
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2011)
11, Number 2, pp. 255–270

Multivariate random-effects meta-regression:
Updates to mvmeta

Ian R. White
MRC Biostatistics Unit

Cambridge, UK

ian.white@mrc-bsu.cam.ac.uk

Abstract. An extension of mvmeta, my program for multivariate random-effects
meta-analysis, is described. The extension handles meta-regression. Estima-
tion methods available are restricted maximum likelihood, maximum likelihood,
method of moments, and fixed effects. The program also allows a wider range of
models (Riley’s overall correlation model and structured between-studies covari-
ance); better estimation (using Mata for speed and correctly allowing for missing
data); and new postestimation facilities (I-squared, standard errors and confidence
intervals for between-studies standard deviations and correlations, and identifi-
cation of the best intervention). The program is illustrated using a multiple-
treatments meta-analysis.
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1 Introduction

Stata software for meta-analysis is well advanced and has been described in a recent
collection of articles (Sterne 2009). Most software is designed for univariate meta-
analysis, in which each study contributes an estimate of a single quantity; but there
has been recent interest in multivariate meta-analysis, in which some studies contribute
estimates of more than one quantity: for example, intervention effects on different
outcomes or differences in one outcome among three or more groups (van Houwelingen,
Arends, and Stijnen 2003; Jackson, Riley, and White Forthcoming). I have previously
described a Stata routine, mvmeta (White 2009), that fits the multivariate random-effects
meta-analysis model using restricted maximum likelihood (REML), maximum likelihood
(ML), or the method of moments (MM).

This article presents various extensions to mvmeta. Covariates are allowed so that
a multivariate meta-regression is performed. For the case in which within-study cor-
relations are unknown, Riley’s overall correlation model can be fit (Riley, Thompson,
and Abrams 2008). The between-studies covariance matrix may now be structured.
The I-squared statistic, which measures the impact of heterogeneity on a meta-analysis
(Higgins and Thompson 2002), has been extended to the multivariate case and im-
plemented. Confidence intervals are available both for variance components and for
I-squared. Finally, in the case of comparisons of multiple interventions, the probability
that each is the best intervention can be estimated.

c© 2011 StataCorp LP st0156 1
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The model considered is

yi ∼ N(μi, Si)
μi ∼ N(βXi,Σ)

where yi is a vector of estimates from the ith study, Si is their variance–covariance
matrix, μi is the study-specific mean vector, and Xi is a matrix of study-specific covari-
ates. In this model, the data are yi, Si, and Xi, and we aim to estimate the regression
coefficients β and the between-studies variance–covariance matrix Σ.

I describe the new mvmeta options in section 2 and give technical details in section 3.
The command is illustrated in a multiple-treatments meta-analysis in section 4, and
limitations and possible extensions are discussed in section 5.

2 mvmeta: Multivariate random-effects meta-regression

2.1 Syntax

mvmeta b V xvars
[
if

] [
in

] [
, old options new options

]
where old options are the options for mvmeta described in White (2009) and new options
are described below.

2.2 New model and estimation options

wscorr(riley) can be used when within-study correlations are unknown. It uses the
alternative model of Riley, Thompson, and Abrams (2008) to estimate an overall
correlation; see section 3.5. Riley (2009) discusses other ways to handle unknown
within-study correlations.

bscovariance(string) specifies the between-studies covariance structure; see section 2.4.

equations(yvar1:xvars1
[
, yvar2:xvars2

[
, ...

] ]
) allows different outcomes to

have different regression models. For example, for two-dimensional b, mvmeta b V x
is the same as mvmeta b V, eq(b1:x,b2:x).

noconstant suppresses the constant in meta-regression.

longparm estimates the results as one regression model for each outcome. Without
covariates, this is usually less convenient than the default (in which all outcomes
form a single regression model) but is required if the pbest() option will be used.
With covariates, longparm is the default and cannot be changed.

Other new estimation options, which are described in the help file, are noposdef,
psdcrit(#), maximize options, augment, and augquiet.
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2.3 New output options

For regression parameters

dof(expression) specifies the degrees of freedom for t tests and confidence intervals on
the regression parameters. The expression may include n, the number of observa-
tions. The default is to use a normal distribution.

pbest(min | max [
if

] [
in

]
,
[
reps(#1) zero gen(string) seed(#2) format(% fmt)

id(varlist)
]
) requests estimation of the probability that each linear predictor is

the best—that is, the maximum or minimum, depending on the first argument of
pbest(). The probability is estimated under a Bayesian model with flat priors, as-
suming that the posterior distribution of the parameter estimates is approximated
by a normal distribution with mean and variance equal to the frequentist estimates
and variance–covariance matrix. Rankings are constructed by drawing the coeffi-
cients #1 times (default is 100) from their approximate posterior density. For each
draw, the linear predictor is evaluated for each study, and the largest linear predictor
is noted. The zero option specifies that 0 be considered another linear predictor; its
use is illustrated in the example in section 4. gen() specifies that the probabilities
be saved in variables with the prefix string. seed() specifies the random-number
seed, format() specifies the output format, and id() specifies identifiers for the
output. Although the default behaviour is to rank linear predictors, the predict
option ranks the true effects in a future study with the same covariates, thus al-
lowing for heterogeneity as well as parameter uncertainty, as in the calculation of
prediction intervals (Higgins, Thompson, and Spiegelhalter 2009). For models with-
out covariates, pbest() is only available if longparm was specified when the model
was fit.

For between-studies variance parameters

i2 reports the between-studies variance τ2
j and the I-squared statistic (Higgins and

Thompson 2002) for each outcome, together with confidence intervals. See sec-
tion 3.6 for details.

i2fmt(% fmt) specifies an output format for the I-squared statistics.

ncchi2 uses the option of heterogi in computing confidence intervals for τ2
j and

I-squared. It is only relevant after MM estimation. See section 3.6 for details.

ciscale(sd | logsd | logh) determines the scale on which confidence intervals for τ2
j and

I-squared are computed. The default is ciscale(sd). See section 3.6 for details.

testsigma is only allowed after ML or REML estimation. It performs a likelihood-ratio
test or restricted likelihood-ratio test of Σ = 0. The latter is valid because the
models compared have the same fixed part (Verbeke and Molenberghs 2000).
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2.4 Covariance structures

bscovariance(unstructured) estimates an unstructured Σ and is the default. Starting
values for Σ may be specified explicitly by start(matrix expression). start(mm)
(the default) specifies that the starting value be computed by the mm method.
start(0) uses a starting value of 0.001 times the default, because a starting value
of 0 leads to nonconvergence (White 2009). The starting value for β is derived from
Σ using (1) below.

bscovariance(proportional matexp) models Σ = τ2Σ0, where τ is an unknown pa-
rameter and Σ0 is a known matrix expression (for example, a matrix name or I(2)).
start(#) then specifies the starting value for the scalar τ .

bscovariance(equals matexp) forces Σ = Σ0, where Σ0 is a known matrix expression
(for example, a matrix name or I(2)).

bscovariance(correlation matexp) models Σ = D × matexp × D, where matexp
is a known matrix expression containing the between-study correlations and D is
an unknown diagonal matrix containing the between-studies standard deviations.
start(rowvector) specifies the starting values for the diagonal of D.

2.5 Other changes in version 2

The showchol option has been renamed showall, the corr() option has been renamed
wscorr(), and the bscorr and bscov options have been renamed print(bscorr) and
print(bscov), respectively. mvmeta typed without specifying b and V redisplays the
latest estimation results, and output options (including showall, eform, nouncertainv,
print(), level(), dof, i2, and pbest()) may be used.

3 Details

3.1 Notation

The data for mvmeta for the rth outcome from the ith study (i = 1, . . . , n) are the point
estimate yir (a scalar) and the covariates xir (a qr × 1 vector). For standard meta-
analysis, xir = (1), a vector of ones. The mean of yir is assumed to be βrxir, where βr

is a 1 × qr (row)vector. Thus we have the marginal models

yir ∼ N(μir, s
2
ir)

μir ∼ N(βrxir, τ
2
r )

In matrix notation, we write the (row)vector outcome yi = (yi1, yi2, . . . , yip). We also
know the within-study variance–covariance matrix Si (a p× p matrix). We assume the
following joint model:
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yi ∼ N(μi, Si)
μi ∼ N(βXi,Σ)

Si =

⎛⎜⎜⎜⎝
s2i1 ρi12si1si2 · · · ρi1psi1sip

ρi12si1si2 s2i2 · · · ρi2psi2sip

...
...

. . .
...

ρi1psi1sip ρi2psi2sip · · · s2ip

⎞⎟⎟⎟⎠
β = (β1, β2, . . . , βp)

Xi =

⎛⎜⎜⎜⎝
xi1 0 · · · 0
0 xi2 · · · 0
...

...
. . .

...
0 0 · · · xip

⎞⎟⎟⎟⎠

Σ =

⎛⎜⎜⎜⎝
τ2
1 κ12τ1τ2 · · · κ1pτ1τp

κ12τ1τ2 τ2
2 · · · κ2pτ2τp

...
...

. . .
...

κ1pτ1τp κ2pτ2τp · · · τ2
p

⎞⎟⎟⎟⎠
where yi and μi are 1× p, Si and Σ are p× p, β is 1× q+, and Xi is q+ × p. Σ may be
constrained as explained in section 2.4. Our aim is to estimate β and Σ.

3.2 Estimating β, knowing Σ

We set Wi = (Σ + Si)−1. Then

β̂ =

(∑
i

yiWiX
′
i

)(∑
i

XiWiX
′
i

)−1

(1)

3.3 Estimating Σ: likelihood-based methods

We still use the notation Wi = (Σ+Si)−1, noting that this now depends on the unknown
Σ. The log likelihood and restricted log likelihood, respectively, are

− 2L =
∑

i

{log |Σ + Si| + (yi −Xiβ)Wi(yi −Xiβ)′ + pi log 2π} (2)

−2RL = −2L+ log

∣∣∣∣∣∑
i

XiWiX
′
i

∣∣∣∣∣− q+ log 2π (3)

where pi is the number of observed outcomes in yi. Where a study reports only a subset
of outcomes, yi and Si are of reduced dimension, so Σ in (2) and (3) is replaced by its
corresponding submatrix. This makes unnecessary the augmentation procedures in the
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previous version (White 2009), but they can still be implemented using the augment
option.

The (restricted) log likelihood is maximized by a Newton–Raphson algorithm using
Stata’s ml procedure. The code has been speeded up by computing the log likelihood
using Mata. For unstructured Σ, the basic model parameters are taken as the elements
of a Cholesky decomposition of Σ, ensuring that Σ is nonnegative definite (Riley et al.
2007). For the model Σ = τ2Σ0, the basic parameter is τ .

3.4 Estimating Σ: method of moments

Jackson, White, and Thompson (2010) define a matrix generalization of the univari-
ate Q statistic of DerSimonian and Laird (1986). With unstructured Σ, this satisfies
E(Qrs) = Ars + BrsΣrs for r, s = 1, . . . , p, where A and B are matrices that can be
computed from the observed data. Estimation of Σ is therefore straightforward and
fast. The MM has not yet been developed for meta-regression with structured Σ or for
the overall correlation model described in section 3.5 below.

3.5 Unknown within-study correlations

When within-study correlations are unknown, various options are available, including
sensitivity analysis over alternative values (Riley 2009). Alternatively, Riley, Thompson,
and Abrams (2008) proposed an “overall correlation model” that does not involve the
within-study correlations. Let var (yi) = Vi; the standard model of section 3.1 has
Vi = Si + Σ. The alternative model has the same diagonal elements, Virr = Sirr + Σrr,
but off-diagonal elements Virs = ρO

rs

√
VirrViss for r �= s. Here ρO

rs represents an overall
correlation between outcomes r and s.

3.6 I-squared

I-squared measures the impact of heterogeneity on the meta-analysis (Higgins and
Thompson 2002). In univariate meta-analysis, I-squared is computed as the ratio of a
“between” variance (the appropriate element of Σ) to the sum of the “between” variance
and a “within” variance given by (9) of Higgins and Thompson (2002). To generalize
this, I propose computing I-squared separately for each outcome and handling covariates
by defining I-squared for the rth outcome as

I2
r =

τ2
r

Arr/Brr + τ2
r

(4)

where Arr/Brr is a “typical” squared standard error, and Arr and Brr are as defined
in section 3.4. If there are no covariates, then (4) corresponds exactly to the definition
of Higgins and Thompson (2002). If, further, τ2 is estimated by MM, then (4) gives
the standard quantity I2

r = max [0, {Qrr − (nr − 1)/Qrr}] (for example, as output by
metan), where nr is the number of studies reporting outcome yr. However, (4) applies
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equally well if τ2 is estimated by REML or ML. This definition of I-squared does not
account for “borrowing strength” between outcomes.

When estimation uses the MM, confidence intervals for I2
r are computed on the

scale of log(Hr), where H2
r = (1 − I2

r )−1 = Qrr/(nr − 1), as suggested by Higgins
and Thompson (2002; they also called them “uncertainty intervals”) and implemented
in Stata by heterogi. The noncentral chi-squared option of heterogi is available
through the ncchi2 option. Confidence intervals for τ2

r are derived from (4). Exact
methods (Biggerstaff and Jackson 2008) are computationally intensive and have not
been implemented in Stata.

When estimation uses REML or ML, confidence intervals are first estimated for τ2
r

using the estimated standard errors. The confidence interval may be computed on the
scale of τ (the default), log(τ), or log(Hr). Confidence intervals for I2

r are then derived
using (4). With unstructured Σ, confidence intervals for the between-studies correlations
κrs are also available; they are computed on the scale of log {(1 + κrs)/(1 − κrs)}. All
standard errors are computed using Stata’s nlcom command. When one or more basic
variance parameters is estimated as zero, the corresponding zero term is dropped from
the expression for τ2

r to avoid causing nlcom to fail. This fix can be checked by changing
the order of the variables (using mvmeta’s vars() option), which often avoids causing
nlcom to fail. In my experience, the two methods always give the same confidence
intervals.

4 Example

4.1 Data

We use data from a multiple-treatments meta-analysis comparing four interventions to
promote smoking cessation. These data have been previously presented and analyzed
by Lu and Ades (2004). The interventions are coded A, B, C, and D, and the data for
each trial arm are summarized as the number of individuals and the number who quit
smoking. The original dataset is
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. use smoking_raw, clear
(Smoking data from Lu & Ades (2006))

. list, noo clean

study design dA nA dB nB dC nC dD nD
1 ACD 9 140 . . 23 140 10 138
2 BCD . . 11 78 12 85 29 170
3 AB 79 702 77 694 . . . .
4 AB 18 671 21 535 . . . .
5 AB 8 116 19 146 . . . .
6 AC 75 731 . . 363 714 . .
7 AC 2 106 . . 9 205 . .
8 AC 58 549 . . 237 1561 . .
9 AC 0 33 . . 9 48 . .
10 AC 3 100 . . 31 98 . .
11 AC 1 31 . . 26 95 . .
12 AC 6 39 . . 17 77 . .
13 AC 95 1107 . . 134 1031 . .
14 AC 15 187 . . 35 504 . .
15 AC 78 584 . . 73 675 . .
16 AC 69 1177 . . 54 888 . .
17 AC 64 642 . . 107 761 . .
18 AC 5 62 . . 8 90 . .
19 AC 20 234 . . 34 237 . .
20 AD 0 20 . . . . 9 20
21 BC . . 20 49 16 43 . .
22 BD . . 7 66 . . 32 127
23 CD . . . . 12 76 20 74
24 CD . . . . 9 55 3 26

The first stage of analysis constructs a dataset of estimated intervention effects and
their variance–covariance matrices. We choose A as the reference category. Trials with-
out an arm A (trials 2 and 21–24) are augmented with an arm A with 0.01 individuals
and 0.001 successes. Trials containing zero cells (trials 9 and 20) have 1 individual with
0.5 successes added to each arm. This leads to the following augmented dataset:
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. use smoking_aug
(Smoking data from Lu & Ades (2006))

. list, noo clean

study design dA nA dB nB dC nC dD nD
1 ACD 9 140 . . 23 140 10 138
2 BCD .001 .01 11 78 12 85 29 170
3 AB 79 702 77 694 . . . .
4 AB 18 671 21 535 . . . .
5 AB 8 116 19 146 . . . .
6 AC 75 731 . . 363 714 . .
7 AC 2 106 . . 9 205 . .
8 AC 58 549 . . 237 1561 . .
9 AC .5 34 . . 9.5 49 . .
10 AC 3 100 . . 31 98 . .
11 AC 1 31 . . 26 95 . .
12 AC 6 39 . . 17 77 . .
13 AC 95 1107 . . 134 1031 . .
14 AC 15 187 . . 35 504 . .
15 AC 78 584 . . 73 675 . .
16 AC 69 1177 . . 54 888 . .
17 AC 64 642 . . 107 761 . .
18 AC 5 62 . . 8 90 . .
19 AC 20 234 . . 34 237 . .
20 AD .5 21 . . . . 9.5 21
21 BC .001 .01 20 49 16 43 . .
22 BD .001 .01 7 66 . . 32 127
23 CD .001 .01 . . 12 76 20 74
24 CD .001 .01 . . 9 55 3 26

We now compute the log odds-ratios for arms B, C, and D relative to arm A, as well
as the variance–covariance matrix of these three estimates. We could use mvmeta make
(White 2009), but it is easy to run the loop

foreach trt in A B C D {
if "`trt´"=="A" continue
gen y`trt´ = log(d`trt´/(n`trt´-d`trt´)) - log(dA/(nA-dA))
gen S`trt´`trt´ = 1/d`trt´ + 1/(n`trt´-d`trt´) + 1/dA + 1/(nA-dA)
foreach trt2 in A B C D {

if "`trt2´"=="A" continue
if "`trt2´">"`trt´" gen S`trt´`trt2´ = 1/dA + 1/(nA-dA) ///

if !mi(d`trt´) & !mi(d`trt2´)
}

}
format y* S* %6.2g
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which yields the following data:

. list study design y* S*, noo clean

study design yB yC yD SBB SBC SBD SCC SCD SDD
1 ACD . 1.1 .13 . . . .17 .12 .23
2 BCD .39 .39 .62 1111 1111 1111 1111 1111 1111
3 AB -.016 . . .029 . . . . .
4 AB .39 . . .11 . . . . .
5 AB .7 . . .19 . . . . .
6 AC . 2.2 . . . . .02 . .
7 AC . .87 . . . . .63 . .
8 AC . .42 . . . . .024 . .
9 AC . 2.8 . . . . 2.2 . .
10 AC . 2.7 . . . . .39 . .
11 AC . 2.4 . . . . 1.1 . .
12 AC . .44 . . . . .27 . .
13 AC . .46 . . . . .02 . .
14 AC . -.16 . . . . .1 . .
15 AC . -.24 . . . . .03 . .
16 AC . .039 . . . . .035 . .
17 AC . .39 . . . . .028 . .
18 AC . .11 . . . . .35 . .
19 AC . .58 . . . . .089 . .
20 AD . . 3.5 . . . . . 2.2
21 BC 1.8 1.7 . 1111 1111 . 1111 . .
22 BD .066 . 1.1 1111 . 1111 . . 1111
23 CD . .52 1.2 . . . 1111 1111 1111
24 CD . .57 .16 . . . 1111 1111 1111

The first stage of analysis is now complete. In the second stage of analysis, we use mvmeta
to model the intervention effects across studies, using consistency and inconsistency
models.

4.2 Consistency model

A consistency model (Lu and Ades 2004) allows the intervention effects to be hetero-
geneous between studies but assumes that there are no systematic differences between
designs. It is easy to fit:
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. mvmeta y S
Note: using method reml
Regressing yB on
Regressing yC on
Regressing yD on
Note: using variables yB yC yD
Note: 24 observations on 3 variables
Variance-covariance matrix: unstructured

(output omitted )

Multivariate meta-analysis
Variance-covariance matrix = unstructured
Method = reml Number of dimensions = 3
Restricted log likelihood = -53.826928 Number of observations = 24

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
yB .3326048 .3048747 1.09 0.275 -.2649385 .9301482
yC .6810167 .218959 3.11 0.002 .2518649 1.110168
yD .8357459 .3664475 2.28 0.023 .117522 1.55397

Estimated between-studies SDs and correlation matrix:
SD yB yC yD

yB .31410047 1 . .
yC .7497773 .9362371 1 .
yD .72247338 .85588029 .61958804 1

We see that, under the consistency assumption, interventions C and D are significantly
superior to A, and D appears to be the best. We could perform significance tests between
B, C, and D using lincom. The heterogeneity (between-studies variation) is larger for
C versus A and D versus A than for B versus A.

It is often of interest to find the best intervention. We can do this using

. mvmeta y S, longparm pbest(max in 1, zero reps(1000) seed(478))

(output omitted )

Estimated probabilities (%) of being the maximum
(allows for parameter uncertainty):

zero yB yC yD

1. 0.0 3.1 31.9 65.0

Let the intervention effects be μB , μC , and μD, all representing contrasts from the
reference intervention A. Positive values indicate better interventions in this dataset, so
if μB , μC , and μD are all negative, then A is best; otherwise, the intervention with the
largest μ is best. Thus we want to find the largest member of the set {0, μB , μC , μD},
which is coded using max to find the largest and zero to include 0 in the set. We specify
in 1 to output results for the first study only; because there are no covariates, the
results for all studies are the same.
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In the output, the columns headed zero, yB, yC, and yD each indicate the pos-
terior probability that intervention A, B, C, or D is the best, respectively. The best
intervention is probably D and is very likely to be either C or D.

4.3 Estimating I2

We can estimate the contribution of between-studies heterogeneity to the meta-analyses:

. mvmeta, i2

(output omitted )

Approximate confidence intervals for between-studies SDs and I^2:

Variable SD [95% Conf. Interval] I^2 [95% Conf. Interval]

yB .31410107 0 .90877776 31 0 79
yC .74977167 .39813052 1.1014128 88 68 94
yD .72246304 0 1.8312487 8 0 35

Note: I^2 computed from estimated between-studies and typical within-studies
> variances
Note: CI computed on SD scale
Note: one or more CIs for I^2 were computed by dropping zero terms

Between-study correlations:

Variables Correl. [95% Conf. Interval]

yB & yC .93624729 -.99999763 1
yB & yD .85586496 -.99994596 .99999967
yC & yD .61958754 -.83474606 .99011097

Note: CI computed on log((1+corr)/(1-corr)) scale

The main contribution of between-studies heterogeneity appears to arise from the A–C
contrast. Note that the between-studies correlations are very poorly estimated. In fact,
the unstructured Σ matrix is barely identified in this problem. We next consider a
structured Σ matrix.

4.4 Structured Σ

In sparser problems, it may be useful to assume that the heterogeneity variance is the
same for each intervention contrast. This can be done by forcing Σ to be proportional
to the matrix P defined below (Salanti et al. 2008):

. mat P = I(3) + J(3,3,1)

. mat l P

symmetric P[3,3]
c1 c2 c3

r1 2
r2 1 2
r3 1 1 2
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. mvmeta y S, bscov(prop P)
Note: using method reml
Regressing yB on
Regressing yC on
Regressing yD on
Note: using variables yB yC yD
Note: 24 observations on 3 variables
Variance-covariance matrix: proportional to P

(output omitted )

Multivariate meta-analysis
Variance-covariance matrix = proportional P
Method = reml Number of dimensions = 3
Restricted log likelihood = -54.946189 Number of observations = 24

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
yB .3984951 .3310639 1.20 0.229 -.2503782 1.047368
yC .7023595 .1990896 3.53 0.000 .312151 1.092568
yD .8658847 .3762281 2.30 0.021 .1284912 1.603278

Estimated between-studies SDs and correlation matrix:
SD yB yC yD

yB .6744175 1 . .
yC .6744175 .5 1 .
yD .6744175 .5 .5 1

4.5 Inconsistency model

An inconsistency model allows intervention effects to differ between designs (to a greater
extent than can be explained by the heterogeneity). It therefore requires a multivariate
meta-regression, with particular dummy variables for design as covariates. There are
many ways to parameterize this model: we choose the two-arm designs involving A as
basic contrasts, and we introduce one extra effect for each two-arm design that does not
include A and two extra effects for each three-arm design.

. tab design, gen(des)

design Freq. Percent Cum.

ACD 1 4.17 4.17
BCD 1 4.17 8.33
AB 3 12.50 20.83
AC 14 58.33 79.17
AD 1 4.17 83.33
BC 1 4.17 87.50
BD 1 4.17 91.67
CD 2 8.33 100.00

Total 24 100.00
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. mvmeta y S, bscov(prop P) eq(yC: des1 des2 des6, yD: des1 des2 des7 des8)
Note: using method reml
Regressing yB on
Regressing yC on des1 des2 des6
Regressing yD on des1 des2 des7 des8
Note: using variables yB yC yD
Note: 24 observations on 3 variables
Variance-covariance matrix: proportional to P

(output omitted )

Multivariate meta-analysis
Variance-covariance matrix = proportional P
Method = reml Number of dimensions = 3
Restricted log likelihood = -45.783933 Number of observations = 24

Coef. Std. Err. z P>|z| [95% Conf. Interval]

yB
_cons .3303086 .4673829 0.71 0.480 -.5857451 1.246362

yC
des1 .3468573 .882037 0.39 0.694 -1.381903 2.075618
des2 -.3728619 1.013567 -0.37 0.713 -2.359417 1.613693
des6 -.5253268 1.004197 -0.52 0.601 -2.493516 1.442862
_cons .7044357 .2347562 3.00 0.003 .2443219 1.164549

yD
des1 -3.393989 1.889914 -1.80 0.073 -7.098153 .3101744
des2 -2.966854 1.926324 -1.54 0.124 -6.742379 .8086707
des7 -2.148826 1.940325 -1.11 0.268 -5.951792 1.654141
des8 -2.576181 1.80985 -1.42 0.155 -6.123422 .9710605
_cons 3.522517 1.67126 2.11 0.035 .2469077 6.798126

Estimated between-studies SDs and correlation matrix:
SD yB yC yD

yB .7430402 1 . .
yC .7430402 .5 1 .
yD .7430402 .5 .5 1

We can now test for inconsistency by jointly testing the seven inconsistency parameters:

. test ([yC]: des1 des2 des6) ([yD]: des1 des2 des7 des8)

( 1) [yC]des1 = 0
( 2) [yC]des2 = 0
( 3) [yC]des6 = 0
( 4) [yD]des1 = 0
( 5) [yD]des2 = 0
( 6) [yD]des7 = 0
( 7) [yD]des8 = 0

chi2( 7) = 5.11
Prob > chi2 = 0.6464

There is no evidence of inconsistency here. It is not valid to test consistency by compar-
ing restricted likelihoods between models, because the models’ fixed parts differ—but we
could instead reestimate the models by maximum likelihood and perform a likelihood-
ratio test.



I. R. White 269

5 Difficulties and limitations

mvmeta implements a two-stage meta-analysis procedure. This is common practice, but
it does involve a quadratic approximation to the log likelihood, which may perform
poorly with sparse data. One-stage procedures are possible with individual partici-
pant data (Smith, Williamson, and Marson 2005). They are implemented for Stata by
metandi for diagnostic test data (Harbord and Whiting 2009), but they are not imple-
mented more generally.

The MM is a fast alternative to REML, but further research is required to extend it
to new situations, including structured Σ and Riley’s overall correlation model.
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