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1. Introduction 

For more than a century, statisticians have attempted to solve the problem of obtaining 

consistent parameter estimates (intercept, slope, error variances) in a linear regression 

where both dependent and independent (explanatory) variables are subject to 

measurement errors. Traditionally, this problem has gone by the name of the errors-in-

variables (EIV) model. A varying degree of success was attained during a century of 

efforts. One desirable objective, however, has escaped so far: the goal of obtaining an 

easy method for consistent parameter estimates under general and plausible assumptions 

using only first and second-order moments of the sample information. This goal is 

desirable for a number of reasons: simplicity, relation to maximum likelihood estimates 

under normality assumptions, global optimum, and avoidance of the difficulties 

associated with obtaining valid measures of the fourths and higher moments in empirical 

analyses. 

  Adcock (1878) appears to have pioneered the discussion of the EIV model by 

recognizing that the naïve least-squares method has “a problem.” His suggestion was to 

compute orthogonal (to the estimated regression line) errors for which he had to assume 

equal variances of the errors in both dependent and independent variables. This means 

that he had to augment the usual sample information with additional out-of-sample 

knowledge about errors variances. Over time, researchers have suggested a variety of 

approaches that recognize the prevailing consensus about the need of additional (user 
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supplied) information in order to obtain the desired properties of the parameter estimates. 

Gillard (2010) presents an overview of various approaches covering instrumental 

variables, maximum likelihood, the moment method and others. Several important papers 

by Reiersøl (1950), Neyman (1951), Wolfowitz (1954) and Kiefer and Wolfowitz (1956), 

however, are omitted. All these papers establish the strong consistency of maximum 

likelihood estimates of a rather general EIV structural regression subject only to the 

exclusion condition of Reiersøl (1950). His remarkable theorem states that – to achieve 

identification of the parameter estimates – the latent variable(s) of the EIV model cannot 

be distributed as normal random variables.  It appears that Kiefer and Wolfowitz (1956) 

results have been neglected, especially in recent years. Kendall and Stuart (1979), for 

example, in their fourth edition of volume 2, dealing with maximum likelihood and the 

EIV structural model, mention neither Reiersøl (1950) nor Kiefer and Wolfowitz (1956). 

Another example of omitted important literature is associated with the works of 

Pal (1980), Van Monfort et al. (1987), Cragg (1997) and Dagenais and Dagenais (1997) 

who discuss the method of moments in the context of the EIV model estimation but do 

not mention Neyman (1951), Wolfowitz (1954) and Kiefer and Wolfowitz (1956). Their 

idea is to use sample moments of order higher than the first and second one to obtain 

estimates of the slope coefficient and then derive the other parameters from relations 

based upon first and second moments. There are some warnings. If the latent random 

variable is distributed according to a symmetric distribution (normal, uniform), the third 

moment vanishes and it is necessary to use forth moments to estimate the slope. The 

variance of the estimated coefficient, then, involves eighth-order moments. The higher 

the moments, the more demanding the information requirement for their valid measure. 
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In recent years, nonparametric methods have been applied to the EIV problem 

(see Delaigle and Meister, 2007). But, often, the importance of knowing the structure of 

the regression function explicitly and the dimension of the individual parameters 

(elasticities) works in the direction of parametric estimation. 

 Also, we are not interested in sample moments of higher order. As the paper’s 

title states, we discuss a rather simple procedure that achieves consistent parameter 

estimates using only first and second-order moments of the sample information. In 

section 2 we define the simplest EIV structural model along the lines of many 

predecessors and in particular of Lindley (1947), Wolfowitz (1954), Kiefer and 

Wolfowitz (1956) and Kendall and Stuart (1979). We consider the second-order moment 

relations derived by these authors who noted that for the simplest EIV structural model 

there are three second-order moment relations but four parameters to estimate. Hence, by 

considering only these second-order moments, the EIV model is not identified. 

In this paper, we introduce a neutral transformation of the random errors and set 

up a mathematical programming model that, in principle, exhibits a global maximum and 

achieves consistent estimates of all parameters involved. Our estimator does not have a 

closed form solution. It requires a numerical optimization software like GAMS. We do 

not use a maximum likelihood approach. Instead, we use a dual least-squares 

methodology along the lines discussed by Paris (2011). In section 3, we give a brief and 

simple introduction to the dual of the least-squares method and note that the dual least-

squares specification possesses a global maximum over the parameter space. In section 4, 

we extend the estimator to three latent random variables (one dependent and two 

“explanatory”). In section 5, we present a Monte Carlo experiment dealing with an EIV 
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regression with two latent variables (one dependent and one “explanatory”) and involving 

6 parameters. In section 6, we present a Monte Carlo experiment dealing with an EIV 

regression with three latent variables (one dependent and two “explanatory”) and 

involving 10 parameters. The results of both Monte Carlo experiments do not negate the 

conjecture that the dual LS estimator produces consistent estimates of the EIV model’s 

parameters.  In section 7, we generalize the specification of the EIV dual LS estimator to 

K latent “explanatory” variables in vector and matrix notation. Conclusions come in 

section 8. 

 

2. The Simplest EIV Case 

Following Kendall and Stuart (1979, p. 400), we state a linear relation between two latent 

random variables  in the form of  

     Y * =! + "X*             (1) 

with the objective of estimating parameters !  and ". As Y *  and X*  are latent variables 

they are not observed directly. In their place, we measure repeatedly two random 

variables Y  and X  that bear the following relations with the latent variables 

     
yi = yi

* + ui
*                                                    (2)

xi = xi
* + vi

*                                                    (3)
  

i = 1,...,N , where ui
*  and vi

*  are i.d.d. measurement errors (deviations) from the true 

value of the latent variables  Y *  and X* .  

 In this simplest case, we assume that  

Y *  and X*
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E(ui
*) = E(vi

*) = 0,     var(ui
*) =!

u*
2 ,   var(vi

*) =!
v*
2     all i,

cov(ui
*,uj

*) = cov(vi
*,vj

*) = 0,       i " j,

cov(ui
*,vj

*) = 0,    all i, j.

                 (4) 

The EIV model, therefore, can be restated as 

       
yi =! + "xi

* + ui
*                                                                 (5)

xi = xi
* + vi

*.                                                                         (6)
 

The use of assumptions (4) allows the conclusion that 

    E(x) = E(x*) = µ
E(y) =! + "µ

      (7) 

Lindley (1947) and Kendall and Stuart (1979) stated the second-order moment relations: 

    

var(y) = ! 2"
x*
2 +"

u*
2                                                 (8)

var(x) ="
x*
2 +"

v*
2                                                      (9)

cov(y, x) = !"
x*
2 .                                                       (10)

 

By using first- and second-order sample moments to approximate the left-hand-side 

population moments of relations (7)-(10), the list of EIV conditions can be restated as 

    

x = µ                                                                   (11)
y =! + "µ                                                           (12)
myy = " 2#

x*
2 +#

u*
2                                                 (13)

mxx =# x*
2 +#

v*
2                                                     (14)

myx = "#
x*
2 .                                                          (15)

  

Several authors, including Lindley (1947) and Kendall and Stuart (1979) acknowledge 

the non-identification of system (11)-(15) because it admits six parameters 

(µ,! ,",#
u*
2 ,#

v*
2#

x*
2 )  but only five equations. These authors emphasized the need for 

additional (user supplied) sample information. 
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 We propose to tackle the estimation problem from a different angle. First, we 

wish to keep together the structure of the EIV relations (5) and (6) with the second-order 

moment relations (11)-(15).  Second, we directly connect the variances !
u*
2  and !

v*
2  in 

(13) and (14) to relations (5) and (6) by means of a neutral but crucial parameterization of 

the error terms, namely 

    
ui

* =! uUi                                                             (16)
vi

* =! vVi                                                             (17)
 

 where Ui  and Vi  are standard normal variables. This means that !
u*
2 =! u

2  and !
v*
2 =! v

2  

Furthermore, using (7) in a sample context, 

   y * =! + "x *            (18)  

where y *  and x *  are the sample means of the latent variables Y *  and X*   whose 

realizations are stated as in (2) and (3). Thus, the array of estimable relations of the 

simplest EIV model is assembled as follows 

   
yi =! + "xi

* +# uUi                                                                 (19)
xi = xi

* +# vVi                                                                           (20)
 

              

y * =! + "x *                                                                            (21)
myy = " 2#

x*
2 +# u

2                                                                      (22)

mxx =# x*
2 +# v

2                                                                          (23)

myx = "#
x*
2                                                                                (24)

 

      

Uii=1

N! / N = 0                                                                        (25)

Ui
2

i=1

N! / N = 1                                                                        (26)

Vii=1

N! / N = 0                                                                        (27)

Vi
2

i=1

N! / N = 1                                                                        (28)
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with ! u > 0,! v > 0,! x*
> 0 .     

This specification of the EIV model is akin to the specification of Kiefer and 

Wolfowitz (1956) who derived consistent ML estimates “in the presence of infinitely 

many incidental parameters (latent variables).”  

   We, however, will not maximize a likelihood function. The system of relations 

(19)-(28) does not have a closed form solution. In principle, it can have a solution where 

all the parameters have admissible values, with ! u > 0,! v > 0,! x*
> 0 .  In other words, it 

is necessary to find an interior solution of the parameter space.  Any boundary solution is 

not admissible. It is desirable, therefore, to find an interior solution that optimizes some 

robust statistical function. For this task, we choose the dual objective function of the 

least-squares (LS) method described by Paris (2011, p. 70). The reason for this choice 

resides in the global maximum of the dual LS specification, the numerical stability of the 

optimization problem and the intuitive meaning of the dual LS approach.  

 Using the terminology of information theory, the dual of the least-squares method 

corresponds to the maximization of the net value of sample information (NVSI).  By 

applying this criterion to the EIV model described above, the structure of the objective 

function to be maximized subject to relations (19)-(28) turns out as 

  
maxNVSI =! u yi

i=1

N

" Ui / N +! v xi
i=1

N

" Vi / N                                    (29)

                    # [yi
i=1

N

" #$ # %xi
*]2 / 2N #! v

2 Vi
2

i=1

N

" / 2N .
  

It must be emphasized that the estimator developed in this section provides 

estimates not only of parameters !  and "  defining the linear regression but also of the 

error variances ! u
2  and ! v

2 . And, finally, it provides estimates of the mean and variance 
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of the latent variable X* , µ
x*  and !

x*
2 . Actually, with the estimate of the N values x̂i

*  of 

the latent variable it is possible to approximate rather well its entire distribution. This 

result is a remarkable byproduct of the original goal that was defined simply as the 

estimation of !  and " .  This general result depends crucially upon the use of all the 

sample information, including the sample latent variable (estimated) realizations that 

were overlooked in previous works of the EIV problem. 

Consistency of the dual LS estimator.  At present, consistency of the dual LS estimator 

specified by the maximization of (29) subject to relations (19)-(28) is formulated as a 

conjecture. Consistency of the EIV parameter estimates could be proved by using the 

assumptions of Kiefer and Wolfowitz (1956), but their implementation is left for another 

day. In this paper, we claim that if it is possible to obtain a global maximum of (29) and 

all the parameter estimates have admissible values (in particular, if all the variances have 

positive values) the estimator is consistent. In a least-squares context, if there is an 

interior feasible solution, that solution is a global optimal solution. For the time being, 

Monte Carlo experiments may either support or negate the conjecture.  

 

3. The Dual of the Least-Squares Estimator 

Given the novelty of the dual LS estimator, we give a brief outline of its structure and 

meaning using the familiar setup of a multiple regression model in vector and matrix 

notation. In this section, the mathematical symbols are completely unrelated to the EIV 

model discussed above. The traditional (primal) LS approach consists of minimizing the 

squared deviations from an average relation of, say, a linear model that consists of three 

parts:   
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   y = X! + u                                                                              (30)   

where y  is an (n x 1) vector of sample observations, X  is an (n x k) matrix of 

predetermined values, !  is a (k x 1) vector of unknown parameters to be estimated by the 

LS method, and u  is an (n x 1) vector of deviations from the quantity X! . In the 

terminology of information theory, relation (30) may be regarded as representing the 

decomposition of a message into signal and noise, that is, message = signal + noise, with 

obvious correspondences with the three components of (30). Symbolically, then, the LS 

methodology minimizes the squared deviations (noise) subject to the model’s 

specification  

  
Primal                                       min

u,!
LS = "u u / 2                                 (31)

                              subject to              y = X! + u.                                (32)
  

The dual of the LS method is derived using the Lagrangian function and the 

corresponding first order necessary conditions   

          L(u,!,") = #u u / 2 + #" (y $X! $ u)                                  (33)  

             !L
!u

= u" # = 0        (34) 

            !L
!"

= # $X % = 0.                                                   (35)   

Using ! = u,  "u ! = "u u  and (35) into the Lagrangian function, the dual specification of 

the least-squares method results in  

 Dual   max
u
NVSI = !y u" !u u / 2                                             (36) 

  subject to             !X u = 0 .      (37)  
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In the dual specification, the values of the !  parameters are obtained as Lagrange 

multipliers of the orthogonal constraints (37). The NVSI interpretation stems from the fact 

that in the LS environment the vector u  acquires a double role and meaning: as a vector 

of deviations (noise) in the primal and as a vector of “marginal sacrifices” (that is, 

“prices”) in the dual since u = !  .  The dual LS objective function (36) has a global 

maximum over the parameter space (u,!) . In section 2, the objective function (29) of the 

EIV dual LS estimator has the structure of relation (36). 

 

4. EIV Model With Three Latent Variables 

When three latent variables (one dependent and two “explanatory” latent variables) enter 

the EIV model, the dual LS estimator takes on the following structure:   

maxNVSI =! u yi
i=1

N

" Ui / N +! v1
x1i

i=1

N

" V1i / N  +! v2
x2i

i=1

N

" V2i / N                                    (38)

                    # [yi
i=1

N

" #$ # %1x1i
* # %1x1i

* ]2 / 2N #! v1
2 V1i

2

i=1

N

" / 2N #! v2

2 V2i
2

i=1

N

" / 2N
  

subject to   
yi =! + "1x1i

* + "2x2i
* +# uUi                                                    (39)

x1i = x1i
* +# v1

V1i                                                                       (40)

x2i = x2i
* +# v2

V2i                                                                      (41)

 

     

y * =! + "1x1
* + "2x2

*                                                                (42)
myy = "1

2#
x1

*
2 + "2

2#
x2

*
2 + 2"1"2# x1

*x2
* +# u

2                                    (43)

mx1x1
=#

x1
*

2 +# v1
2                                                                       (44)

mx2x2
=#

x2
*

2 +# v2

2                                                                      (45)

myx1
= "1# x1

*
2 + "2# x1

*x2
*                                                              (46)

myx2
= "1# x1

*x2
* + "2# x2

*
2                                                              (47)

mx1x2
=#

x1
*x2

*                                                                             (48)
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Uii=1

N! / N = 0                                                                        (49)

Ui
2

i=1

N! / N = 1                                                                        (50)

V1ii=1

N! / N = 0                                                                        (51)

V1i
2

i=1

N! / N = 1                                                                        (52)

V2ii=1

N! / N = 0                                                                       (53)

V2i
2

i=1

N! / N = 1                                                                        (54)

 

where  !
x1
*x2
* = cov(x1

*, x2
* ) .  The same assumptions stated in (4) are extended to this case. 

The extension to four or more latent variables is straightforward and is given in section 7.  

The EIV model of this section exhibits ten parameters that must be estimated, 

(! ,"1,"2,# u
2,# v1

2 ,# v2
2 ,µ

x1
* ,µx2

* ,# x1
*
2 ,#

x2
*
2 ) . 

 

5. Monte Carlo Experiment With Two Latent Variables 

The software GAMS (1988) was used to implement the dual least-squares estimator of 

section 2. The following true values of the parameters and random variables were chosen 

for this example: 

  

 

! = "2.0
# = 0.85
$ u = 1.2
$ v = 1.4
U ! Normal(0,1.2)
V ! Normal(0,1.4)
xi
* !Uniform(3,9)

    

The “explanatory” latent variable, therefore, is distributed with mean µ
x*
= 6.0  and 

variance !
x*
2 = 3.0 .  



 13 

The example has six parameters to be estimated. The implementation of a Monte 

Carlo experiment depends crucially upon the seed of the GAMS program to start the 

pseudo random-number generator. For this reason, we repeated 20 times the estimation 

with different seeds and computed the average values of the parameters at each level of 

the number of observations.  The results are reported in Table 1. 

 

Table 1. Monte Carlo Results of the EIV Estimator with Two Latent Variables 

N ! = "2.0  ! = 0.85  ! u = 1.2  ! v = 1.4  µ
x*
= 6.0  !

x*
2 = 3.0  

50 -1.8295 0.8242 1.1580 1.4097 5.9790 3.0967 
100 -2.0384 0.8632 1.1743 1.3650 5.9730 3.0345 
200 -2.0294 0.8541 1.1978 1.4021 6.0119 2.9156 
500 -2.0138 0.8512 1.1839 1.3937 5.9993 3.0632 
1,000 -2.0616 0.8600 1.2001 1.3960 5.9958 2.9594 
2,000 -2.0368 0.8555 1.1903 1.3926 5.9911 2.9850 
5,000 -1.9851 0.8463 1.1947 1.4117 6.0013 2.9887 
10,000 -2.0168 0.8541 1.1998 1.4050 5.9970 2.9748 
 

The results of Table 1 were obtained using the solver Conopt3. It is important to explore 

the parameter space around the possible optimal solution by repeating the computations 

with different initial points. It seems safe to say that the results of Table 1 do not negate 

the conjecture that the dual LS estimator presented here produces consistent estimates of 

the EIV model’s parameters. 

 

6. Monte Carlo Experiment With Three Latent Variables 

The following true values of the parameters and random variables were chosen for this 

example: 
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! = 2.5
"1 = 0.85
"2 = #0.5
$ u = 1.2
$ v1 = 0.8
$ v2 = 1.4
U ! Normal(0,1.2)
V1 ! Normal(0,0.8)
V2 ! Normal(0,1.4)
x1i
* !Uniform(3,9)
x2i
* !Uniform(5,15)

    

The “explanatory” latent variables, therefore, are distributed with mean 

µ
x1

* = 6.0,  µ
x2

* = 10.0  and variance !
x1

*
2 = 3.0,  !

x2
*

2 = 8.3333 , respectively.   The results are 

presented in Table 2. 

 

Table 2. Monte Carlo results of EIV model with three latent variables 

N ! =
2.5

 
!1 =
0.85

 
!2 =
"0.5

       
! u =
1.2

 
! v1 =
0.8

 
! v2 =
1.4

 
µ
x1
* =

6.0
 
!

x1
*
2 =

3.0
 

µ
x2
* =

10.0
 

!
x2
*
2 =

8.333
 

50 2.6104 0.8101 -0.4910 1.1210 0.7590 1.3673 6.0813 2.9495 10.1299 8.4228 
100 2.3884 0.8602 -0.4975 1.1987 0.7654 1.3906 6.0493 2.8519 10.0097 8.3299 
200 2.4736 0.8390 -0.4910 1.1935 0.7864 1.4167 6.0261 2.9370   9.9816 8.3605 
500 2.5869 0.8446 -0.5063 1.1929 0.7856 1.3836 6.0325 3.0194 10.0663 8.1560 
1,000 2.5450 0.8468 -0.5002 1.1997 0.7863 1.4092 6.0108 3.0013 10.0212 8.3982 
2,000 2.5560 0.8438 -0.5026 1.1977 0.7875 1.3991 6.0192 3.0282 10.0039 8.3164 
5,000 2.5937 0.8419 -0.5047 1.2061 0.7917 1.3996 6.0082 3.0099 10.0081 8.2647 
10,000 2.5356 0.8447 -0.5005 1.2034 0.7899 1.4053 6.0092 3.0118   9.9987 8.3048 
 
 
 

Also in this case, all the estimates tend toward the true values of their respective 

parameters rather quickly. It is interesting to note that also at the smaller sample sizes the 

“precision” of the estimated coefficients is rather surprising and, overall, satisfactory. A 

guideline has emerged to evaluate the numerical results of any empirical run: First, check 
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whether all the estimated variances (standard deviations) are positive. If not, change the 

initial point. Second, record the value of the objective function. Third, rerun the program 

with different initial points and compare the results to the previous runs. Choose the 

solution (with positive values of the variances) that corresponds to the maximum value of 

the objective function. The GAMS software contains a solver (Baron) that computes a 

global optimum, if it exists, and can be used to verify whether such an optimum is 

associated with positive values of the variances and corresponds to the dual LS solution. 

 

7. Generalized EIV Dual Least-Squares Estimator In Matrix Notation 

There are N sample observations and K  “explanatory” latent variables and all the 

assumptions stated in (4) apply. Define the following vectors and matrices: 

 

!y = [y1, y2,...yN ]"  vector of sample observations of dependent variable

y*! = [y1
*, y2

*,...yN
* ]"  vector of sample dependent latent variables

!s = [1,1,...,1]"  sum vector
!# = [#1,#2,...,#K ]"  vector of slope coefficients
X* = [x1

*,x2
* ,...,xK

* ]"  matrix of latent variables
X = [x1,x2,...,xK ]"  matrix of sample observations of latent variables
!u = [u1,u2,...uN ]"  vector of errors of dependent variable
V = [v1,v2,...,vK ]"  matrix of error of latent variables

  

 

 

!
V =

v1

v2

vK

!

"

#
#
#

$

%

&
&
&
= diagonal error matrix  

  

 

!
X* =

x1
*

x2
*

xK
*

!

"

#
#
#
#

$

%

&
&
&
&

'  diagonal matrix of latent variables  
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!
X =

x1

x2

xK

!

"

#
#
#

$

%

&
&
&
= diagonal matrix of observed latent variables  

      !x* =

"
x1
*
2 "

x1
*x2
*

2 "
x1
*xK
*

2

"
x2
*x1
*

2 "
x2
*
2 "

x2
*xK
*

2

"
xK
* x1

*
2 "

xK
* x2

*
2 "

xK
*
2

#

$

%
%
%
%
%

&

'

(
(
(
(
(

 = variance/covariance matrix of latent variables 

  Mx,x =

mx1x1
mx1x2

mx1x3

mx2x1
mx2x2

mx2xK

mxKx1
mxKx2

mxKxK

!

"

#
#
#
#

$

%

&
&
&
&

'  matrix of sample moments

   

 !" v
=

" v1

" v2

" vK

#

$

%
%
%
%

&

'

(
(
(
(

)  diagonal matrix of error standard deviations  

!" v

2 =

" v1
2

" v2

2

" vK
2

#

$

%
%
%
%

&

'

(
(
(
(

)  diagonal matrix of error variances  

 myX !  vector of sample moment between y and X  

Then, the general EIV dual least-squares estimator of a multiple regression assumes the 

following structure: 

 
 

maxNVSI = [! u "y u+ "s
!
X#! v

!
Vs] / N                                                                  (55)

                  -[y $%s $X*& "] [y $%s $X*&] / 2N $ "s
!
V#! v

2
!
Vs / 2N

 

subject to   

 
y =!s +X*" +# uu                                                                 (56)
X = X* + $# v

V                                                                        (57)
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y * =! + x*"                                                                           (58)
myy = #" $x*" +% u

2                                                                   (59)

Mxx = $x* + $% v

2                                                                       (60)
myx = $x*"                                                                              (61)

 

    

 

!u s / N = 0                                                                               (62)
!u u / N = 1                                                                               (63)
!
!V s / N = 0K                                                                             (64)
!
!V
!
V / N = IK .                                                                           (65)

 

 

8. Conclusion 

This paper presents an estimator of the EIV structural model using only first and second-

order sample moments. The specification of the EIV model follows the lines discussed by 

Kiefer and Wolfowitz (1956) who derived a consistent estimator of the EIV parameters in 

the presence of infinitely many “incidental parameters” (latent variables).  In order to 

avoid the difficulties of the ML method in this context (identifiability and estimation 

problems) we have chosen to optimize a dual least-squares objective function subject to a 

list of general relations that has been associated for a long time with the EIV problem. 

This specification – in general – has an interior global maximum. A crucial but neutral 

novelty of this treatment concerns the parameterization of the error terms of the 

dependent and “explanatory” latent variables.  This “change of variable” allows the 

introduction of standard deviations of the error terms in all the observations.  A direct 

link is thus established between the second-order moments involving error variances, the 

detailed EIV observation relations involving the error standard deviations, and the 

objective function. This intertwining of the moments and variance parameters, without 

requiring additional (user supplied) information about them, is a fundamental 
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breakthrough in order to achieve the desired goal. In the Monte Carlo experiments, which 

strictly reflect the structure of the EIV problem presented in sections 2 and 4, it is known 

that a region of the parameter space exists where all the variances (standard deviations) 

are positive. If the chosen objective function achieves a global maximum in this region, 

the EIV parameter estimates are consistent.  

  We believe that the goal set out at the beginning of this paper – finding an easy 

method for consistent parameter estimates of the EIV model – has been attained. This 

method requires only a working knowledge of the least-squares methodology, including 

its dual specification, and the knowledge of the variance/covariance law for random 

variables. The estimation procedure presented here includes the naïve least-squares 

method as a special case, that is, when the “explanatory” variables are measured without 

error. 
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