|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2011)
11, Number 2, pp. 323-324

Stata tip 100: Mata and the case of the missing macros

William Gould Nicholas J. Cox
StataCorp Department of Geography
College Station, TX Durham University
wgould@stata.com Durham City, UK

n.j.cox@durham.ac.uk

People who come from Stata programming to Mata often look around and ask,
“Where is the macro substitution?” The short and discouraging answer is that there
is none. The longer and much more encouraging answer is that what you would do by
macro substitution in Stata is easily done in other ways in Mata.

This tip presupposes some acquaintance with macros in Stata. If macros are new or
not very familiar to you, [U] 18 Programming Stata will give you a lot of background.

Let’s make clear what we mean with an example. Consider a loop in Stata that runs

forvalues j = 1/42 {
summarize P~ j~

}

forvalues (see [P] forvalues) loops over integer sequences, here all of them from 1
to 42. So as Stata executes the loop, the local macro j takes on the values 1, 2, ..., 41,
42, which are substituted in turn within the text P¢j’. The effect will be that Stata
sees, in turn,

summarize P1
summarize P2

and so on, up to summarize P42. Assuming that you do have variables P1-P42 then
each will be summarized in turn.

Now let us suppose that we want to do something similar in Mata. As an artificial
example sufficient to show the main idea, let’s read in those variables and spit out
their means from Mata. However, Mata has no idea of a local or global macro. If it
sometimes appears to understand such macros, that is only because references to them
are interpreted by Stata before they are ever seen by Mata. But we can do the same
kind of string manipulation in Mata, using its own functions.

Here is one solution:

for(j = 1; j <= 42; j++) {
name_to_use = sprintf ("Plg", j)
mean(st_data(., name_to_use))

}

The integer j is mapped to its string equivalent by being inserted as one or more
characters in a string that could be displayed. We are not going to display that string,
but we are going to use its contents, which in the same way will be in turn "P1", "P2",
and so on.

© 2011 StataCorp LP pr0052



324 Stata tip 100

Here is another way to get name_to_use within the same loop:
name_to_use = "P" + strofreal(j)

It does not matter which command line appears in code. Either way, the idea so far
is to construct the desired variable name in Mata as a string scalar, name_to_use. In
each case, look at the help (equivalently, the Mata manual) if you want more detail on
functions such as sprintf () or strofreal().

But we can short-circuit that longer code by combining two lines of code into one,
which incidentally gets us even closer to the idea of string substitution:

mean(st_data(., sprintf("P%g", j)))
or
mean(st_data(., "P" + strtoreal(j)))

The difference is just a matter of style. Some users will prefer the step-by-step
solution. The choice is yours. So the main idea is simple: use Mata’s display or string
functions to do the manipulations you need.



