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Abstract. Many problems in data management center on relating values to values
in other observations, either within a dataset as a whole or within groups such as
panels. This column reviews some basic Stata techniques helpful for such tasks,
including the use of subscripts, summarize, by:, sum(), cond(), and egen. Several
techniques exploit the fact that logical expressions yield 1 when true and 0 when
false. Dividing by zero to yield missings is revealed as a surprisingly valuable
device.
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1 Introduction

Often in data management, there is a need to compare values in a variable with other
values for different observations (rows, cases, or records in non-Stata terminology).

An easy first example is relating values to a single reference value in another obser-
vation: suppose, say, that you regard Texas or London or your home area as a reference,
or that you wish to scale values relative to some base year, such as 1980 or 2000. A more
challenging version of that problem repeats that calculation for different groups, say,
panels in a longitudinal dataset. A yet more challenging version entails summarizing
observations for a subset of the same group, such as when the characteristics of the
children in a family are calculated for all observations in that family.

In this column, I review basic Stata techniques in this area. Some more-complicated
problems in this territory were discussed in an earlier column (Cox 2002b), so in a sense
this column should have been written first.

Even Stata veterans are likely to find something new here—they should particularly
look at section 10 on dividing by zero, which can be an eminently logical move.

2 Subscripting identifies specific observations

We will start with using some other observation as reference. Let us read in some data:

. sysuse uslifeexp
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This dataset contains various time series for life expectancy in the United States. Sup-
pose we want to relate changes to the base year 1960. In this case, the dataset is of
modest size and it is easy to find that values for 1960 are in observation 61. So we could
use subscripting to relate values to that observation, as in

. generate le_female_index = 100 * le_female/le_female[61]

The advantage of this method is directness. The value desired as reference is al-
ready a data value, so there is no need to calculate it. Once we have found out which
observation contains the value we need, we can just indicate the observation number by
a subscript, here [61]. As is evident, the terminology here is not literal, because Stata
does not write anything below the line, but is merely intended as evocative, calling to
mind notation such as yi, specifically, y61 to indicate the 61st value in a series.

The disadvantages of this method are a little more subtle. Suppose that we are
careful and keep a record of our calculations, but we are not so careful as to add a
comment explaining exactly what this calculation does. Then there could be a minor
puzzle working out some time later what it is that we did. Or suppose that we change the
sort order of the data for some reason. Then the new observation 61 is very likely to be
a different observation, and the same command line would yield a different calculation,
as we may or may not realize. Or suppose that we want to do something like this in
different datasets, in which there is no predictable regularity about which observation
contains the value we want. Then the lack of generality of the method is clear.

3 summarize leaves useful results in its wake

More general methods are at hand. If we

. summarize le_female if year == 1960

then the if condition will in this dataset identify just one observation, and the value
of le female for that observation will be accessible after summarize in one of r(min),
r(mean), or r(max). Conversely, if there are no such observations, or more than one
such observation, summarize will tell you, and you need to work out what to do next.
But suppose all is well, as in the dataset in question. Then the calculation to follow
will be

. generate le_female_index = 100 * le_female/r(mean)

Clearly, you may use r(min) or r(max) rather than r(mean), if you please, but the
difference is quite immaterial, because the mean, minimum, and maximum of a single
value are all identical to that value.

This method has the advantage over the first method of being easier to understand
in a log file consulted some time after the event. Naturally, adding an explanatory
comment would make it even easier.
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What could go wrong? Suppose that there is no value for 1960. Then after
summarize, the results would be missing and so would our new variable. Thus we
would notice that problem sooner or later.

Conversely, suppose that there are two or more observations for 1960. As said, the
fact will be evident in the results for summarize. If we were automating calculations,
it would be a good idea to check that the number of nonmissing values, accessible after
summarize in r(N), is equal to 1.

4 Tagging gives something to copy

Here is yet another way to do it. Like the summarize method just explained, this
method is more elaborate than the first method, but it can be greatly extended to
more complicated and more challenging problems. First, create an indicator tag or flag
variable that is 1 for the observation we want to copy.

. gen byte tag = 1 if year == 1960

Notice the detail of creating a byte variable to reduce storage. This new variable, tag,
will be 1 when the year is equal to 1960 and numeric missing (.) when the year is not
equal to 1960. We can now

. sort tag

After sorting, the observation for the tagged year, 1960, will be sorted to observation
one. The index now can be created by

. gen le_female_index = 100 * le_female/le_female[1]

You can see the advantage of this technique. It is a way of making Stata first find
and then use the value for 1960, regardless of where it occurs in the dataset or whether
the dataset had any particular sort order.

There are many variations on this indicator variable technique. If the tag variable
had been

. gen byte tag = year == 1960

then the new variable would be 1 if the year was 1960 and 0 otherwise. Thus sort
tag would sort the tagged observation to the end of the dataset, and the appropriate
value would be referenced by le female[ N]. Using N as subscript is a common Stata
technique. N in this situation is the number of observations in the dataset and so
also the subscript of the last observation in the dataset. The more general principle is
that subscripts, like much else in Stata, can be defined by expressions, which Stata will
evaluate for you.

The expression year == 1960 is just one example of a logical test yielding 1 or 0 on
evaluation. The help file for operators will remind you of the other operators that can
appear in logical expressions; see help operators. For example, negating the logical
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test by !(year == 1960) would have meant that the tagged value would have been
sorted to the start of the data. Negation using ! exchanges 0s and 1s.

Again, what could go wrong is that there might in fact be no value for 1960. In
that case, the tag variable will be identical throughout the dataset and the wrong value
would be used. So we would need to be more careful with this technique. For example,
if tag should be 1 in the first observation, check whether that is true. Similarly, it
would be prudent to check that only the first observation was tagged with 1. Possible
techniques include using summarize, as above, or count (Cox 2007), or assert (Gould
2003).

5 The problem arises with panels too

Let us now consider extending the problem to panel data. We will use another of Stata’s
datasets:

. webuse grunfeld, clear

This is a well-behaved panel dataset in which each year in the dataset is matched by a
nonmissing value for each panel and each variable. But we show a technique that does
not make that assumption. The panel covers the period 1935 to 1954. Let’s show how
to scale each panel separately by values in 1939.

. gen byte baseyear = 1 if year == 1939

. by company (baseyear), sort: gen invest_index = 100 * invest/invest[1]

What is new here is that we are using by: to calculate separately within the groups
it defines. The last command does three things in quick succession:

1. It declares that operations will be done separately by company.

2. It sorts first on company and then within company by the new variable baseyear.
Because baseyear has values 1 or missing, values of 1 will be sorted to the start
of each panel for an individual company.

3. It creates a new variable by using generate and the expression given. A key
feature of using by: is that subscripts are interpreted within groups rather than
within the entire dataset. Thus the subscript [1] refers to the first observation
for each company in the current sort order.

The two lines of code above will give incorrect answers if in fact an individual
company was not observed in 1939. In a real time-series problem, researchers would be
likely to solve such a problem by interpolation or some other suitable method. For our
purposes, let us focus on ensuring results that are not misleading. One useful method
is to extend the expression

100 * invest/invest[1]
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to say

100 * baseyear[1] * (invest/invest[1])

The extra factor baseyear[1] will be 1 or missing, and so multiplying by it will leave
valid values unchanged but will result in invalid values being returned as missing. Again,
using subscript [1] ensures that the value for the first observation is used for every
observation in its panel.

A twist on this problem is that values are to be related not to a reference year, but
to a reference panel. A little thought shows that as far as Stata is concerned, this is
exactly the same kind of question.

. gen byte basepanel = 1 if company == 1

. by year (basepanel), sort: gen invest_index = 100 * invest/invest[1]

The same caveat applies if there are gaps in the data.

For more on by:, see a tutorial in a previous column (Cox 2002a).

6 Use logical expressions and sum()

What do the following lines of code do?

. sysuse uslifeexp, clear

. gen basevalue = sum((year == 1960) * le_female)

. gen le_female_index = 100 * le_female/basevalue[_N]

. webuse grunfeld, clear

. by company, sort: gen basevalue = sum((year == 1939) * invest)

. by company: gen invest_index = 100 * (invest/basevalue[_N])

This new method uses the function sum() together with logical expressions. The
expressions year == 1960 and year == 1939 will be evaluated as 1 when true and 0
when false. The cumulative sum produced by sum() will, at the end of the dataset, just
be the total for le female or invest in the year identified. It is born zero but is set to
le female for 1960 when that observation is encountered. So the last value, subscripted
by N, will be the value we need. A big advantage of this technique, as shown by the
second code example above, is that it extends easily to panel data.

With this technique, we need to ensure that there is only one value for each set
identified, the entire dataset for the first example and each individual company in the
second example. In fact, if there are no instances of the years indicated, the variables
containing sums will be 0 and, in this case, dividing by 0 will yield missing, which is the
right answer. But not all such problems imply division by 0, so in other problems we
still need to watch out. And the difficulty still remains that there might be two or more
observations for the years in question. In careful code, we would therefore also monitor
sum(year == 1960) or sum(year == 1939) and check that its final values are 1 when
that should be the case.
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7 egen is an alternative

You may well know that egen offers a canned way to create the variables of the previous
section.

. sysuse uslifeexp, clear

. egen basevalue = total((year == 1960) * le_female)

. gen le_female_index = 100 * le_female/basevalue

. webuse grunfeld, clear

. by company, sort: egen basevalue = total((year == 1939) * invest)

. by company: gen invest_index = 100 * (invest/basevalue)

A feature of egen’s total() function, which is sometimes overlooked, is that it feeds
on expressions, which can be more complicated than single variable names.

The similarity between the egen code here and the code of the previous section is no
accident. What egen is doing is in essence identical to what was done with generate
previously. Evidently, generate is a fundamental command that we all must use. Given
that, the reaction might well be: Why bother with egen?

The differences here, which do provide an answer to that question, are all a little
subtle.

First, the egen function is called total() in an attempt to underline that it is not
the same beast as the function sum(). Long-time users of Stata will know, however, that
before Stata 9 this function was called sum(), and in fact there is still an undocumented
egen function called sum(), which is identical to total() in effect. To explain that
again: in the context of egen, and only in that context, sum() means the undocumented
egen function with that name, which produces overall sums or totals, and not running or
cumulative sums or totals. For more on functions in the strict sense and egen functions,
see Cox (2002b).

Second, egen produces a new variable that will be a constant within its group.
Hence, there is no need to be careful about picking up the last value, subscripted with
[ N], although there is no harm in specifying that subscript.

Third, egen includes many details in its implementation that are glossed over here.
In total, those details make egen a little inefficient in machine time. But they add to
its utility. In particular, egen takes much of the pain out of handling any extra if or
in restrictions.

egen does not solve the particular difficulty of our running example that there might
be more than one instance of year == 1939, or whatever. We could also keep track of
the number of occurrences by (for example)

. by company, sort: egen basecount = total(year == 1939)

because the total of 0s and 1s is exactly the same as the count of 1s. Although there is
an egen function called count(), that function is not what is wanted here.

. by company, sort: egen basecount = count(year == 1939)
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would count how many times the expression year == 1939 yielded nonmissing values,
and 0s and 1s both qualify as nonmissing. So in this example, egen, count() would
just return the number of observations in each panel.

8 egen has other applications

However, there is much that is positive about egen. egen offers a rich variety of functions
for summarizing groups and so is the way to solve many more-complicated problems.
For our next set of examples, we will load in Stata’s auto.dta and imagine that we
wish to compare according to the foreign variable, which distinguishes domestic cars,
those made in the United States and for which foreign is 0, and foreign cars, those
made outside the U.S. and for which foreign is 1.

. sysuse auto, clear

Many basic summary statistics can be produced for groups using one or more of
egen’s functions and working under the aegis of by:, such as, for example, the mean
weight:

. by foreign, sort: egen mean_weight = mean(weight)

Now let us imagine that we want to use cars with high mpg as a reference group.
Inspection of the data shows that seven domestic and seven foreign cars have mpg over
25 miles per gallon, so using those as reference would be a fair thing to do.

. by foreign, sort: egen mean_weight_2 = mean(weight) if mpg > 25

is one way to use only those cars in the calculation. But the side-effect of using if mpg
> 25 is that this new variable is defined only for those cars above 25 miles per gallon.
If we want to assign the new means to all observations in the same group, we can fix
that with a variant on the sort and replace commands used earlier.

. by foreign (mean_weight_2), sort: replace mean_weight_2 = mean_weight_2[1]

The sort option of by: will sort the nonmissing values of mean weight 2 so that
they are now the first block of observations within each group defined by foreign. At
worst, there might be no observations within a group satisfying the if condition. If
so, mean weight 2 will be created missing for all observations within a group, and the
replace option will just replace missings with missings, which is not a problem.

9 Use cond() instead

Here is another way to get the variable wanted in the last section, but in a single
command line. It is another exploitation of the fact that many egen functions can take
an expression as argument, which need not be as simple as a single variable name.

. by foreign, sort: egen mean_weight_3 = mean(cond(mpg > 25, weight, .))
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shows how to get that variable using the function cond(). The expression that is being
supplied to the egen function mean() is

cond(mpg > 25, weight, .)

which is weight when mpg > 25 and missing otherwise. What is key here is that
the mean() function, like most of Stata’s statistical commands and functions, ignores
missing values: they contribute neither to the sum of values nor to the count of values,
and so not to the resulting mean, which is sum/count. But the resulting mean will
nevertheless be assigned to each observation. If no values within a group satisfied the
condition mpg > 25, then the mean would be returned as missing, but that is expected
and reasonable.

We could not here use the trick of averaging

(mpg > 25) * weight

because that would average a mix of weight when we wanted it and 0 when we did not.
We could use that idea in calculating the sum and the count and then the mean, but
that would be too round-about to be interesting.

A tutorial on cond() can be found in Kantor and Cox (2005).

10 Dividing by zero can be logical

Consider this alternative:

. by foreign, sort: egen mean_weight_3 = mean(weight/(mpg > 25))

Using a principle we have exploited already, the logical expression mpg > 25 evi-
dently yields 1 for true and 0 for false. So, when we divide by the result of a logical
expression, we divide by either 1 or 0.

When we divide by 1, we leave the numerator, here weight, as it was. In mathemat-
ics, the result when we divide by 0 is indeterminate. In Stata, such a result is returned
as numeric missing (.). In this example, that is exactly what we want, because we want
egen’s mean() function to ignore those observations. As emphasized in the last section,
missings are ignored by most of Stata’s statistical code.

We could use the device elsewhere. What is the cheapest car with mpg > 25?

. by foreign : egen min_price = min(price/(mpg > 25))

Nothing stops the same variable being used in numerator and denominator of the ex-
pression.
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In families, what is the age of the youngest adult?

. by family, sort: egen youngest_adult = min(age/(age >= 18))

Nothing stops the denominator expression being more complicated, according to what
is needed.

What is the age of the youngest woman adult?

. by family : egen youngest_f_adult = min(age/(age >= 18 & female == 1))

We should note a couple of reservations. Specifically, watch out with tests such
as mpg > 25 or age >= 18, which will catch missings on mpg or age if they exist,
because missings count as higher than any nonmissing value. Generally, note that this
technique is not quite so general as using cond(), which has scope to assign a nonmissing
alternative for the false branch of its condition.

Nevertheless, this trick might appeal on various grounds, partly its conciseness and
partly its unexpectedness. Years of education and experience may well have accustomed
you to the idea that dividing by zero is to be avoided, but there are occasions in Stata
when it can be entirely logical.

11 Conclusions

Various basic techniques can be useful in this territory.

Subscripting.
As in many other environments and languages, Stata supports subscripting to iden-
tify particular observations.

summarize.
The summarize command can identify particular values, which are then accessible
as saved results.

Logical expressions yield 1 or 0.
Such results can be exploited in various ways, notably, through addition or multi-
plication.

Sorting.
Using sort to put the value you want at the beginning or end of the group it belongs
to is a good way to make it identifiable and thus easy to copy.

by: is your friend.
With a good understanding of by:, doing something for every group (for example,
panel) need not be more difficult than doing it for the whole dataset.

egen is a useful workhorse.
Many of its functions work with by: too.



314 Speaking Stata

Many functions feed on expressions.
Expressions can be more complicated than single variable names.

cond().
This useful function can be used to ignore irrelevant observations.

Dividing by zero.
Because dividing by zero yields missing, this also can be used to ignore irrelevant
observations.
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