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1 Introduction

Previously, I reviewed Stata commands that allow estimation of adjusted risk ratios from
unmatched (Cummings 2009) and matched (Cummings and McKnight 2004) cross-
sectional, cohort, or clinical trial data. This update shows how the margins command in
Stata version 11 and the robust variance option (vce(robust)) for conditional Poisson
regression (xtpoisson, fe) in Stata version 11.1 make it easier to estimate adjusted
risk ratios with appropriate confidence intervals.

2 Estimating risk ratios in unmatched data

I will use data from table 5.3 in Newman’s (2001, 98 and 126) textbook for 192 women
who were diagnosed with breast cancer in Canada and were followed for five years. The
goal is to estimate the risk ratio for death at five years among women who had low
estrogen receptor levels in their breast cancer tissue compared with women who had
high receptor levels, adjusted for cancer stage (I, II, or III). The data are tabulated
below:
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stage low died count

1 0 0 50
1 0 1 5
1 1 0 10
1 1 1 2

2 0 0 57
2 0 1 17
2 1 0 13
2 1 1 9

3 0 0 6
3 0 1 9
3 1 0 2
3 1 1 12

Previously, I discussed seven methods for estimating adjusted risk ratios (Cummings
2009): 1) Mantel–Haenszel and inverse-variance stratified methods; 2) generalized linear
regression with a log link and binomial distribution; 3) generalized linear regression with
a log link, normal distribution, and robust variance estimator; 4) Poisson regression with
a robust variance estimator; 5) Cox proportional hazards regression with a robust vari-
ance estimator; 6) standardized risk ratios from logistic, probit, complementary log-log,
and log-log regression; and 7) a substitution method. Here I discuss only standardized
risk ratios from regression models (Lane and Nelder 1982; Flanders and Rhodes 1987;
Greenland 2004; Rothman, Greenland, and Lash 2008, 442–446; Localio, Margolis, and
Berlin 2007) to show how these can be estimated using the margins command.

After fitting a regression model for binomial outcomes (logistic, probit, log-log, or
complementary log-log regression), we can first estimate the average risk of death that
would be expected if all 192 women had low estrogen receptor tumors and they had the
distribution of cancer stages for all women in the observed data. A second average risk
can be estimated assuming all 192 women had a high estrogen receptor tumor. The risk
ratio is the first average risk divided by the second, and the standard error for this risk
ratio can be estimated using the delta method. This risk ratio is said to be standardized
to the distribution of the variables used to estimate the average risks, which is cancer
stage in this example. First, let me show how this can be done using the predictnl
command after logistic regression:
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. logistic died low stage2 stage3, nolog

Logistic regression Number of obs = 192
LR chi2(3) = 42.27
Prob > chi2 = 0.0000

Log likelihood = -92.939847 Pseudo R2 = 0.1853

died Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

low 2.508065 .9916923 2.33 0.020 1.155507 5.443836
stage2 3.109772 1.44851 2.44 0.015 1.248087 7.748406
stage3 18.8389 11.03231 5.01 0.000 5.978343 59.36498

. #delimit ;
delimiter now ;
. predictnl lnrr = ln(
> sum(1/(1+exp(-(_b[_cons]+_b[stage2]*stage2+_b[stage3]*stage3+_b[low])))) /
> sum(1/(1+exp(-(_b[_cons]+_b[stage2]*stage2+_b[stage3]*stage3))))),
> se(lnrr_se);

. #delimit cr
delimiter now cr
. di "Risk ratio = " exp(lnrr[_N]) _skip(4) /*
> */ "95% CI " exp(lnrr[_N] - invnormal(1-.05/2)*lnrr_se[_N]) /*
> */ ", " exp(lnrr[_N] + invnormal(1-.05/2)*lnrr_se[_N])
Risk ratio = 1.6755988 95% CI 1.0935712, 2.567397

. replace low = 0
(48 real changes made)

. predict risk0
(option pr assumed; Pr(died))

. summ risk0, meanonly

. scalar avrisk0 = r(mean)

. replace low = 1
(192 real changes made)

. predict risk1
(option pr assumed; Pr(died))

. summ risk1, meanonly

. scalar avrisk1 = r(mean)

. scalar rr = avrisk1/avrisk0

. di "Risk1 = " avrisk1 " Risk0 = " avrisk0 " Risk ratio = " rr
Risk1 = .40087947 Risk0 = .2392455 Risk ratio = 1.6755988

While the above commands do the job, they are rather busy; the estimation of the
log of the risk ratio by predictnl is cumbersome and possibly prone to typing errors.
Below I show how the same results can be obtained using new features of Stata 11:
1) factor-variable designators, 2) margins, and 3) nlcom after margins.
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. logistic died i.(low stage), nolog

Logistic regression Number of obs = 192
LR chi2(3) = 42.27
Prob > chi2 = 0.0000

Log likelihood = -92.939847 Pseudo R2 = 0.1853

died Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.low 2.508065 .9916923 2.33 0.020 1.155507 5.443836

stage
2 3.109772 1.44851 2.44 0.015 1.248087 7.748406
3 18.8389 11.03231 5.01 0.000 5.978343 59.36498

. margins low, post

Predictive margins Number of obs = 192
Model VCE : OIM

Expression : Pr(died), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

low
0 .2392455 .0332082 7.20 0.000 .1741586 .3043324
1 .4008795 .0659652 6.08 0.000 .27159 .5301689

. nlcom (lnrr: ln(_b[1.low]/_b[0.low])), post

lnrr: ln(_b[1.low]/_b[0.low])

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnrr .5161706 .2177193 2.37 0.018 .0894487 .9428925

. display "Risk ratio = " exp(_b[lnrr]) _skip(3) /*
> */ "95% CI = " exp(_b[lnrr]-invnormal(1-.05/2)*_se[lnrr]) /*
> */ ", " exp(_b[lnrr]+invnormal(1-.05/2)*_se[lnrr])
Risk ratio = 1.6755988 95% CI = 1.0935712, 2.567397

In the output above, the use of i. in the regression command told Stata to treat
both low and stage as factor (indicator) variables. This is necessary so that margins
can recognize the factor variable low. The post option after margins was needed so
that the estimated risks would be available to the nlcom command. The predicted
average risks were reported with their standard errors and confidence intervals. Finally,
I had nlcom estimate the log of the risk ratio, and I then used the display command to
report the risk ratio with its confidence interval. Not only are the commands in Stata 11
easier to use, but they report more information compared with the Stata 10 commands.

I used nlcom to estimate the log of the risk ratio, but in the Stata manual section
called [R] margins postestimation (StataCorp 2009, 1008–1009), the command was
used to estimate the risk ratio directly. Let us see what happens if I follow that example:
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. logistic died i.(low stage), nolog

(output omitted )

. margins low, post

(output omitted )

. nlcom (rr: _b[1.low]/_b[0.low]), post

rr: _b[1.low]/_b[0.low]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

rr 1.675599 .3648101 4.59 0.000 .9605841 2.390614

Something seems amiss; the risk ratio estimate of 1.68 is identical to what I obtained
earlier, but the p-value is smaller, the confidence interval bounds have moved toward 0,
and despite a p-value < 0.001, the 95% confidence interval includes the null risk ratio
of 1. What happened?

First, the p-value that nlcom estimated was for a test that the risk ratio of 1.68 was
equal to 0; nlcom treats 0 as the default null hypothesis, even though we customarily
wish to compare an estimated risk ratio with a null value of 1.

Second, after I had nlcom estimate the log of the risk ratio, I used the standard
error of the log of the risk ratio to estimate confidence-interval endpoints for the log
risk-ratio; those endpoints were then exponentiated to obtain the confidence intervals for
the risk ratio itself. This transform-the-endpoints method produces intervals that are
symmetric around the log of the risk ratio, which is desirable because the log of the risk
ratio ranges from minus infinity to plus infinity, and the null estimate of no association
is a log risk-ratio of 0. When I used nlcom to estimate standard errors and confidence
intervals for the risk ratio directly, the intervals were symmetric around the risk ratio,
which is not desirable because the risk ratio has an asymmetrical range from 0 to plus
infinity with a null estimate of no association equal to 1. This use of nlcom can produce
biased interval coverage and can even generate a negative lower confidence bound for a
risk ratio; negative risk ratios are impossible, because risks range from 0 to 1.

If we have many observations, the confidence intervals from both of the methods
described above will tend to agree. In statistical jargon, the two methods are asymptot-
ically equivalent. But as a general rule, I think it is best to instruct nlcom to estimate
the log of the risk ratio, not the risk ratio itself, and to take the small extra step of writ-
ing a command to estimate the confidence interval using the transform-the-endpoints
method. The authors of the Stata manuals are well aware of these issues, which are
nicely explained in a section called nlcom versus eform in the manual entry that de-
scribes the nlcom command (StataCorp 2009, 1207–1208).
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3 Estimating risk differences in unmatched data

Adjusted risk differences can also be estimated in Stata. One method is to use the
binreg command with the rd option. The other is to obtain a standardized risk differ-
ence after regression:

. logistic died i.(low stage), nolog

(output omitted )

. margins low, post

(output omitted )

. nlcom (rd: _b[1.low] - _b[0.low]), post

rd: _b[1.low] - _b[0.low]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

rd .161634 .0745364 2.17 0.030 .0155454 .3077226

4 Better confidence intervals for risk ratios from
matched-cohort data

Stata’s command for conditional Poisson regression (xtpoisson, fe) can estimate ad-
justed risk ratios from matched-cohort data, but because risk ratios are for binomial out-
comes, not count outcomes, the usual variance estimator will produce standard errors,
p-values, and confidence intervals that are too large (Cummings, McKnight, and Green-
land 2003; Cummings, McKnight, and Weiss 2003; Cummings and McKnight 2004). A
robust variance estimator can correct these problems (Wooldridge 2010, 762–764), and
this option was introduced with Stata 11.1 on 3 June 2010.

To illustrate, I will use data regarding 311 Australian twin pairs (Lynskey et al.
2003); the exposure was use of cannabis prior to age 17 years, and the outcome was
later use of cocaine. The user-written csmatch command (Cummings and McKnight
2004) can produce the counts of twin pairs with the correct risk ratio and confidence
interval from Mantel–Haenszel methods:

. use twin.dta, clear

. csmatch cocaine exposed, group(id)

Not exposed
Exposed Outcome=1 Outcome=0 Total

Outcome = 1 61 88 149
Outcome = 0 21 141 162

Total 82 229 311

Cohort matched-pair risk ratio [95% Conf. Interval]
1.81707 1.50999 2.18661
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Below are results from xtpoisson, fe with the conventional variance estimator:

. xtpoisson cocaine exposed, fe irr i(id) nolog
note: 141 groups (282 obs) dropped because of all zero outcomes

Conditional fixed-effects Poisson regression Number of obs = 340
Group variable: id Number of groups = 170

Obs per group: min = 2
avg = 2.0
max = 2

Wald chi2(1) = 18.87
Log likelihood = -107.97754 Prob > chi2 = 0.0000

cocaine IRR Std. Err. z P>|z| [95% Conf. Interval]

exposed 1.817073 .2498494 4.34 0.000 1.387814 2.379104

Last are results from xtpoisson, fe with the robust variance option:

. xtpoisson cocaine exposed, fe irr i(id) nolog vce(robust)
note: 141 groups (282 obs) dropped because of all zero outcomes

Conditional fixed-effects Poisson regression Number of obs = 340
Group variable: id Number of groups = 170

Obs per group: min = 2
avg = 2.0
max = 2

Wald chi2(1) = 39.98
Log pseudolikelihood = -107.97754 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)

Robust
cocaine IRR Std. Err. z P>|z| [95% Conf. Interval]

exposed 1.817073 .171627 6.32 0.000 1.509991 2.186606

All three methods correctly estimate the risk ratio, and with the robust variance
option, xtpoisson estimates correct standard errors, p-values, and confidence intervals.

For a stiffer test, I simulated data for 10,000 cars. Each car crashed with three occu-
pants, each of whom had the same risk of death, but this risk varied from car to car; risk
was greater with faster crash speed, and seat belt use was less common in crashes with
faster speed. Comparing a belted occupant with an unbelted occupant, the risk ratio for
death was set as 0.4. In 50,000 simulations, xtpoisson, fe estimated this risk ratio as
0.4003. With the conventional variance estimator, the 95% confidence interval included
the true value of 0.4 in 97.58% of the simulated samples: 95% confidence interval of
97.44% to 97.71% for the coverage estimate. With the robust variance estimator, the
coverage was a more accurate 95.12%: 95% confidence interval of 94.93% to 95.31% for
this coverage estimate.
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5 Summary

Recent advances in Stata 11 and 11.1 make it easier to estimate adjusted risk ratios with
approximately correct confidence intervals in unmatched and matched-cohort data.
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