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Ethanol, the Agricultural Economy, 
and Rural Incomes in the United 
States: A Bivariate Econometric 
Approach
Samson O. Akinfenwa and Bashir A. Qasmi

We examine the causal relationships between ethanol production and the 
agricultural economy and rural incomes in the United States for 1981 through 
2010. We use bivariate cointegration and Granger causality procedures and account 
for two structural breaks in ethanol production in the analysis, which shows that 
ethanol production Granger-caused agricultural net value added, agriculture’s 
share of U.S. employment, net returns to operators, and rural income per capita 
in the short run. These causal relationships generally persisted in the long run. 
However, the causality between ethanol and rural incomes diminished in the long 
run.

Key Words: agricultural economy, bivariate analyses, cointegration, ethanol 
production, Granger causality, rural income

The U.S. ethanol industry is one of the largest and fastest growing biofuel 
industries in the world. Beginning in early 2000, the number of U.S. ethanol 
plants and their production capacities began to increase sharply, driven by 
government policies such as ethanol blending mandates, budgetary support 
measures, and import barriers (Josling, Blandford, and Earley 2010). Between 
1999 and 2010, the number of plants expanded from 50 to 204 and annual 
production rose from 1.4 billion gallons to 13.2 billion gallons (Figure 1). The 
main drivers of such policies are the country’s high demand for energy, need to 
reduce our overdependence on fossil fuels, and concerns about environmental 
degradation (Natanelov, McKenzie, and Van Huylenbroeck 2013).

However, whenever a value-added agricultural industry expands, a rise in 
demand for the primary agricultural commodity involved and its price follow 
(Brown 2003, Tokgoz et al. 2006, Leibtag 2008, Zhang et al. 2009). In the 
United States, corn is the major feedstock for ethanol so greater demand and 
higher prices for corn are expected as ethanol production expands. But since 
corn-ethanol has links to several commodities (House, Peter, and Disney 1993), 
related products such as soybeans (which may be displaced when more corn 
is planted) and livestock (which depend on corn for feed) can be affected by 
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changes in demand for corn. Thus, it is important to examine the impact of 
ethanol on the agricultural sector as a whole.

Ethanol production also affects agricultural and rural economies by providing 
members of farm households with off-farm employment in the plants, which 
typically are located in agricultural areas near sources of feedstocks. As of 2006, 
most members of farm households in the United States and more than half of 
all U.S. farm operators earned at least some of their incomes from off-farm 
employment (Fernandez-Cornejo 2007). Only households associated with the 
largest commercial farms made most of their incomes from farming operations 
(Jones, El-Osta, and Green 2006).

For the 18 percent of people in the United States who live in nonmetropolitan 
areas (a working de inition of rural America), poverty and the burdens it 
imposes are growing problems (Farrigan and Parker 2012). Between 2000 and 
2010, the percentage of all rural residents who were impoverished increased 
from 13.4 percent to 16.5 percent (Economic Research Service (ERS) 2013).

The federal government has attempted to boost rural economies in a number 
of ways, including inancial assistance in the form of loans and loan guarantees 
to rural entrepreneurs and businesses (U.S. Department of Agriculture (USDA) 
2012) and permanent residencies for foreigners who invest at least $500,000 in 
select areas (U.S. Department of Homeland Security 2012).1 However, because 
rural areas are endowed with a vast wealth of primary resources, promoting 
value-added activities for agricultural products and operations became a 
popular strategy for rural economic development (Barkley and Wilson 1995). 
One such value-added industry is ethanol production. Since about 86 percent 
of U.S. ethanol plants are located in rural and mixed-rural counties (Low and 
Isserma 2009),2 ethanol production is expected to have a positive impact on 
rural incomes.

The key question addressed by this study is whether U.S. ethanol production 
affects the agricultural economy and rural incomes. We are aware of no prior 
studies that explore this issue in an intertemporal causal framework. Thus, 
we contribute to the literature on value-added activities and rural economies 
by examining the causal dynamics between those economies and the ethanol 
industry using long-run cointegration and causality econometric techniques.

Brief Review of Related Studies

Farm households may earn income from ethanol production directly through 
increases in the price received for feedstock crops. De La Torre Ugarte et al. 
(2006) estimated that new demands for agricultural land and crops (mostly 
from ethanol producers) would likely generate an increase in net farm income 
of $11 billion nationwide by 2030. Similarly, De La Torre Ugarte, English, and 
Jensen (2007) examined three scenarios in which annual ethanol production 
reached 60 billion gallons by 2030 and estimated that ethanol would provide 
more than $210 billion in net farm income between 2007 and 2030. Several 

1 U.S. Citizenship and Immigration Services administers the Immigrant Investor Program, also 
known as “EB-5,” which was created by congress in 1990 to stimulate the U.S. economy through 
job creation and capital investment by foreign investors (U.S. Department of Homeland Security 
2012).

2 Also see Lambert et al. (2008) and Miao (2013, table 2). Proximity to input suppliers (corn) 
and users of the byproducts of ethanol production (dried distiller’s grains with solubles) are some 
of the key factors that determine the location of ethanol plants (Lambert et al. 2008).
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other studies (Westcott 2007, Coyle 2007, Leibtag 2008, Natanelov, McKenzie, 
and Van Huylenbroeck 2013) likewise indicated a signi icant link between 
ethanol production and income from corn and soybean crops thanks to higher 
prices.

Farmers and rural households can also earn income through employment 
in ethanol plants and related business investment opportunities created by 
ethanol production. The federal government has spent billions of dollars to 
provide incentives to ethanol producers, and a popular measure used to gauge 
the success of a development effort is the number of new jobs created (Renkow 
2003). Petrulis, Sommer, and Hines (1993) forecasted that an increase in 
annual ethanol production of 5 billion gallons by 2000 would create more than 
60,000 additional jobs and that increased demand for corn would account 
for about 90 percent of those new jobs. Evans (1997), using a simultaneous 
equation model, estimated that production of 1.52 billion gallons of ethanol 
would create about 195,200 jobs in the United States. In 2005 alone, ethanol 
created about 154,000 jobs, thus accounting for an increase of approximately 
$5.7 billion in total U.S. household income that year (Worldwatch Institute 
2006). In the context of a less mechanized production economy, Horta (2004) 
estimated that an 84,500-cubic-meter demand for ethanol (about 22 million 
gallons) would generate 53,246 jobs in Costa Rica and that 12,499 of those jobs 
would be in rural areas.

Improved well-being is closely linked to increased wealth (Pender, Marré, and 
Reeder 2011). Thus, using total rural earnings as a measure of rural economic 
well-being and a multiple-regression analysis, Aldrich and Kusmin (1997) 
attempted to identify the key factors that drive the rural economy in the United 
States. They estimated a model in which total rural earning was a function of 
demographic, infrastructural, educational, and economic variables.3 Their 
results suggest that the economic structure of the industry is an important 
determinant of growth in rural earnings. They also found that a large percentage 
of employment in extractive and manufacturing sectors is negatively associated 
with total rural earnings. While ethanol production quali ies as a value-adding 
agricultural industry, it is also a component of the manufacturing sector. 
Thus, Aldrich and Kusmin’s (1997) results raise the possibility that ethanol 
production could have a negative impact on rural incomes.

In a nation in which rural residents constitute a large percentage of the 
population, strategies for promoting rural economic growth are essentially 
tantamount to strategies for promoting the nation’s economy. Gardner (2005) 
provided insight into what actually causes rural development in such economies 
using data on rural household incomes from 85 developing countries. He found 
that growth in the nonagricultural economy is the chief driver of increases 
in rural incomes. In developed countries such as the United States, a smaller 
proportion of the population is rural, but expansion of the U.S. ethanol industry 
may still have a signi icant impact on rural incomes.

The literature on the impacts of development of ethanol for fuel is relatively 
limited, perhaps because ethanol currently is not identi ied separately in 
national input-output measures. Its impact may be hidden within a much larger 
sector (Low and Isserma 2009). Also, the amount of data available regarding 
ethanol in the United States is barely suf icient for a comprehensive time-series 
study of the industry’s impacts. Accordingly, most of the work published on the 

3 Total rural earnings are estimated by multiplying total employment by the average wage.
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topic has been based on input-output analyses. While input-output techniques 
have merits, they require one to make assumptions regarding up-to-date 
coef icients for inter- and intra-industry purchases and exogenous demand, 
and the results of such analyses are sensitive to changes in those assumptions.

Data

We evaluate four annual indicators of the nationwide agricultural economy and 
incomes of rural residents: agricultural net value added, agriculture’s share 
of total U.S. employment, average household income of farm operators in the 
United States, and average net return to farm operators. We obtained data on 
agricultural employment as a percentage of total employment (agemploy%) 
from the World Bank’s World Development Index database.4 The series for 
agricultural net value added (agvalue), average farm operator household 
income (farmincome), and net return to operator (netreturn) were obtained 
from the USDA ERS.5 Data on rural household income per capita (ruincome) 
and rural income’s share of total national income (ruincome%) were obtained 
from the U.S. Bureau of Economic Analysis.6 Data that were measured in dollars 
(i.e., agvalue, farmincome, netreturn, and ruincome) were de lated using the 
consumer price index (CPI) (2005 = 100) from the World Development Index 
database. Lastly, data on U.S ethanol production (production) were obtained 
from the U.S. Energy Information Administration (EIA).7 The collected data 
cover 1981 through 2010.

4 World Bank World Development Index, http://data.worldbank.org/data-catalog/world-
development-indicators.

5 Economic Research Service, http://ers.usda.gov/data-products.
6 Bureau of Economic Analysis, www.bea.gov/regional/index.htm.
7 Energy Information Administration, www.eia.gov/state/?sid=US.

Figure 1. U.S. Ethanol Plants and Production for 1999 through 2012
Source: Renewable Fuels Association (2012).
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Figure 2. U.S. Fuel Ethanol Production for January 1981 through January 
2011
Source: Authors’ calculation using ethanol production data from the U.S. Energy Information 
Administration online database.
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Data on ethanol plants and production in the United States between 1999 and 
2012 are reported in Figures 1 and 2. There is a distinct upward trend in both 
the number of ethanol plants and production starting early in 2000. At that 
time, the U.S. Environmental Protection Agency (EPA) drafted a plan to phase 
out methyl tertiary-butyl ether (MTBE), a gasoline additive, and replace it with 
ethanol. By 2005, at least 25 states had passed laws banning or limiting the 
use of MTBE with effective dates ranging from 2000 to 2009 (EIA 2006). Also, 
the Energy Policy Act of 2005 established the irst renewable-fuel-standard 
mandate in the United States, requiring that 7.5 billion gallons of renewable 
fuel be blended into gasoline by 2012. The mandate was later expanded under 
the Energy Independence and Security Act of 2007. This expansion set the 
target for the amount of ethanol blended into transportation fuel at 9 billion 
gallons in 2008 and 36 billion gallons by 2022 (Schnepf and Yacobucci 2013).

A basic trend-line analysis (see Figure 2) and Chow breakpoint test (see 
Table 1) con irm two structural breaks, in 2002 and 2007, in the ethanol 
production data. To account for these breaks, we introduce two dummy 
variables, dbreak02 and dbreak07; dbreak02 is set to zero for all periods prior 
to 2002 and to one otherwise, and dbreak07 is set to zero for all periods prior 
to 2007 and to one otherwise.

Empirical Approach

In this bivariate study, we use a test for long-run cointegration and two Granger 
causality procedures. First, we test for the presence of long-run cointegrating 
vectors between ethanol production and the agricultural economic and rural 
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income variables. Then, for a closer look at the dynamics of the interactions 
between ethanol and the explained variables, we perform a short-run causality 
test. Lastly, we test for long-run causalities between ethanol production and 
the dependent variables. These bivariate empirical methods are comparable 
to the ones employed by Lau et al. (2008) and Natanelov, McKenzie, and Van 
Huylenbroeck (2013).

Cointegration Procedure

The test for cointegrating vectors is performed using the procedure proposed 
by Johansen (1988) and Johansen and Juselius (JJ test) (1990). Let Wt be the 
vector of the two variables in a single equation. Thus, a vector autoregressive 
with k lags, VAR(k), can be speci ied as

(1) Wt = β1Wt–1 + β2Wt–2 + . . . + βkWt–k + μt .

To use the JJ test, we must transform the VAR(k) model to a vector error 
correction (VEC) model (Harris and Sollis 2003). Therefore,

(2) ΔWt = ΠWt–k + Γ1ΔWt–1+ Γ2ΔWt–2 + . . . + Γk–1ΔWt–k–1 + μt

where Γi, i = 1, 2, . . . , k–1, represents the 2×2 parameter matrices. Since we are 
examining bivariate relationships, Π is also a 2×2 matrix that contains long-
run information. Π can be further decomposed into αβ΄ where α is the speed 
of adjustment and β΄ is the long-run coef icient matrix. Hence, β΄Wt–1 contains 
n – 1 vectors and is equivalent to the error-correction term in a single-equation 
case. To check cointegration, we examine the rank of the Π matrix using both 
the trace statistics and the maximum eigenvalues:

Table 1. Chow Breakpoint Test for U.S. Ethanol Production
Year F-statistic p-Value Decision

1999 1.980 0.158 Fail to reject H0

2000 2.603 0.093 Fail to reject H0

2001 3.270 0.054 Fail to reject H0

2002 4.417 0.022* Reject H0

2003 5.358 0.011* Reject H0

2004 0.4129 0.677 Fail to reject H0

2005 0.817 0.480 Fail to reject H0

2006 2.138 0.189 Fail to reject H0

2007 4.887 0.047* Reject H0

2008 11.757 0.006** Reject H0

2009 1.272 0.440 Fail to reject H0

2010 2.496 0.286 Fail to reject H0

Notes: * and ** denote signi icance at a 5 percent and 1 percent level respectively. H0: No breaks at the 
speci ied breakpoint. The estimated equation is production = f(production (–1)).
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(3) [ λtrace = –T ln(1 – γ2
i )] and

(4) [ λmax(r, r + 1) = –T ln(1 – γr+1)]

where r is the number of cointegrating vectors, γi is the estimated eigenvalues 
obtained from the estimated matrix, and T is the number of observations after 
lag adjustments.

Johansen and Juselius (1992) suggested that the variables must be stationary 
in irst difference for the JJ test result to be valid. Therefore, we perform a 
unit root test for each variable. The JJ approach for studying cointegration is 
preferred to an Engle-Granger test because the JJ test does not depend on the 
choice of normalization (Lau et al. 2008).

Test for Granger Causality

According to Granger (1988), if two nonstationary series are cointegrated, there 
must be evidence of Granger causality in at least one direction. Therefore, we 
examine the direction of causality in the cointegrated bivariate relationships.

In any bivariate relationship, when both variables are stationary in irst 
difference and are cointegrated, any standard Granger causality inference will 
be invalid. In this case, we can infer causality based on a VEC model (Engle 
and Granger 1987). However, a major drawback of using a VEC-based Granger 
causality model is the requirement that a differencing ilter be included in 
the variables. At the same time, differencing essentially removes long-run 
information that can be crucial to policymakers (Masih and Masih 1997). We 
thus use the VEC-based Granger only for short-run causal inferences.

To test long-run causality, we employ the procedure proposed by Toda 
and Yamamoto (1995) (hereafter referred to as TY noncausality), which is 
a modi ied Granger causality test. Results generated using this method are 
valid regardless of whether the series are stationary (around a linear trend), 
irst-order integrated, second-order integrated, or cointegrated (Toda and 

Yamamoto 1995). The TY noncausality test is performed in the following VAR 
framework:

(5) agrict = ∝1 + φi agrict–i + τj productiont–j + μ1t

(6) productiont = ∝2 + Φi productiont–i + Ψj agrict–j + μ2t

(7) ruralt = ∝1 +  βi ruralt–i +  γj productiont–j + μ3t

(8) productiont = ∝2 +  δi productiont–i +  θj ruralt–j + μ4t

where agric represents the agricultural economy variables in natural log, rural 
represents the rural income variables in natural log, and production symbolizes 
ethanol production in natural log; d is the maximum order of integration of the 
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variables in the system, k is the optimal lag, and μ1t, μ2t . . . μ4t are the white-
noised error terms.8 To test whether production Granger-causes agvalue in the 
long run, for example, we test the following hypotheses:

 H0: τj  = 0; H1: τj  ≠ 0

where τj is the coef icient of production in equation 5. Thus, the Granger 
causality from production to agvalue can be established by rejecting H0, which 
requires a signi icant modi ied Wald statistic for productiont–1 . . . productiont–k. 
Note that productiont–k+d is unrestricted to accommodate the long-run 
correction mechanism and to adjust the asymptotics. The null and alternative 
hypotheses for production paired with each of the other agricultural sector and 
rural income variables are de ined in the same way.

The TY noncausality procedure is preferred over the likelihood ratio test in 
the context of a VEC model (Zapata and Rambaldi 1997) because the VAR model 
involves using data in their level form (that is, the series are not differenced). 
Thus, the TY noncausality procedure retains the long-run information and, 
unlike most time-series procedures, does not require that the variables be of 
the same order of integration.

Lag Selection Process

The dynamic speci ication of the equation orders (k) can affect the number of 
cointegrating vectors in the system and the causality results. Therefore, it is 
important to select the optimal lag length for each bivariate analysis to limit the 
chance of obtaining spurious causal relationships. Since lag-selection criteria 
such as the Akaike information criterion and Bayesian information criterion 
do not guarantee that the residual will be white-noised, especially when the 
sample size is small, we employ an iterative approach for lag selection similar 
to the one used in Ibrahim (2011).

First, we estimate the bivariate system of equations with one lag. The residual 
of that regression is then tested for serial correlation. If evidence of serial 
correlation is found, we re-estimate the equation using two lags. This process is 
continued iteratively until we identify the smallest lag length at which the error 
terms of the system are devoid of serial correlation—the optimal lag.

Results and Discussion

Table 2 presents summary statistics for each variable. As shown, ethanol 
production (production) was least in 1981 and greatest in 2010. The skewness 
of the statistics, a measure of symmetry, suggests a substantial probability 
that future values of agvalue, agemploy%, and netreturn will be less than their 
respective average values. Also, the measure of kurtosis shows that production, 
farmincome, and netreturn have leptokurtic distributions. Thus, those series 
have a greater probability of having extreme values. Since our sample consists 
of 30 observations, caveats associated with small sample sizes apply.

A series is said to be stationary if it reverts back to its long-run trend, and 
a mean-reverting (stationary) series is one in which a rise is likely to follow 

8 We describe the optimal lag selection process in the next subsection.
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a fall and a fall is likely to follow a rise. Most economic data are trended but 
can be stationary when differenced (Phillips 2005). When a nonstationary 
series is differenced d times before it becomes stationary, the series is said to 
be integrated of order d; that is, the series is I(d). We use both an augmented 
Dickey-Fuller test and a Phillips-Perron test to determine the stationarity of 
each series.

Table 2. Descriptive Statistics for Ethanol Production and Indicators of 
Agricultural Economy and Rural Incomes for 1981 through 2010
 Production in Agvalue in Agemploy% 
 Million Gallons U.S. Dollars % of U.S. Total

Mean 2,572.606 112,269.00 2.627
Median 1,288.623 113,120.40 2.850
Maximum 13,297.910 131,127.70 3.600
Minimum 83.074 85,829.89 1.400
Standard deviation 3,286.733 10,635.89 0.679
Skewness 2.067 –0.336 –0.584
Kurtosis 6.320 2.770 2.243
Observations 30 30 30

 Farmincome Average Netreturn in Ruincome in Ruincome%
 in U.S. Dollars U.S. Dollars U.S. Dollars % of U.S. Total

Mean 9,784.280 55,201,561 23,727.21 12.458
Median 8,440.323 55,411,560 23,075.62 12.465
Maximum 26,895.97 81,763,243 28,759.15 14.180
Minimum 3,257.129 16,374,059 18,873.47 11.430
Standard deviation 5,326.567 12,766,704 3,149.648 0.755
Skewness 1.742 –0.748 0.138 0.793
Kurtosis 5.791 4.444 1.743 2.760
Observations 30 30 30 30

Table 3. Unit Root Test: t-Statistics in Level and First Difference with Trend 
and Intercept

Augmented Dickey-Fuller Phillips-Perron

Level First Difference Level First Difference

Production –3.349 –5.066** –3.456 –6.712**
Agvalue –5.263** –5.384** –5.281** –21.657**
Agemploy% –1.699 –5.782** –1.690 –5.782**
Farmincome –3.267 –6.556** –3.351 –12.606**
Netreturn –3.873* –4.353** –3.873* –18.949**
Ruincome –2.875 –6.566** –2.924 –6.693**
Ruincome% –1.897 –4.115* –1.390 –4.101*

Note: * and ** denote signi icance at a 5 percent and 1 percent level respectively.
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The unit root results shown in Table 3 suggest that our series are all 
stationary in irst difference (they are I(1) series). The agvalue variable seems 
to be stationary both in level and irst difference. However, since the t-statistics 
are greater in irst difference in absolute terms, we assume that agvalue is I(1).

The results of the JJ tests presented in Table 4 show that ethanol production 
has signi icant long-run cointegrating relationships with agvalue, agemploy%, 
and netreturn. Thus, there is evidence of long-run Granger causalities between 
ethanol and those three indicators. Conversely, production has no long-
run cointegrating relationship with farmincome, ruincome, and ruincome%, 
suggesting that changes in farmincome, ruincome, and ruincome% are 
independent of ethanol production in the long run.

Once cointegration between two time series is established, it is of interest to 
analyze the causality direction of each cointegrating pair (Natanelov, McKenzie, 
and Van Huylenbroeck 2013). We present the results of tests of short-run 
Granger causality in Table 5 and long-run Granger causality in Table 6.

For the VEC-framed short-run Granger causality, we test the null hypothesis 
that the joint contribution of the lags of the endogenous variables (including 
the dummy variables) equals zero. Our bivariate results reveal that ethanol 
production has Granger causal relationships with agvalue, agemploy%, 
netreturn, and ruincome in the short run at a 1 percent level of signi icance.

For the long-run causality results reported in Table 6, column A presents 
p-values of the Wald statistics for the bivariate ethanol/agriculture and 
ethanol/rural-income relationships prior to the structural breaks in 2002 and 
2007. Column B reports p-values for the joint contribution of the righthand-
side variable and the 2002-break dummy variable. Column C shows p-values 
for the joint contribution of the explanatory variable and the 2007-break 
dummy variable.

According to the long-run causality results, ethanol production had an 
effect only on agricultural net value added and net returns to operators prior 
to the structural breaks. The ethanol production Granger causality extends to 
agriculture’s share of total U.S employment after the irst break and to rural 
income as a percentage of total U.S. income after the second break. Also, we ind 
signi icant evidence of reverse Granger causality running from rural income 
per capita to ethanol production.

The causality relationship between ethanol production and agricultural 
net value added is signi icant at a 99 percent con idence level throughout the 

Table 4. Johansen-Juselius Cointegration Test Trace Statistics
Hypothesized Agvalue Agemploy% Farmincome Netreturn Ruincome Ruincome%

 r = 0 6.698* 103.660* 38.710 58.630* 45.140 37.810

 r ≤ 1 20.015 30.496* 20.903 20.032 25.064 22.231

 r ≤ 2 9.110 12.764 8.912 8.047 9.905 11.336

 r ≤ 3 0.006 0.021 0.022 0.010 2.149 2.578

Notes: The dependent variable is production. * indicates signi icance at a 5 percent level. r is the number 
of cointegrating vectors. The p-values are MacKinnon, Haug, and Michelis (1999) p-values. Since the 
maximum eigenvalue results are similar to the trace-statistic results, we present only the trace statistics. 
However, the maximum eigenvalue igures are available upon request.
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Table 5. Short-run VEC-based Granger Causality Results
  χ2 Statistics of Lagged 
 First Differenced Term

H0: Δproduction → Δagvalue 16.521**
H0: Δagvalue → Δproduction 3.236

H0: Δproduction → Δagemploy% 80.306**
H0: Δagemploy% → Δproduction 0.485

H0: Δproduction → Δfarmincome 2.695
H0: Δfarmincome → Δproduction 2.192

H0: Δproduction → Δnetreturn 17.008**
H0: Δnetreturn → Δproduction 3.4720

H0: Δproduction → Δruincome 11.545**
H0: Δruincome → Δproduction 4.232

H0: Δproduction → Δruincome% 0.448
H0: Δruincome%→ Δproduction 0.926

Notes: * and ** denote signi icance at a 5 percent and 1 percent level, respectively. Δ signi ies that the 
series are in irst difference. Other than the production-ruincome equation, which has an optimal lag 
length of 2, each bivariate equation’s optimal lag is 1. We apply the Wald test with the null hypothesis 
that the joint contribution (χ2) of the righthand-side variables equals zero.

Table 6. Toda-Yamamoto Granger Noncausality Results
 A B C D
 p-Value before p-Value with p-Value with Optimal
 Breaks dbreak02 dbreak07 Lag

H0: production → agvalue 0.000** 0.002** 0.002** 1
H0: agvalue → production 0.679 0.156 0.189 1

H0: production → agemploy% 0.073 0.000** 0.000** 2
H0: agemploy% → production 0.553 0.091 0.109 2

H0: production → farmincome 0.097 0.087 0.243 1
H0: farmincome → production 0.920 0.163 0.324 1

H0: production → netreturn 0.003** 0.012* 0.012* 1
H0: netreturn → production 0.703 0.171 0.388 1

H0: production → ruincome 0.072 0.198 0.192 1
H0: ruincome → production 0.366 0.146 0.009** 1

H0: production → ruincome% 0.415 0.541 0.018* 1
H0: ruincome%→ production 0.931 0.147 0.185 1

Notes: The → represents “does not Granger cause.” * and ** denote signi icance at a 5 percent and 
1 percent level respectively. Optimal lags are those that whiten the residuals.
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sample period. This result is expected since ethanol is directly linked to other 
agricultural value-added industries such as the animal feed sector. Although 
ethanol production reduces the amount of corn available for feed, one-third 
of every bushel of grain processed into ethanol is enhanced and returned to 
the animal feed market as distiller’s grain, corn gluten feed, or corn gluten 
meal (Renewable Fuels Association 2013). Also, since the agricultural net 
value added is net income plus direct government payments and payments to 
stakeholders, this result could further imply that an increase in net value added 
is in luenced by ethanol-induced increases in direct government payments, 
corn production, and prices. As ethanol production increases demand for corn, 
it also raises demand for arable land, which may increase the price of competing 
crops and land rent.

Granger causality from production to agemploy% is signi icant at a 99 percent 
con idence level after the irst break. Before the breaks, this causality was barely 
signi icant (90 percent con idence level). This suggests that periods of sudden 
accelerated growth in U.S. ethanol production strengthened the association 
between ethanol production and agriculture’s share of total U.S. employment. 
Evidently, the increase in ethanol production during the irst and second boom 
periods was instrumental in creating employment in the agricultural sector. 
These results reinforce the estimate by Urbanchuk (2014) that the U.S. ethanol 
industry created about 242,348 agricultural jobs in 2013 alone.

Furthermore, there is only minimal causality from production to farmincome 
(signi icant only at 90 percent con idence level). However, as with agricultural 
value added, net return to operators exhibits a persistent unidirectional 
association with ethanol production both before and after the breaks. So, while 
ethanol production has relatively little impact on farm household income, 
it has a signi icant impact on net returns to operators, which makes ethanol 
an important factor in the economic well-being of farm households. Unlike 
measures of net returns, measures of total income do not account for expenses 
incurred during farm operations (e.g., the cost of feed). These results also imply 
that ethanol production contributes to farm households’ economic well-being 
more through gains obtained from farm activities than through income from 
off-farm ethanol-related undertakings. Hence, a study of the effectiveness of 
bioenergy policies on improving producers’ economic well-being would not be 
complete without an examination of impacts on net returns.

Interestingly, although we have evidence of causality between production 
and ruincome in the short run, we ind very little evidence of causality between 
production and ruincome and ruincome% in the long run. This result suggests 
that ethanol production signi icantly impacts rural economies only when a plant 
is being built or expanded (by providing short-term jobs such as construction 
work to rural dwellers). Thus, government efforts to improve rural incomes by 
providing incentives to ethanol producers may yield only short-term impacts.

Since the majority of U.S. ethanol plants are located in the Midwest 
(89 percent as of 2013 (EIA 2013)), studies of the impact of ethanol production 
on agricultural and rural sectors in the Midwest region (one of our works in 
progress) may yield results that are more signi icant.

At this time, it is dif icult to determine whether the incentives currently being 
paid to producers of non-corn-ethanol through the Advanced Biofuel Payment 
Program would yield similar results9 because the program has been around for 

9 The program provides incentives to produce biofuel from sources other than corn kernel starch.
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only six years. Also, production of ethanol from cellulose is in early stages, and it 
is not yet clear how a signi icant breakthrough in that ethanol technology would 
change the causal interactions between the ethanol industry and the agricultural 
economy and rural incomes. Our proposition is that the impact will depend on 
the cellulosic materials predominantly used. Using primarily corn stovers, for 
example, rather than switchgrass will further increase the pro itability of growing 
corn and consequently increase the area under corn. Whatever the predominant 
feedstock, production of bioethanol in any form will continue to impact the 
agricultural sector by increasing agricultural value added.

Overall, U.S. ethanol production appears to have a strong impact on the 
agricultural sector through agricultural value added, agriculture’s share of total 
U.S. employment, and net returns to farm operators. However, it has very little 
or no signi icant impact on incomes of farm households or on rural income per 
capita, especially in the long run.

Summary

As part of efforts to reduce the country’s dependence on fossil fuels, decrease 
greenhouse gas emissions, and expand the agricultural value-added industry, 
the U.S. government has supported policies that promote the production and 
use of renewable energy sources. Evidently, these policies have triggered the 
boom in ethanol production in the United States that began in 2002. Since the 
ethanol industry’s immediate stakeholders are agricultural producers and 
rural dwellers, we examine the causal interactions between ethanol production 
and select agricultural and rural economic indicators. Our analysis, which 
accounts for structural breaks in ethanol production in 2002 and 2007, shows a 
signi icant causal connection between ethanol production and the agricultural 
economy between 1981 and 2010. The structural shifts brought about by 
federal ethanol policies also strengthened the causal link between ethanol 
production and the agricultural economy. Therefore, policies that promote 
production of corn-ethanol will signi icantly impact agricultural value added, 
producers’ net gains, and agriculture’s share of total U.S. employment in both 
the short run and the long run. Furthermore, we ind that ethanol production 
Granger-causes rural incomes in the short run but fails to signi icantly do so in 
the long run.

The results should be interpreted with some caution because of the possibility 
of loss in power associated with the small sample size and omitted-variable 
bias, which are common in bivariate studies. Accordingly, future research could 
quantify the marginal effects of ethanol production on the agricultural sector 
in a well-speci ied model and identify additional rural-economic variables that 
may be impacted by ethanol production to extend this study and thus provide 
valuable information to policymakers.
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