540, 11 -0.0009364, 12 -0.0002642
13 -0.0000770, 14 -0.0007285

PARAMETER x, observed output levels

BRB TEN MAS ORZ
1.133424E+3 305.4032351 341.3693403 18.2398722
3.103783E+3 861.7445535 478.4465107 59.8025522
1.547978E+3 450.7937871 881.9748433 7.6887358
3.488354E+3 821.3934271 1.493332E+3 51.1247151
959.1102412 468.2848696 478.9261801 28.2406037
942.2039951 801.1288268 1.283591E+3 152.5812215
1.600731E+3 695.8293118 899.4739570 66.9718421
3.507549E+3 1.212855E+3 1.237584E+3 98.0497703
1.050537E+3 332.3773404 498.0150725 63.6696198
10 3.473678E+3 952.5199370 774.7402863 84.0070376
11 1.245722E+3 765.1689195 501.9673305 59.5366249
12 3.276145E+3 1.100168E+3 742.9419407 177.9744313
13 877.0970595 380.9171917 564.6091640 76.2122654
14 1.430946E+3 768.6901276 1.309392E+3 67.7906102

01NN B~ W=

O
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PARAMETER X - optimal crop levels in phase I model

BRB TEN MAS ORZ
1.133841E+3 304.9003333 341.8497521 18.1976713
3.104476E+3 861.6030580 478.2897000 60.0045325
1.548519E+3 450.5967725 881.6756889 8.0748979
3.488766E+3 820.9405594 1.493348E+3 51.5339016
959.3913739 467.6686456 479.2238883 28.4105088
942.7001436 800.6885278 1.283737E+3 152.8370373
1.601383E+3 695.5367076 899.7048529 67.0263115
3.508096E+3 1.213032E+3 1.237782E+3 97.6121283
1.051278E+3 332.5400598 497.9904886 63.4433605
10 3.474201E+3 952.0932429 774.8693405 84.2813824
11 1.246301E+3 764.7621817 502.2088444 59.6874786
12 3.276536E+3 1.099640E+3 743.0977719 178.2457393
13 877.3783649 380.3006737 564.9044723 76.3831745
14 1.431446E+3 768.2501195 1.309532E+3 68.0502120

0N N B~ Wi =

O

PARAMETER h - deviations from x

obs

BRB TEN MAS ORZ

0.4174666
0.6929796
0.5410446
0.4118370
0.2811327
0.4961485
0.6521659

-0.5029018
-0.1414955
-0.1970146
-0.4528677
-0.6162240
-0.4402990
-0.2926042

0.4804118
-0.1568107
-0.2991544

0.0164491

0.2977082

0.1464425

0.2308959

-0.0422010

0.2019803
0.3861621
0.4091865
0.1699051
0.2558158
0.0544695

0.5473309 0.1770229
0.7415965 0.1627194
0.5230429
0.5790732
0.3910239
0.2813054
0.4999870

0.1981659 -0.4376420
-0.0245839 -0.2262593
-0.4266941 0.1290542 0.2743447
-0.4067378 0.2415139 0.1508537
-0.5283951 0.1558312 0.2713080
-0.6165180 0.2953083 0.1709091
-0.4400081 0.1403054 0.2596018

O 01NN B Wi

10
11
12
13
14

PARAMETER vy - observed land price

NN Bl W

land
0.7488488
0.6918612
0.6875297
0.6751747
0.5976591
0.5482897
0.7807244

16



8 0.9028318
9 0.7826706
10 0.8180012
11 0.6382583
12 0.6690701
13 0.6482950
14 0.4651773

PARAMETER ¥ - optimal land shadow price

land
0.7011229
0.6918300
0.7039447
0.6752100
0.5592771
0.5418763
0.7850682
0.8798274
9 0.7883638
10 0.8300010
11 0.6320721
12 0.6334454
13 0.6095794
14 0.4586504

01NN B~ Wi

PARAMETER u - deviations from y,,,
land
-0.0477259
-0.0000312
0.0164150
0.0000353
-0.0383820
-0.0064134
0.0043438
-0.0230044
0.0056932
10 0.0119998
11 -0.0061862
12 -0.0356247
13 -0.0387156
14 -0.0065269

0NN B Wi =

O

From Phase II Model (41)-(51)
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PARAMETER f- cost function

BRB TEN MAS ORZ

1 0.0000653 0.0001451 -0.0000117 0.0000331
2 0.0000034 0.0001862 -0.0000184 0.0000266
3 0.0000520 -0.0000421 0.0001262 -0.0000431
4 0.0000984 0.0000557 0.0000454 -0.0000180
5 -0.0000004 0.0001434 -0.0000043 0.0000279
6 -0.0000017 0.0000817 0.0001031 0.0000653
7 0.0000149 0.0001685 0.0001578 0.0000861
8 0.0000302 0.0000661 0.0000133 -0.0000755
9 0.0000027 0.0000918 0.0000552 0.0000650
10 0.0000255 -0.0000454 0.0001127 -0.0000021
11 0.0000091 0.0000534 0.0000004 0.0001596
12 0.0001058 0.0000472 -0.0000977 0.0001108
13 0.0000470 0.0001276 0.0000847 0.0000720
14 -0.0000201 0.0000823 0.0000628 0.0000800
PARAMETER g - cost function

land
0.0003585
0.0002878
0.0002938
0.0003300
0.0002626
0.0004394
0.0001911
0.0002395
0.0002208
10 0.0001927
11 0.0002067
12 0.0002257
13 0.0004519
14 0.0004226

0NN B~ W=

O

PARAMETER Q - output Q cost matrix

BRB TEN MAS ORZ
1 .BRB 3.5766596 2.0304287 2.0500501 0.6164998
1 TEN 2.0304287 47.8437788 0.3102451 -2.5415393
1 MAS 2.0500501 0.3102451 14.9656720 -0.9009641
1 .ORZ 0.6164998 -2.5415393 -0.9009641 564.1352158

2 BRB 0.8435185 0.1292506 0.1331886 1.2845607

2 TEN 0.1292506 43.8267742 -0.7140416 -0.4320476
2 MAS 0.1331886 -0.7140416 24.7303847 -31.4843316
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2 .ORZ 1.2845607 -0.4320476 -31.4843316 445.7819448

BRB 3.8648558 -3.0660507 1.7800281 0.3514769
TEN -3.0660507 26.9534000 -0.1935468 0.0885825
MAS 1.7800281 -0.1935468 19.2685997 -0.1701037
.ORZ 0.3514769 0.0885825 -0.1701037 698.7678037

W W W W

BRB 6.6813868 -30.8158856 7.1415274 -27.2223751

.TEN -30.8158856 265.7267571 -64.3143559 -6.5562355
MAS 7.1415274 -64.3143559 27.2730941 -4.4670674
.ORZ -27.2223751 -6.5562355 -4.4670674 2.258088E+3

RS S

BRB 3.7016579 -1.3363396 -1.2132346 5.7027102
.TEN -1.3363396 98.6132833 -0.8253365 -8.5565144
MAS -1.2132346 -0.8253365 28.7377785 -2.2994488
ORZ 5.7027102 -8.5565144 -2.2994488 676.4951271

WD L D

BRB 4.6186034 2.5868735 -3.2956426 -3.4178200
TEN 2.5868735 33.3589173 -8.5447821 -0.8719286
MAS -3.2956426 -8.5447821 27.5221995 -38.7808014
.ORZ -3.4178200 -0.8719286 -38.7808014 458.5303488

AN D

BRB 2.0576087 2.0717072 -1.6564472 5.2831453
TEN 20717072 44.7863761 -5.4215109 -7.0962166
MAS -1.6564472 -54215109 46.1100101 -1.20101E+2
ORZ 5.2831453 -7.0962166 -1.20101E+2 1.867644E+3

VRN EEN BN |

BRB 7.5378978 -13.5542979 -1.8241472 -12.1807925
TEN -13.5542979 57.7520158 -0.8422275 -0.2635546
MAS -1.8241472 -0.8422275 15.2211084 -0.4430574
.ORZ -12.1807925 -0.2635546 -0.4430574 430.6839545

o0 OO0 OO0 OO

9 BRB 09484116 1.7191084 2.0590982 3.0688872

9 .TEN 1.7191084 86.0603983 -1.2719675 -0.1352004

9 MAS 2.0590982 -1.2719675 40.5260275 -1.4666695

9 .ORZ 3.0688872 -0.1352004 -1.4666695 330.0746279
10.BRB 9.3084306 -28.3240064 2.3871528 2.0422720
10.TEN -28.3240064 115.8447614 0.3047887 -94.0965509
10.MAS 23871528 0.3047887 61.7031154 -2.41502E+2
10.0RZ 2.0422720 -94.0965509 -2.41502E+2 3.354817E+3

11.BRB 5.8989199 -1.7047572 -3.5498756 32.4758510
11.TEN -1.7047572 49.5014397 1.2219108 -6.2735772
11.MAS -3.5498756 1.2219108 38.0966888 -5.4214388
11.0RZ 32.4758510 -6.2735772 -5.4214388 677.4220909
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12.BRB 20.6277152 -41.6116112 -6.2709677 -7.2622065
12.TEN -41.6116112 143.2772995 1.3017304 -7.6196831
12.MAS -6.2709677 1.3017304 31.2555880 0.2639772
12.0RZ -7.2622065 -7.6196831 0.2639772 341.9679113

13.BRB 8.6677069 -0.7066885 -4.9818734 -8.4910604
13.TEN -0.7066885 38.0117053 0.2173645 0.0006766
13.MAS -4.9818734 0.2173645 29.5682186 -12.4291226
13.0RZ -8.4910604 0.0006766 -12.4291226 334.5387765

14.BRB 3.2058314 -4.4309557 -2.5932924 2.9317909
14 TEN -4.4309557 49.5956557 -1.5069791 -3.8834446
14 MAS -2.5932924 -1.5069791 22.7353560 -6.7900495
14.0RZ 29317909 -3.8834446 -6.7900495 539.4756237

PARAMETER Q"l - O inverse matrix

BRB TEN MAS ORZ
BRB 0.3113363 -0.0129625 -0.0424073 -0.0004664
.TEN -0.0129625 0.0214488 0.0013378 0.0001129
MAS -0.0424073 0.0013378 0.0726111 0.0001683
.ORZ -0.0004664 0.0001129 0.0001683 0.0017739

[ U G G WY

BRB 1.1945217 -0.0037608 -0.0120084 -0.0042939
.TEN -0.0037608 0.0228420 0.0007931 0.0000890
MAS -0.0120084 0.0007931 0.0445768 0.0031837
.ORZ -0.0042939 0.0000890 0.0031837 0.0024806

[NSTN \S I \S I\

BRB 0.2980208 0.0337062 -0.0271939 -0.0001608
TEN 0.0337062 0.0409159 -0.0027030 -0.0000228
MAS -0.0271939 -0.0027030 0.0543832 0.0000273
.ORZ -0.0001608 -0.0000228 0.0000273 0.0014312

W W W W

BRB 0.3639290 0.0452692 0.0122006 0.0045429
TEN 0.0452692 0.0144081 0.0222262 0.0006315
MAS 0.0122006 0.0222262 0.0859468 0.0003816
.ORZ 0.0045429 0.0006315 0.0003816 0.0005002

A~ B~ BB

BRB 0.2787983 0.0036795 0.0116947 -0.0022639
TEN 0.0036795 0.0102029 0.0004563 0.0000996
MAS 0.0116947 0.0004563 0.0353064 0.0000272
.ORZ -0.0022639 0.0000996 0.0000272 0.0014986

WD L D D

6 .BRB 0.2495785 -0.0107594 0.0330801 0.0046377
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(o) We)

NN

o0 OO0 OO0 OO

9
9
9
9

10.BRB
10.TEN
10.MAS
10.0RZ

11.BRB
11.TEN
11.MAS
11.0RZ

12.BRB
12.TEN
12.MAS
12.0RZ

13.BRB
13.TEN
13.MAS
13.0RZ

14.BRB
14 TEN
14 MAS
14.0RZ

TEN
MAS
.ORZ

.BRB
TEN
MAS
.ORZ

.BRB
TEN
MAS
.ORZ

.BRB
.TEN
MAS -0.0666922 0.0017494
.ORZ

-0.0107594 0.0334745
0.0330801 0.0103098
0.0046377 0.0008554

0.5219096 -0.0224922
-0.0224922 0.0237695
0.0144580 0.0028681
-0.0006321 0.0003384

0.2676269 0.0633686
0.0633686 0.0323338
0.0358022 0.0094364
0.0076447 0.0018217

1.2873488 -0.0267206
-0.0267206 0.0121798

-0.0122765 0.0002612

0.4484414 0.1114373
0.1114373 0.0365998

0.2485566
0.0065536

0.0212876
-0.0116848

0.1394363
0.0404619
0.0262582
0.0038424

0.0404619
0.0187317

0.0012710

0.1337547
0.0023475

0.0243257
0.0042986

0.0023475
0.0263500

0.0000681

0.0103098
0.0498071
0.0044787

0.0144580
0.0028681
0.0269857
0.0017053

0.0358022
0.0094364
0.0705428
0.0010909

-0.0666922
0.0017494

0.0281460
0.0007459

-0.0093765
-0.0010298

0.0262582
0.0073272

0.0073272 0.0369516

0.0006924

0.0243257
0.0002304

0.0002304 0.0387822

0.0020583

PARAMETER G - input G cost matrix

0.0008554
0.0044787
0.0025959

-0.0006321
0.0003384
0.0017053
0.0006482

0.0076447
0.0018217
0.0010909
0.0025403

-0.0122765
0.0002612

0.0007459
0.0031472

0.0021776
0.0008846

-0.0093765 -0.0010298 0.0229499 0.0016289
0.0021776 0.0008846 0.0016289 0.0004388

0.0065536 0.0212876 -0.0116848
0.0204127 -0.0000619 -0.0001256
-0.0000619 0.0281213
-0.0001256 -0.0007961

-0.0007961
0.0020288

0.0038424
0.0012710
0.0006924
0.0030336

0.0042986
0.0000681

0.0020583
0.0031748

0.4038351 0.0374391 0.0481508 -0.0013191
0.0374391 0.0236890 0.0058528 0.0000407
0.0481508 0.0058528 0.0499869 0.0004096
-0.0013191 0.0000407 0.0004096 0.0018663
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land
Jand -2.08452E+4
Jand -3.94773E+4
Jand -2.44938E+4
Jand -1.95820E+4
Jand -5.62237E+4
Jand -4.46220E+4
Jand -1.62368E+4
Jand -3.65667E+4
9 and -4.04197E+4
10.land -4.02674E+4
11.land -7.51964E+4
12.]land -2.59564E+4
13.land -2.39889E+4
14.land -9.01456E+4

0NN B~ W=

PARAMETER f%

1 0.1148425, 2 0.1636634, 3 0.1725346, 4 04557730, 5 0.0654597
6 0.2061026, 7 0.2888122, 8 0.1951070, 9 0.0649497, 10 0.1325372
110.0618992, 120.3457535, 130.1430823, 140.1221670

PARAMETER &'y

1 0.0002513, 2 0.0001991, 3 0.0002068, 4 0.0002228, 5 0.0001469
6 0.0002381, 7 0.0001500, 8 0.0002107, 9 0.0001740, 10 0.0001600
11 0.0001306, 120.0001430, 130.0002755, 140.0001938

PARAMETER = - supply elasticity matrix

BRB TEN MAS ORZ
BRB 0.4370057 -0.0676613 -0.1974308 -0.0407865
TEN -0.0973419 0.5989745 0.0333212 0.0528408
MAS -0.3065527 0.0359626 1.7409426 0.0758189
.ORZ -0.0032730 0.0029474 0.0039185 0.7757036

[ VG G G WY

BRB 0.9275877 -0.0105225 -0.0605262 -0.1725105
TEN -0.0148452 0.3248811 0.0203195 0.0181736
MAS -0.0474018 0.0112797 1.1421315 0.6502004
.ORZ -0.0161160 0.0012034 0.0775601 0.4816843

[NST (S I NS \S]

BRB 0.3535859 0.1374318 -0.0566667 -0.0365850
TEN 0.2336297 0.9746281 -0.0329056 -0.0303049
MAS -0.1604718 -0.0548150 0.5636361 0.0308481
.ORZ -0.0010041 -0.0004893 0.0002990 1.7138346

W W W W
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NN AN D W L L

o0 OO0 OO0 OO

9
9
9
9

.BRB
TEN
MAS
.ORZ

.BRB
TEN
MAS
.ORZ

.BRB
TEN
MAS
.ORZ

.BRB
TEN
MAS
.ORZ

.BRB
TEN
MAS
.ORZ

.BRB
TEN
MAS
.ORZ

0.1498236
0.1421042
0.0346885
0.0135593

0.7519677
0.0517109

0.1593730
-0.0321378

0.4892820
-0.1112182
0.3154131
0.0479386

0.7604396
-0.2078675
0.1227837
-0.0052627

0.1484611
0.2049137
0.0954277
0.0217211

2.8143152
-0.3300430 0.4755956
-0.7435700 0.0616603
-0.1341901 0.0090259

0.0792003
0.1922074
0.2685535
0.0080106

0.0203591
0.2941533
0.0127575
0.0029000

-0.0248342
0.4073913
0.1157368
0.0104106

-0.0754531
0.5057651
0.0560792
0.0064864

0.1016614
0.3023802
0.0727399
0.0149692

-0.1846698

10.BRB 0.2662527 0.2414317
10.TEN 0.4390854 0.5262271
10.MAS -0.0337400 -0.0135222 0.3702642 0.2416150
10.0RZ 0.0085020 0.0126023 0.0285139 0.0706232

11.BRB 0.5801062
11.TEN 0.0869422
11.MAS 0.2588757
11.0RZ -0.1435328

12.BRB 0.1577737
12.TEN 0.1900428
12.MAS 0.1233306
12.0RZ 0.0190317

0.0117342
0.1629968
0.5708824
0.0026611

0.0631472
0.0128389
0.9632467
0.0007729

0.0476229
0.0782588
0.3487402
0.0339966

0.0374950
0.0471786
0.4079067
0.0252720

0.0562885
0.0864834
0.5328994
0.0087849

-0.3077856
0.0456149

0.6624602
0.0172107

0.1266127
0.1342106
0.0734581
0.1010721

-0.2061992
0.0472601
0.0125159
0.7184072

0.0560784
0.0545393
0.2633955
0.1655064

-0.0220037
0.0747142
0.3460141
0.1289352

0.1524102
02117115
0.1045020
0.2594045

-0.4447153
0.0534597

0.1377950
0.5700326

-0.0249606 0.0532964

-0.0181933

0.1436754

0.0249263 0.1232958 -0.5694353
04413164 -0.0020388 -0.0348018
-0.0012273 0.8486678 -0.2021372
-0.0025150 -0.0242667 0.5203708

0.1364173 0.1310066 0.0799211
0.2621488 0.1517444 0.1097347
0.1025435 0.7652580 0.0597780
0.0187576 0.0151210 0.2762043
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13.BRB 0.2102844 0.0085146
13.TEN 0.0192303 0.4979895
13.MAS 0.1932327 0.0042231
13.0RZ 0.0355694 0.0012999

0.0593984 0.0776281
0.0029319 0.0064071
0.4784756 0.1878072
0.0264523 0.3017488

14.BRB 0.6404801 0.1106366
14 TEN 0.3130847 0.3691093 0.0535008 0.0071644
14 MAS 0.3714208 0.0841200 0.4214809 0.0664628
14.0RZ -0.0110310 0.0006346 0.0037443 0.3282892

0.0834764 -0.0440072

PARAMETER W - expected revenue weights

0NN B~ W=

— = = = = \©
Lo = O

BRB
0.0406137
0.1334411
0.0526939
0.0999728
0.0326467
0.0371438
0.0501907
0.1287999
0.0376563

0.1026666
0.0424099
0.1555074
0.0298559
0.0564011

TEN
0.0290924
0.0937356
0.0446014
0.0893119
0.0412868
0.0828246
0.0688463
0.1292641
0.0335089

0.0929675
0.0736526
0.1078650
0.0335738
0.0794691

MAS
0.0295132
0.0489096
0.0698368
0.1383142
0.0385614
0.1151340
0.0769208
0.1021937
0.0425760

0.0649489
0.0416738
0.0685144
0.0454558
0.1174474

ORZ
0.0164307
0.0628467
0.0072908
0.0539749
0.0256519
0.1600763
0.0605182
0.0925409
0.0572831

0.0825661

0.0538919

0.1866885

0.0689665

0.0712735

The exogenous own-price supply elasticities for the region (state) were taken as
sugar beets = 0.5; soft wheat = 0.4; corn = 0.6; barley = 0.3. For a sample of 14 areas
(representative large farms), the endogenous disaggregated elasticities are

Supply elasticities
Sugar Soft Corn Barley
Beets Wheat
0.5 04 0.6 0.3 exogenous regional (state) own-price

elasticities
PARAMETER 7 - disggregated own-price supply elasticities

AN B W

BRB
0.4370057
0.9275876
0.3535859
0.1498236
0.7519677
0.4892820

TEN
0.5989745
0.3248811
0.9746280
0.1922074
0.2941533
0.4073913

MAS
1.7409425
1.1421314
0.5636361
0.5708824
0.9632466
0.3487402

ORZ
0.7757036
0.4816843
1.7138345
0.1010721
0.7184071
0.1655063
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7 0.7604396 0.5057651 0.4079066 0.1289352

8 0.1484611 0.3023802 0.5328994 0.2594045

9 28143151 0.4755956 0.6624602 0.5700326

10 0.2662527 0.5262271 0.3702642 0.0706232

11 0.5801061 0.4413163 0.8486677 0.5203707

12 0.1577737 0.2621488 0.7652579 0.2762043

13 0.2102844 0.4979895 0.4784756 0.3017488

14 0.6404800 0.3691093 0.4214809 0.3282892
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