

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2011)
11, Number 2, pp. 318–320

Stata tip 98: Counting substrings within strings
Nicholas J. Cox
Department of Geography
Durham University
Durham, UK

n.j.cox@durham.ac.uk

Consider the following problem, based on a real one reported on Statalist. A user
has string date–times in differing forms; let us imagine they are in a variable, sdate.
The desire is for everything to be DMY hms—that is, day, month, year, space, hours,
minutes, and seconds. Examples of data are

“25/12/2010 11:22”
“25/12/2010 11:22:33”
“25/12/2010 11:22:33:444”

Compared with the standard, the first example lacks seconds; the second example is
fine; and the third example includes milliseconds, but expressed in a nonstandard way.
Stata expects seconds and milliseconds in the decimal form “33.444”.

Some cleanup is required. One way forward is to note that the number of colons (:)
present within the string is diagnostic of whether action is required and what to do. So
how do you count substrings (in this case, just a colon) within strings? The problem
has been aired in this journal at least once before (Cox 2011), but it occurs sufficiently
often that it deserves a further flag. The main solution tends to provoke the reaction
“Yes, of course!”, whether because people know it already or they now see that it is
obvious and direct. However, people (including myself) have often supposed that the
problem requires a more complicated approach than it really does.

Faced with this kind of problem, an experienced user tends to browse the help for
string functions to see if there is a function dedicated to this problem, but in this case
browsing will be in vain. But as so often happens, combining different functions is more
successful. Consider how you would count for yourself. You would naturally work from
one end of the string to the other, noting each occurrence. It is immaterial whether you
count from left to right or from right to left, but note that Stata, by default, works on
strings from left to right.

Stata has a function, subinstr(), that looks for occurrences of substrings within
strings and replaces them with a specified substring (often just an empty string, "").
This function gives us a solution. Consider the calculation

length(sdate) - length(subinstr(sdate, ":", "", .))

As with elementary algebra, working from the inside of complicated expressions
outward is a good tactic for understanding. The function call

subinstr(sdate, ":", "", .)

c© 2011 StataCorp LP dm0056

N. J. Cox 319

takes in this example a named variable, sdate, and substitutes an empty string, "", for
every occurrence of the single-character substring that is a colon, ":". In other words,
it deletes every colon. The length of the result is shorter than the original by how many
colons were found, which could be 0, 1, 2, 3, and so forth.

We do not always need to get Stata to do this and remove those substrings. In
this example, and in many others, doing so would just mess up our data and make our
problem more difficult. We just need to get Stata to tell us what the result would be.
So, to conclude the example, we could count the colons, fix problem cases, and check
to see if that strategy worked everywhere:

generate ncolons = length(sdate) - length(subinstr(sdate, ":", "", .))
replace sdate = sdate + ":30" if ncolons == 1
replace sdate = reverse(subinstr(reverse(sdate), ":", ".", 1)) if ncolons == 3
generate double ndate = clock(sdate, "DMY hms")
format ndate %tC
list sdate if missing(ndate)

The trickiest detail here is that to change the last colon of three to a period, we
reverse the string, change the first colon, and reverse it back again. This is another
common example of combining string functions.

Counting substrings that are two or more characters long introduces two extra twists
to the problem.

First, let us focus on a standard elementary puzzle. How many occurrences of "ana"
are there in "banana"? One tricksy answer is two—namely, "*ana**" and "***ana"—
but Stata’s answer using the subinstr() trick will have to be one. Once the first "ana"
is blanked out, "bna" is all that is left. It seems rare in data management that we want
the more generous answer, but how would we do it?

In essence, we need to test each possible position. For that, we need to know the
length of the string—in our example, a string variable (say, svar)—to be searched.
Either we know the precise type of a string variable in advance—say, str12—or we
will need to look it up using an extended macro function. Let’s choose the second and
marginally more difficult case for a string variable. We will keep going with the silly
example of counting as many occurrences of "ana" as possible.

local length = substr("`: type svar´", 4, .) - length("ana") + 1
gen ana_count = 0
qui forval i = 1/`length´ {

replace ana_count + (strpos(svar, "ana") == `i´)
}

How does this approach work? We are testing each possible position. We start at
the first character, but we need not go all the way up to the end, because for example,
the last possible position in which "ana" could occur within a str12 is position 10
(not position 9!) We initialize a count variable as 0 and bump it up by 1 every time the
position is indeed a starting position for the substring. That follows from the expression
(strpos(svar, "ana") == ‘i’) evaluating to 1 when true and 0 when false, so we end
up counting occurrences.

320 Stata tip 98

That case is clearly more complicated than the case of counting occurrences dis-
jointly. Fortunately, it appears to arise much less frequently.

Second, remember to adjust for the length of substring when counting substrings
using the subinstr() method. length("banana") - length(subinstr("banana",
"ana", "", .)) yields 3 because three characters were removed, but just one occur-
rence of the substring was. In general, divide by length("substring"). If you know
what it is, there is a small efficiency gain in saying so. For example, you should not
write

gen n_ana = (length(svar) - length(subinstr(svar, "ana", "", .))) / length("ana")

because that obliges Stata to calculate length("ana") for every observation. Even in
a programming situation where the particular substring is not predictable in advance,
a calculation like

local sslen = length("substring")

allows the result to be used in macro form in a command:

gen n_substring = (length(svar) - ///
length(subinstr(svar, "substring", "", .))) / `sslen´

That way, the contents of the macro are substituted before the generate command
gets to work so that it uses a known constant rather than an expression to be evaluated
for every observation.

The problem could get more complicated, yet. For example, the substring concerned
might vary from observation to observation, as when conventions about reporting are
variable in the data. So long as the substring is known and included within a variable
(say, ssvar), this is no more difficult than any previous problem.

gen sscount = (length(svar) - ///
length(subinstr(svar, ssvar, "", .))) / length(ssvar)

Alternatively, we might be counting different possible types of substring, for which
we just need to cycle over all the possibilities.

Reference
Cox, N. J. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within

Stata. Stata Journal 11: 126–142.

