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Abstract:

We identify two possible equilibrium configurations for a non-renewable resource duopoly in a
discrete-time framework. For the purpose of illustration, we suppose initial endowments of
firms that allow for a maximum of two extraction periods. In the first possible equilibrium, the
duopoly exists for two periods, while in the second possible equilibrium, the duopoly lasts only
for one period and the firm with the higher initial endowment becomes a monopolist in the
second and last period. As neither equilibrium configuration dominates the other for both firms
at the same time, it is unclear whether firms acting simultaneously can coordinate on one
particular configuration.

Keywords: Open-loop equilibrium, closed-loop equilibrium, duopoly, non-renewable resource
Résumé:

Dans le cadre d’'un modele a temps discret, nous identifions deux configurations d’équilibre
possibles pour un duopole extrayant une ressource non-renouvelable. Pour des fins
d’illustration, nous supposons que le stock initialement disponible pour chaque firme est tel que
I’extraction perdure pour un maximum de deux périodes. Dans le premier équilibre possible, un
duopole opere lors des deux périodes, alors que dans le deuxieme équilibre, le duopole opére
seulement lors de la premiere période et est suivi par une période ou la firme avec un stock
relativement plus élevé devient un monopole. Comme aucune des deux configurations
d’équilibre ne domine l'autre, il n’est pas clair que des firmes agissant simultanément peuvent
se coordonner sur une configuration en particulier.

Mots clés: Equilibre a boucle ouverte, équilibre & boucle fermée, duopole, ressource non-
renouvelable

Classification JEL: Q30, D43



1 Introduction

The analysis of extraction strategies in oligopolistic resource markets has been an ongoing
endeavour for now over 30 years starting with the analysis of a cartel-fringe, open-loop
market structure by Salant (1976). As Gaudet (2007) notes, such interest from the economic
profession was motivated by the foundation in 1960 of the Organization of the Petroleum
Exporting Countries (OPEC) and the following oil crisis in the 1970’s. Trying to understand
the extraction pattern (and related price) of natural resources, the economic literature has
covered since then the analysis of the Cournot and Stackelberg market structure in a closed-
loop setting, where each agent conditions its extraction decision on its own resource stock.!

Open-loop and closed-loop Nash equilibria have been characterized analytically for the
case of particular demand and cost structures, while more general settings can so far only
be dealt with numerically (Salo and Tavonen, 2001). Whether open-loop or closed-loop
strategies apply depends on the players’ ability of commitment at the beginning of the
game. However, such commitment may seem particularly unrealistic when the environment
of the players changes (e.g. a changing carbon tax penalizing fossil fuel extraction).

Having said that, following the terminology by Dockner et al. (1985), when a game is
“state-separable,” or in the terminology by Dockner et al. (2000) a “linear state game,”
open- and closed-loop strategies will coincide when the terminal time horizon is exogenously
given. Although such an exogenous terminal time is not necessarily a realistic assumption
in resource extracting oligopolies, it becomes an underlying implicit assumption when a
particular market structure is assumed to prevail until the exhaustion of the resource. This
observation applies to the discrete-time model of Hartwick and Brolley (2008) who assume
initial resource stocks of players to be such that exhaustion of the resource occurs in the same
period. They find that a player’s closed-loop strategy is independent of its competitor’s, or

equivalently, that closed-loop and open-loop strategies coincide.

LA good review on how market structure in particular, as well as extraction costs, durability aspects and
uncertainty affects the Hotelling rule of resource pricing can be found in Gaudet (2007).



In this paper, we also adopt the discrete time modelling framework and characterize ex-
plicitly the initial stocks of two players such that exhaustion of each player’s resource stock
occurs in the same period. Our simple “state-linear” modelling framework guarantees that
open- and closed loop strategies coincide. Our main finding is that there exist combinations
of asymmetric, initial resource stocks that could sustain two different equilibrium configu-
rations: (i) a duopoly up to a common, finite time period and (ii) a duopoly followed by
a monopoly exhausting its resource pool at a later point of time. While the player with a
relatively low initial stock prefers the duopoly market structure, the player with a relatively
high initial stock prefers to turn into a monopolist before complete exhaustion of his resource

pool occurs.

2 The Model

We assume a discrete-time model with a linear inverse demand function p(¢;) = a — bqy,
where ¢; is the total quantity on the market in period t. The presence of a choke price a
makes the resource unessential, such that extraction will end in finite time. There are two
firms (players), i = 1,2, serving the market. Let ¢¢ be the production of firm 4, which is
assumed to have a linear cost function C(q}) = cg!, where ¢ > 0. Parameters satisfy a > c,
which implies that the resource is valuable and that reserves are completely extracted. Firm
i’s initial stock of the non-renewable resource is given exogenously by si and the law of
motion is s}, ; = s} — ¢;. We do not allow for resource storage. Once a firm has completely

extracted its resource pool, it exists the market.
2.1 The monopoly

For later reference, we first address the benchmark case of a monopoly extracting the re-
source. The total quantity on the market is the monopolist output ¢; = ¢/. The firm’s profit
in period t is 7(q;) = (p(q;) — ¢)q;- The firm seeks to maximise the sum of discounted profits

subject to the law of motion and the constraint on extraction in period ¢, ¢; < s;. The



inter-temporal profit maximisation problem for the monopoly is then given by

T

max (g
{qt }$:1 A t=1

s.t. Si41 = S — q, S1 glven,

qt < St

where 0 € [0,1] is the discount factor and T' the endogenously determined last period of
extraction. For convenience, we solve the problem in its recursive form. Let V(s;) denote

the value function at time ¢ depending on the stock s;. The recurrence equation is:

Vis)) = ngfstf(%) + 0V (st11)
s.t. s411 = S —q, S1 given.

We distinguish between interior and corner solutions, where a corner solution may apply in
the final period of extraction ¢ = T'. For an interior solution, in particular when the firm
is not in its last extraction period, ¢.e. t < T, the necessary condition for optimality is

O (q:)/0qr + 0 OV (8441)/0q: = 0. Substituting the law of motion into the value function and

making use of ds;11/0q; = —1, the necessary condition for optimality can be written
0 oV,
ﬂ-(qt) —5 t+1(8t+1>' (1)
Iq 0st11

Equation (1) states that the marginal profit associated to the last unit extracted in period ¢ is
equal to the opportunity cost of doing so, which is the discounted marginal value associated
to having that unit available for extraction in period ¢t + 1. Applying the envelope theorem

to the recurrence equation (Obstfeld and Rogoff, 1996), we get:

Vi) _ Om(ar)
0sy g ’

(2)

stating that the marginal value of extracting one more unit of stock must, at each period,
be equal to the marginal profit of that same increment on the market. Combining equations

(1) and (2), it follows that :

aﬂ(Qt) aW(QtH)
=9 . 3
aCIt 8Qt+1 ( )
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Equation (3) has a straightforward economic intuition: the monopoly firm equalises the

discounted marginal profit at every period of extraction. For t =1, ..., T, we thus have

on(q1)  Om(q2)  0m(g3) T1
=4 =4 =...=90 4
oq 0qs Jqs : (QT) ( )

Note that, in current value terms, the marginal profit increases, implying that the monopolist
discriminates intertemporally within subsequent markets.

In the case of a corner solution, the equalization of the discounted marginal profits does
not necessarily hold between the last period of extraction, T', and T+ 1. In particular, the
marginal value of extracting the remaining stock at T, sy, can be greater or equal to the

marginal value of postponing extraction to the subsequent period:

87T<ST) > 58V(ST+1 = O)
Osp — 08741

(5)

qr = ST <=

The inequality in condition (5) arises due to the discrete time modelling: accounting for
cumulative previous extraction, it may be profit maximizing to incur a higher marginal profit
at T than postponing an incremental unit of resource to 7'+ 1. The envelope theorem must
still hold at 7'+ 1, when syy; = 0 and gryq = 0. This implies that OV (sry1 = 0)/0spi1 =
O (qry1 = 0)/0qry1 = a — ¢, where the last equality follows from the specification of linear

demand and linear costs. Condition (5) can now be written explicitly:

a—c
2b

gr = ST <— ST§(1—5)

= (1-9)Q. (6)
This condition states that the monopoly firm stops producing in period T" and extracts all its
remaining stock sy, whenever it falls below the critical threshold (1 —0)@Q. The parameter @
corresponds to the profit-maximizing quantity sold by a monopolist in a static context (i.e.
in the absence of any resource constraint). In our context of resource extraction, it can also
be interpreted as the quantity sold by a “myopic” monopolist, who does not account for the
opportunity cost of selling today instead of tomorrow.

In order to characterize the series of production decisions, we make use of condition (4)

and derive the following recurrence equation :

@ = (1-0)Q+ g (7)
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This can be manipulated further to find an expression for ¢; as a function of ) and the

last-period extraction gr:
@ = (1-0"79Q+ "qr (8)

As the resource is completely exhausted, total extraction must equal initially available stocks.

Using (8), we must have:
T
1—67 1—067
51 = Z%ZQ(T— )+ qr (9)
— 1-9 1-9

From equation (9), we express the last-period production gr as a function of model param-

eters, s1, 6 and () and obtain:

1—6 1-6
- (10)

qr = 1_5T(31—Q(T—1))+Q1 5T

We extend our analysis by using the last-period condition on extraction (6), i.e. gr <
(1 —9)Q. The maximum possible quantity of the last-period extraction is g7 = (1 —4§)Q. In

conjunction with (9), we obtain another condition on the firm’s initial stock.

ST ST
5 — 6T+
::Q(T—*Czr) 1
= G(T)

The function G(T') represents an upper bound on the initially available stock, s;, to be
completely exhausted in T periods. A similar condition for a lower bound also exists. If

complete exhaustion occurs in period 7', the last quantity extracted, qr, has to be strictly
T

1—-9

greater than zero. Thus, if gr > 0, then, by equation (9), s; > Q (T — ) It can be

shown that

1— 67 §— o7
Q<T_1—6):Q(T_1‘1—6)

Hence, we have proposition 1:

G(T - 1). (12)



Proposition 1 In order to exhaust its initial resource endowment in I periods, the monopoly’s

stock s, must be strictly bounded from below and bounded from above, such that
G(T—-1)<s1 <GT). (13)
2.2 The Duopoly

This section investigates the case of two competing firms operating in the market. First, we
analyse the necessary conditions for a dynamic Cournot duopoly in order to last 7" periods.
Second, we analyze the case where a duopoly is followed by a monopoly firm serving the

market.
2.2.1 Equal Periods of Exhaustion

A Cournot competing firm takes the behaviour of its rival into account when maximizing
profits. In this section, we derive the conditions under which both firms will exhaust their
reserves at the same period, where T! = T? = T. We note this final period again T,
although it is different from the monopoly’s final period of extraction. The inter-temporal

profit maximisation problem for firm i = 1,2 is given by:

T
max [I' = st (g, qf)
T e

{qt}t:17T t:1

i o i g
st. sy = 8 —q, S given,

where firm 4’s profit in period ¢ is given by 7'(q/, ¢?) = p(q} + ¢?)q; — C(q}). Writing this
problem recursively, where Vi(s!, s?) denotes firm i’s value function depending on stocks

(sf,s?), we have:

ifel o2y 12 1 2
Vi(sy,s7) = max m(q,q;) + 0V (s, Sip1)
0<q;<s¢
i o TR
st. Sy = S —q, S given.

Using the same techniques as in section 2.1, we can derive a set of conditions for firms 1 and
2 characterising their output decisions and final time of extraction. Dealing with the interior

problem, each player will, as in the monopoly case, equalise properly discounted, marginal



profits in subsequent periods, and account for foregone opportunities of current extraction.
Formally, for any period t < T — 1 and for firm ¢ = 1,2, ¢ # j, the following conditions must
hold simultaneously:

Or'(qy @) _ 5O (Grer: Gi)
Jq; 3qz+1

: (14)

For each firm to stop producing in period 7', the marginal profit of each firm at T will
have to be greater or equal to the discounted marginal profit in the following period. This
means that for a firm to exhaust its remaining resource stock, the value of a last incremental
extraction in ¢ = T has to be at least equal to the discounted marginal value of extracting
nothing in t = T 4 1. In order for both firms to exhaust their resource at the same period,
this must hold for both at 7. Formally, at 7"

Omi(dr ar) - 50m(0,0)
Iqr - dq’

Noting that o' (¢, )/ ¢l = a—c— 2bql — bg!, these terminal conditions can be rewritten

by using expression @ defined in (5) as:
i i i 1 J
Gr=spe sy < (1-0)Q— 55T (15)

Before the final period of extraction, ¢ < T, extraction of firm ¢ = 1,2, 7 # j, is given by

equation (14) can be written explicitly as:

(df — dai) + lal —0alsr) = (1-0)Q (16)

These can be interpreted as reaction functions. First, the quantity extracted by a player at

t depends positively on its own extraction in ¢t 4+ 1. Moreover, it is negatively related to its

rival’s extraction in period ¢ and positively related to its rival’s production in ¢ 4 1.
Subtracting (16) evaluated for ¢ = 1 and j = 2 from (16) evaluated for i = 2 and j =1

defines a set of admissible extraction quantities in in subsequent periods ¢ and t 4 1:

2

4 — gy =G — g7, = (1 — 0)3@Q (17)



The expression %Q is the static duopoly Cournot equilibrium quantity. From (17), we can
express ¢. as a function of subsequent extraction quantities by developing the recurrence

equation:

g - (1_5)§Q+5((1_5)§Q+5(...+5q§p))

2 .
= (1- (5T‘t)§Q + 61 gl (18)

Extraction ¢! is thus a weighted average of the static duopoly Cournot equilibrium quantity,
%Q, and the last period extraction, ¢%-. As firm i gets closer to exhaustion, more weight is
given to extraction at 7" as lim; .7 07" = 1. Since firms exhaust all their resource stock,

summing on ¢ for t = 1, ..., T must equalise respectively the initially available stock s}, i.e.:

; ;2 1-60, 1-67,
51 = th:§Q<T_ 1_5)+ 1 _o Ir (19)

This last identity for the initially available stock allows us to express the extraction in the

final period T as a function of the initially available stock:

. 1—6 .. 2 26—
¢ = _— ¢ —_ = T - 1 - 20
Using equation (20) for i,j = 1,2, ¢ # j, we can express firm i’s extraction in the final

period, ¢ (q%, s, 5{), as a function of its own stock, its rival’s stock and the period of last

extraction, T. From (15), we know that ¢ + 3¢7 < (1 — §)Q. Then:

§—or
< _

1 1—90 1
qgﬁ*‘iéﬁ:ﬁ<3i+§3%—Q(T—1))+Q

For later use, we calculate with the help of (19) the following expression:

1 1 -7 - 1
T _ 1, L2
tegt=o(r- 125 )+ 5w ) (21)

It is possible to specify an upper bound for si + %s% The highest possible value gr + %q% is

(1 — §)Q; substituting it in (21) and rearranging leads to:

1 5_5T+1



where G(T') was defined in (13). Similarly, since ¢} + $¢% > 0 a lower bound for s{ + 157 is
given by:

1 - 5T)

1-90

1
s%+§s% > QT —

This leads to the following proposition:

Proposition 2 The final period of exhaustion is identical for both firms i,7 = 1,2, 1 # j, if

their initial stocks satisfy:
) 1 .
GT-1) < s+ 55] < G(T) (22)

Proposition 2 allows us to define an area in the space of initial stocks (si,s?) for which

exhaustion occurs in period T" for both firms. We illustrate Proposition 2 for 7' = 2.
e Case when 7' =2

Evaluating G(T) and G(T — 1) for T' = 2 in equation (22), we have for i,j = 1,2, i # j:
Q=0 < si+55<Q—0)(2+9) (23)

The shaded area in Figure 1 identifies admissible stock levels where both firms will produce
for two periods. The dotted lines refer to the strict inequality constraints in equation (23)
while the plain lines represent the inequality constraints. These lines cross on the 45° line.
For initial stocks equal to %Q(l —0) defined in equation (17), firms will find it more profitable
to extract within only one period. Given ¢ € [0, 1), this critical value is smaller than the
static Cournot output of a firm, %Q. This is because a firm accounts for the opportunity
cost of extraction.

We calculate for later use each firm’s intertemporal profit, making use of the optimal
extraction policy determined earlier. In particular, the extraction in the last period is given
by (20) evaluated at T" = 2, while extraction in the initial period can be obtained by using

the law of motion ¢¢ = si — ¢3, and we obtain:

gi(s)) = Q7+ 51. (24)




(1—-8)(24+8)Q

—1

2(1-38)Q —s’l-+?s;£[l—§)[2+§)g

1

sptya=(1-3)(2+3)0Q
(l—ﬁ)g<.ci+;—s{
[1—6)Q<s{+;—.ﬂ

2

3 ([1-8)Q+

I
%(1_5}0 21-8)Q  (1-38)(2+8)Q

s.1'
1

Figure 1: Possible initial resource stocks for symmetric duration of extraction
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Having ¢}(s}) and ¢i(s?) at hand, we calculate the total value associated with extraction:

Vi(st ) = o ((§<1—6y9) —5%(%—%ﬁ-—4@{), (25)

140

where the subscript D stands for duopoly. When § = 0, firm ¢ puts no importance on future
profits and V}(si, s7) is equal to the static one-period Cournot profit. If firm 4’s initial

resource stock is greater than firm j’s, its intertemporal profit will also be greater.
2.2.2 Asymmetric Periods of Exhaustion

We now turn to the possibility that firms exhaust their resource stock at different time
periods. In particular, we study the case where firm 1 exhausts all its initial resources in
the first period while firm 2 continues its extraction for another period of time. In t = 1,
firms compete a la Cournot, while in ¢ = 2, firm 2 is the only remaining firm and will behave
as a monopolist. In what follows, we derive the conditions on the firms’ initial stocks and
represent them graphically in space (s}, s3).

For firm 1 to extract all its stock within the first period in a dynamic Cournot duopoly,

its marginal profit in ¢ = 1 has to be greater or equal to the discounted marginal profit in

t = 2, given that firm 2 is still on the market, i.e. g3 > 0. Formally,

omi(qi, q7) S 537T1(07qg)

2
— < (1 - Q. 2
dqi - 0q3 1= 3( ) (26)

Firm 1’s stock must thus be smaller or equal to %(1 — 0)Q, which is a vertical line in the
space (s},s?).
For firm 2 to extract for two time periods, it will equalise its discounted marginal profit

throughout the game,
Oma(af, s1) _ 557@((1570)
0q3 dg;

(27)

which will implicitly defines optimal extraction ¢7. Given our model assumptions, this con-

dition rewrites:

1
¢t =0 = (1-8)Q - 55, (28)

12



which can be interpreted as a reaction function: ¢} is proportional to the quantity that firm
2 produces in period 2, while it is inversely proportional to firm 1’s extraction. Since firm
2 exhausts its stocks at T' = 2, we must have s? = ¢* + ¢5. Combining this condition with
(28), we have

1-0 5§ o, 11 |

2 Q = 29
g 1+6 1+ 214001 (29)
1—96 1 1 1
2 2 2 1
_ - _ Q-+ + = 30
12 52 1496 1+ 1 21457 (30)

These equations give the precise link between the production of firm 2 in both periods as
well as each player’s initial stock. An increase in firm 2’s stock will increase its production
in period 1 and 2, but an increase in its competitor’s initial stock will induce a transfer of
extraction from period 1 to period 2.

We know from section 2.1 that a monopoly will stop producing in period 7', if the marginal
profit from extracting the remaining stock is greater than the discounted marginal value given

s5.1 = 0. Here, for g3 = s3, the following stopping criterion must be satisfied:
53 < (1-0)Q (31)
Combining expressions (30) and (31), we obtain:
o %s} < (24 0)(1-0)Q (32)

which represents an upper bound on firm 2’s initial stock s? to stop producing in period 2.

In space (si,s?), we will have a downward sloping line with intercept (2 + §)(1 — 6)Q and

slope —%. We must also verify that player 2’s production in each period is positive. To

derive the associated conditions, we use (29) and (30). Thus :

1
G > 0 < §s5 — 55% > —(1-6)Q (33)
1
@ > 0 = 32+§s%>(1—5)Q (34)
We can verify that condition (33) is not binding. Rearranging it, we need s > J=s} —

_(155)62 to hold. We have previously shown that s} € [0,2(1 — §)Q], which implies s €

13



1—96 1—96)2
(—( 5 )Q, —< 5 )§Q>, but this is non-binding because we assumed s? non-negative.
Condition (33) can be repesented in space (s}, s?) by a downward sloping linear function
with intercept (1 — )@ and slope —%.

For firm 1 to stop producing in the first period, it must not be more profitable to keep

a small amount of stock and put it on the market after firm 2 has exhausted its stock in

period 2. The following must then be satified, for n > 2.

aﬂ-l (Sif q%) 57’1 871—]_ (027 0) (35)
Iq Oqy
QL —0")—si—q¢f > 0 (36)
We can use expression (29) for ¢? to simplify the previous condition, such that:
3+ 40
;—63} +57 < 2%(1 + 36 — 20™ — 26" 1) (37)

In space (si,s?), this constraint is a downward sloping linear function. It will be binding

if, for s < 2(1 — 6)Q, it is at some point smaller than s§ + 1s} < (24 0)(1 — 6)Q by
condition (32). We note that the intercept is, for n > 2 and ¢ € (0, 1], always greater than
(240)(1—-0)Q, te.

Q

23(1 +30 — 26" — 26" > 2%

(1430 —26% — 26%)

> Q(1—6)(2+ 85+ 45%)

> (2446)(1-0)Q
Using constraint (32) when s; = 2(1 — )@, si is equal to 2Q(2.5 — d — 20?). For the same
s{, constraint (37) is binding if s7 = Q(1 — §)(2 + 85 + 46%) — st < 2Q(4 — & — 362).
However, s7 = 2Q(4 — 6 — 30%) > 2Q(2.5 — 0 — 36?) for § € (0,1]. Thus, the constraint is

not binding. We thus obtain the following proposition:

Proposition 3 The bounded set of admissible initial stocks of firm 1 and 2 is defined by the

following equations:
1. sT+ 151 < (246)(1—0)Q

14



(1-8)(2+3)Q

, —si+3si<(1-5)2+5)0
s st < (1-8)(2+8)0
U—&Q{ﬂ+%ﬁ
U—MQ<Q+%§
(1-8)Q -
2a-90
\
\
\I |
(1-5)Q (1-8)(2+3)Q

sj
“1

Figure 2: Possible initial resource stocks for asymmetric duration of extraction
2. 51+ 351> (1—-0)Q
3. 51 < 3(1-0)Q

Figure 2 shows the conditions stated in Proposition 3 in space (s}, s?).

For later reference, we can calculate the intertemporal profit for each firm. For firm 1,
which in the case analyzed here extracts only in ¢ = 1, this resumes to its profit in the first
period:

1

bs 1
Vi (ohis) = 10 (QG3 1) = ot = 6(st 1)) (39)

For firm 2, the extraction of which lasts two periods, the intertemporal profit is given by
b 1\’
Viteh = 12 (617004 6 v+ 150+ (1) - st ) 0

15



(1-8)(2+8)Q

st 2(1-6)Q _SQJF%S{S“_BJ(“BJQ
{ \\ —s{+%s‘1£(l—5](2+5]Q
\ (1-8)Q <5\ + 5]
\\ (1-8)0 <sf++s)
\
\
2u-90
I I
21-9)0 2(1-3)Q  (1-9)(2+3)Q

S‘i
!

Figure 3: Possible initial resource stocks for symmetric and asymmetric duration of extrac-
tion

3 Comparison of the asymmetric and duopoly market equilibria

In this section we analyse whether the symmetric and asymmetric equilibria characterized in
propositions 2 and 3 could result for a given combination of the two firms’ initial stock. We
do this graphically in Figure 3, where the overlap of admissible sets of initial stocks shown
in Figures 1 and 2 for propositions 2 and 3 to hold is represented as a shaded area. As we
can see, there exist combinations of initial stocks where the firm with the low initial stock
is characterized by si < (2/3)(1 — 0)Q, such that no configuration of a market equilibrium
can be excluded from the outset unless both firms are better off under one particular market
structure at the same time.

For i = 1,2, we define AV' = V}, — Vjsy. If AV?® > 0, the symmetric duopoly yields

16




higher profits for firm 7, whereas, if AV® < 0, the asymmetric case is more profitable for
firm ¢. In what follows, we assume for the asymmetric case that firm 1 has smaller stocks
and extracts in the first period only, while firm 2 has relatively higher stocks and extracts

for two periods. We calculate:
AV = Vi — Vjsy

b 1 2 1 ?
= ST ((s1 —(1-46)Q)" — (g(l — 5)@) ) (40)

which is only a function of s{. Thus only the stock of the firm with the “smaller” stock (here
firm 1) determines which market structure is more profitable. In can be shown that V* is a

convex function of si, reaching a minimum at (1 — 6)Q and that AV > 0 as long as:

2 4
s € {0, §(1 — 5)@} U [5(1 —9)Q, oo> :
Assuming that s} < %(1 —0)Q, firm 1 will always prefer the symmetric duopoly outcome to

the asymmetric market outcome.

For firm 2, which by assumption operates for two periods, we find:
AV = Vj— Vjsy

b 4 ? 1 2
= T ((ﬁ“‘m) - (s -20-90) ) ’ “”)

which is a concave function of s}, reaching a maximum at 2(1 — §)Q and which satisfies

AV? >0 as long as

2 10
3 3

e |50-0Q 3= 00
Again, by assumption, s} < %(1 —0)Q, such that AV? < 0 and firm 2 prefers to operate for
two periods.
The former analysis of the intertemporal profits related to each possible equilibrium has
allowed us to conclude that the firm with the relatively smaller initial stocks (firm 1) makes
more profits when it competes a la Cournot for two periods instead of only one, while Firm

2 prefers the asymmetric equilibrium.

17



The question arises whether the firm with the relatively higher stock (firm 2) preferring
the asymmetric case can compensate its competitor for its lower profits incurred in the
asymmetric case. A compensation such that each firm is at least as well off as in its own
preferred market structure will exist if the increase in firm 2’s total discounted profits is
greater than the losses incurred by firm 1, i.e. VZ, — V3 >V} — Vi . This last expression

can be written as —AV? — AV >0, or:

which holds for admissible values s} € [0, %(1 — 6)@]. Hence, firm 2 could compensate firm
1 to play the asymmetric outcome.

We have thus shown that for particular combinations of initial resource stocks two differ-
ent equilibria may exist. Moreover, given a proper reallocation of profits, both firms could
be as better off in the asymmetric extraction scheme. Such compensation would involve
cooperation between firms, which however violates our working hypothesis in the current

model.

4 Conclusion

In this paper we have analysed how players in an oligopolistic industry non-cooperatively
extract a non-renewable resource from their initial reserve endowments. In a discrete time
setting, we represented the case of two firms serving the market initially given that each
firm’s period of complete exhaustion is determined endogenously depending on its own and
its rival’s initial reserve endowment. For the purpose of illustration, we restricted our analysis
to firms’ initial reserve endowments that allow industry extraction for at most two time
periods.

We were able to identify combinations of the two firms’ asymmetric initial reserve endow-
ments that may generate two different market equilibria. In the first possible equilibrium,
both firms extract the resource for two periods. In the second possible equilibrium, the

low-endowment firm operates for only one period of time, while the high-endowment firm
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operates for two periods and thus becomes a monopolist in the second and last period of
extraction. While the low-endowment firm would prefer the duopoly equilibrium over two
periods of time, the high-endowment firm would prefer to become a monopolist in the sec-
ond period. Consequently, neither equilibrium dominates the other. It is unclear whether
simultaneously acting firms as in our analysis may coordinate on one of the non-cooperative
equilibria found here. In this sense, it is unclear whether an equilibrium exists ex-ante before
extraction commences.

Our analysis showed that there would be room for cooperation as the gain of the high-
endowment firm in the asymmetric equilibrium as compared to the two-period-duopoly
equilibrium allows compensation of the low-endowment firm. However, such cooperative

arrangements are left for future research.
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