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Abstract. We introduce two new Stata commands for the estimation of an or-
dered response model with sample selection. The opsel command uses a standard
maximum-likelihood approach to fit a parametric specification of the model where
errors are assumed to follow a bivariate Gaussian distribution. The snpopsel

command uses the semi-nonparametric approach of Gallant and Nychka (1987,
Econometrica 55: 363–390) to fit a semiparametric specification of the model
where the bivariate density function of the errors is approximated by a Hermite
polynomial expansion. The snpopsel command extends the set of Stata routines
for semi-nonparametric estimation of discrete response models. Compared to the
other semi-nonparametric estimators, our routine is relatively faster because it
is programmed in Mata. In addition, we provide new postestimation routines
to compute linear predictions, predicted probabilities, and marginal effects. These
improvements are also extended to the set of semi-nonparametric Stata commands
originally written by Stewart (2004, Stata Journal 4: 27–39) and De Luca (2008,
Stata Journal 8: 190–220). An illustration of the new opsel and snpopsel com-
mands is provided through an empirical application on self-reported health with
selectivity due to sample attrition.

Keywords: st0226, opsel, opsel postestimation, sneop, sneop postestimation, snp2,
snp2 postestimation, snp2s, snp2s postestimation, snpopsel, snpopsel postestima-
tion, snp, snp postestimation, ordered response models, sample selection, para-
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1 Introduction

This article is concerned with the estimation of ordered response models with sample
selection. Such models can be applied to a variety of empirical applications in which
the outcome of interest is discrete, its values are naturally ordered (for example, per-
formances in a training program, educational achievements, measures of well-being,
job satisfaction, health, and cognitive abilities), and data observability is restricted by
a binary selection mechanism (for example, participation in a training program, self-
selection in the labor market, issues of nonresponse, and sample attrition). An extended
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214 Ordered response models with sample selection

review of the model and other interesting empirical applications can be found in the
recent survey on ordered response models by Greene and Hensher (2009).

After describing the structure of the basic model, we focus on consistent estimation
of two alternative specifications. The parametric specification extends the classical
ordered probit model by assuming that errors in the latent regression equations for the
selection mechanism and the outcome variable, respectively, follow a bivariate Gaussian
distribution. Under this distributional assumption, the model parameters are estimated
by a maximum likelihood (ML) estimator, which accounts for sample selection. This is
the same estimator implemented by the ssm command of Miranda and Rabe-Hesketh
(2006), a wrapper program that calls gllamm (see Rabe-Hesketh, Skrondal, and Pickles
[2004]). The opsel command provided in this article is, however, much faster because it
is directly programmed in the Stata ML environment. This estimator generalizes the ML

estimator of an ordered probit model provided by the official Stata command oprobit,
which is known to be inconsistent if the unobservable factors affecting the outcome of
interest are correlated with the unobservable factors affecting the selection mechanism.

Because parametric estimators of discrete choice models are known to be sensitive
to departure from distributional assumptions, we also consider a semiparametric spec-
ification that avoids imposing assumptions on the distribution of the error terms. To
our knowledge, the literature on semiparametric estimation of ordered response mod-
els is quite recent, and it has been mainly concerned with the estimation of standard
models where the ordered outcome is not subject to sample selection. Semiparamet-
ric estimators of a standard ordered response model have been analyzed by Lewbel
(2000), Klein and Sherman (2002), Chen and Khan (2003), Stewart (2004, 2005), and
Coppejans (2007).

The estimator considered in this article relies on the semi-nonparametric (SNP) ap-
proach of Gallant and Nychka (1987) by generalizing the estimator of Stewart (2004).
Two features of this approach are worth noticing: First, it is less computationally de-
manding than other semiparametric approaches based on kernel density estimation.
Second, the Monte Carlo simulations by Stewart (2005) and De Luca (2008) suggest
that SNP estimators of discrete choice models have good finite sample performances
relative to both parametric estimators and other semiparametric estimators. The basic
idea of the SNP approach is to approximate the unknown densities of the error terms
by Hermite polynomial expansions and to use the resulting approximations to derive
a pseudo-ML estimator for the vector of model parameters. For the model considered
in this article, SNP approximations to the unknown density and distribution functions
correspond to the ones derived by De Luca (2008). The underlying Stata routines have
only been improved by using Mata to speed up the estimation process. In addition, we
provide new postestimation routines to compute linear predictions, predicted probabil-
ities, and marginal effects. These improvements are extended to the set of SNP Stata
commands written by Stewart (2004) and De Luca (2008).

The remainder of the article is organized as follows: Section 2 introduces the sta-
tistical model. The parametric ML estimator and the SNP estimator are discussed in
sections 3 and 4, respectively. Section 5 presents the syntax of the new and updated
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commands. Examples of the use of the new opsel and snpopsel commands are pro-
vided in section 6. Finally, in section 7, we use data from the first two waves of the
Survey of Health, Ageing, and Retirement in Europe (SHARE) to present results of an
empirical application on self-reported health with selectivity due to sample attrition.

2 The statistical model

An ordered response model with sample selection can be represented through the fol-
lowing bivariate threshold-crossing model

Y ∗
j = β�

j Xj + Uj j = 1, 2 (1)

Y1 = I(Y ∗
1 ≥ 0) (2)

Y2 =
H∑

h=0

h I(αh < Y ∗
2 ≤ αh+1) if Y1 = 1 (3)

where Y ∗
1 and Y ∗

2 represent continuous latent variables for the selection process and the
outcome of interest, respectively; the βj are kj vectors of unknown parameters; the Xj

are kj vectors of exogenous variables; and the Uj are random errors. The latent variable
Y ∗

1 is related to the binary indicator Y1 through the observational rule (2), where I(A)
denotes the indicator function of the event A. The latent variable Y ∗

2 is related to
the outcome Y2 through the observational rule (3), where α = (α1, . . . , αH)—with
αh < αh+1, α0 = −∞, and αH+1 = +∞—is a vector of H strictly increasing thresholds
that partition Y ∗

2 into H + 1 exhaustive and mutually exclusive intervals.1 As in a
classical sample selection model, observability of Y2 is confined to the subsample of
observations for which Y1 = 1 (the selected sample). Selectivity effects are allowed to
operate through the correlation between the latent regression errors U1 and U2.

Identifiability of the model parameters requires three restrictions. First, the intercept
coefficient in β2 is normalized to zero because it is not separately identified from the
threshold coefficients in α. This is a standard identifiability restriction that is also
imposed in the ordered logit and ordered probit models. Second, we assume that X1

contains at least one variable that is not contained in X2. The role of this exclusion
restriction has been discussed at length in the literature on sample selection models and
multinomial choice models. In principle, a parametric specification of the model could
be identified through nonlinearity of the underlying distribution functions. However, as
argued in similar models by Meng and Schmidt (1985) and by Keane (1992), relying on
identification via functional form restrictions is not very appealing because it may lead
to problems of weak identification.2 Furthermore, as pointed out by Lee (1995), this
exclusion restriction is needed to identify the semiparametric specification of the model

1. If H = 1, (3) corresponds to a binary response model where the threshold α1 is equal to the
opposite of the intercept coefficient. In the text, the values of Y2 are ordered from 0 to H to
simplify notation. In practice, however, Y2 can assume any ordered sequence of integer numbers.

2. As argued by Keane (1992), common symptoms of this problem are close-to-singular Hessian,
large standard errors, and inability of the optimization algorithms to find steps that improve the
likelihood or to achieve convergence.
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where the distribution of U1 and U2 is not assumed to be known. Third, as argued by
Manski (1988), identification of the semiparametric specification requires that X1 and
X2 each contain at least one continuous variable. This is another standard assumption
that guarantees that X1 and X2 have sufficiently rich supports.

The primary aim of our analysis is to obtain consistent estimates of the vector of
parameters θ2 = (β2,α) by using observations from the selected sample. Unlike a
classical sample selection model, estimators based on Heckman’s estimator cannot be
applied because of nonlinearity of the conditional mean in the second estimation step.3

In this type of model, a ML estimator remains the most attractive choice because it only
requires computing the contributions to the likelihood function for the H + 2 possible
realizations of the two discrete indicators Y1 and Y2, namely (Y1 = 0), (Y1 = 1, Y2 =
0), . . . , (Y1 = 1, Y2 = H). Parametric and SNP versions of this estimator are presented
in sections 3 and 4, respectively.

3 The parametric ML estimator

Our parametric specification of the model assumes that the errors U1 and U2 follow
a bivariate Gaussian distribution with zero means, unit variances, and correlation co-
efficient ρ. This is the same distributional assumption imposed by the ssm command
of Miranda and Rabe-Hesketh (2006) when specifying a binomial family with an or-
dered probit link.4 Under this parametric assumption on the distribution of the latent
regression errors, the log-likelihood function for a random sample of n observations
{(Y1i, Y2i,X1i,X2i) : i = 1, . . . , n} is

L(θ) =
n∑

i=1

{
(1 − Y1i) lnπ0i(θ) +

H∑
h=0

Y1i I(Y2i = h) lnπ1hi(θ)

}
(4)

where θ = (β1,β2,α, ρ) is the vector of all model parameters and (π0, π10, . . . , π1H) are
the conditional probabilities associated with the H + 2 possible realizations of Y1 and
Y2,5

π0(θ) = Pr (Y1 = 0) = 1 − Φ(β�
1 X1) (5)

π1h(θ) = Pr (Y1 = 1, Y2 = h)

= Φ2(β�
1 X1, αh+1 − β�

2 X2;−ρ) − Φ2(β�
1 X1, αh − β�

2 X2;−ρ)

with Φ denoting the standardized Gaussian distribution and Φ2 denoting the bivariate
Gaussian distribution with zero means, unit variances, and correlation coefficient ρ.
A parametric ML estimator of θ maximizes the log-likelihood function (4) over the
parameter space Θ = �k1+k2+H × (−1, 1). If model (1)–(3) is correctly specified and

3. An exception is the special regressor-based approach analyzed by Dong and Lewbel (2010) in the
context of binary choice models.

4. The parameterization of the model considered by Miranda and Rabe-Hesketh (2006) is slightly
different because the correlation between U1 and U2 is driven by a common random error.

5. We keep the individual subscript and the conditioning on covariates implicit to simplify notation.
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the assumption on the distribution of U1 and U2 holds, then this estimator is consistent
and asymptotically efficient under standard regularity conditions.

4 The SNP estimator

The SNP estimator for an ordered response model with sample selection is a straight-
forward generalization of the SNP estimators developed by Stewart (2004) and De Luca
(2008). After relaxing assumptions on the distribution of U1 and U2, a semiparametric
specification of model (1)–(3) gives the following set of conditional probabilities

π0(β1,β2,α) =F1(−β�
1 X1) (6)

π1h(β1,β2,α) =
{
F2(αh+1 − β�

2 X2) − F (−β�
1 X1, αh+1 − β�

2 X2)
}

− {
F2(αh − β�

2 X2) − F (−β�
1 X1, αh − β�

2 X2)
}

where F1, F2, and F denote, respectively, the unknown marginal distribution functions
of U1 and U2, and their joint distribution function.6

Following Gallant and Nychka (1987), we first approximate the unknown joint den-
sity f of the error terms by a Hermite polynomial expansion of the form

f∗(u1, u2;γ) =
1

ψR(γ)
τR(u1, u2;γ)2 φ(u1)φ(u2) (7)

where τR(u1, u2;γ) is a polynomial of order R = (R1, R2) in u1 and u2, γ is a vector
of R1 × R2 unknown parameters, φ is the standardized Gaussian density, and ψR(γ)
is a normalization factor ensuring that f∗ is a proper density. De Luca (2008) shows
that integrating the joint density (7) gives the following approximations to the joint
distribution function of U1 and U2,

F ∗(u1, u2;γ) = Φ(u1)Φ(u2) +
1

ψR(γ)
A∗

12(u1, u2;γ)φ(u1)φ(u2)

− 1
ψR(γ)

A∗
1(u1;γ)Φ(u2)φ(u1) − 1

ψR(γ)
A∗

2(u2;γ)Φ(u1)φ(u2)

and to the marginal distribution functions of U1 and U2,

F ∗
1 (u1;γ) = Φ(u1) − 1

ψR(γ)
A∗

1(u1;γ)φ(u1)

F ∗
2 (u2;γ) = Φ(u2) − 1

ψR(γ)
A∗

2(u2;γ)φ(u2)

where A∗
12(u1, u2; γ), A∗

1(u1; γ) and A∗
2(u2; γ) are polynomials in u1 and u2. The SNP

estimator of the vector of parameters δ = (β1,β2,α,γ) is obtained by maximizing
the pseudo–log-likelihood function (4) with the probabilities specified as in (6) and the

6. The parametric conditional probabilities in (5) can be easily obtained from (6) using the properties
of the Gaussian distribution.
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unknown distribution functions F , F1, and F2 replaced by their approximations F ∗,
F ∗

1 , and F ∗
2 . This estimator is

√
n-consistent, provided that R1 and R2 both increase

with sample size. Because results on the asymptotic distribution of the SNP estimator
are not available, inference is typically conducted using a parametric ML approach by
treating the order R as known. Thus, the SNP model is better viewed as a flexible
parametric specification for a fixed value of R, with the choice of R as part of the
model selection procedure. For a given sample size, the value of R may be selected
either through a sequence of likelihood-ratio tests or by model selection criteria such
as Akaike’s information criterion and Bayesian information criterion (BIC), or by the
cross-validation strategies in Coppejans and Gallant (2002).

Three remarks on the SNP estimator are worth making: First, two location restric-
tions are needed because the polynomial expansion in (7) does not guarantee that U1

and U2 have zero means. As a consequence, we normalize the intercept in β1 and the
first threshold in α to their parametric ML estimates. Second, the estimated coeffi-
cients from the parametric and the SNP models are not directly comparable because in
the former, the variances of U1 and U2 are normalized to one, while in the latter they
are unconstrained functions of the Hermite polynomial parameters γ. As suggested by
Stewart (2004) and De Luca (2008), these scale differences can be taken into account
by comparing ratios of estimated coefficients. Alternatively, one can compare predicted
probabilities and marginal effects, which are not affected by scale differences. Third,
we notice that the SNP estimator analyzed in this article is more computationally de-
manding than the SNP estimator for a bivariate binary response model because the
approximations to F and F2 must be evaluated at H different points, rather than at
a single point. To speed up the estimation process, we use a Mata version of the SNP

routines written by De Luca (2008). For this model, the Mata routine is between four
and six times faster than the standard Stata routine.7

5 Stata commands

The new Stata commands opsel and snpopsel provide, respectively, the parametric ML

estimator and the SNP estimator of an ordered response model with sample selection.
The general syntax of these commands is as follows:

opsel equation1
[
if

] [
in

] [
weight

]
, select(equation2,

[
noconstant

offset(varname)
]
)

[
offset(varname) robust from(matname) level(#)

maximize options
]

snpopsel equation1
[
if

] [
in

] [
weight

]
, select(equation2,

[
noconstant

offset(varname)
]
)

[
offset(varname) order1(#) order2(#)

dplot(filename) from(matname) level(#) robust maximize options
]

7. Estimation time usually increases with the number of observations, the number of categories of the
ordered outcome Y2, and the order R = (R1, R2) of the Hermite polynomial expansion.
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where equation1 is specified as8

depvar varlist

and equation2 is specified as

depvar s = varlist s

Both commands are written using ml model lf and share the same features of all
Stata estimation commands, including access to the estimation results and options for
the maximization process (see [R] maximize). version 10.1 is the earliest version
of Stata that can be used to run the routines. However, due to the new optimization
engine used by the ml command under version 11 (see [R] ml), the routines use version
control to allow for use of both version 10.1 and version 11.0.9 This version control
is established on the basis of c(version) so it can be easily changed by users (see
[P] version). fweight, iweight, and pweight are allowed (see [U] 11.1.6 weight).
Most options are similar to those of other Stata estimation commands. A description
of command-specific options and the available postestimation commands is provided
below. See the opsel and snpopsel help file for descriptions of other options.

5.1 Option of the opsel command

from(matname) specifies the name of the matrix containing the starting values. By
default, starting values are the probit estimates for the coefficients in the binary se-
lection equation, the oprobit estimates for the coefficients in the outcome equation,
and zero for the correlation coefficient.

5.2 Options of the snpopsel command

order1(#) specifies the order R1 to be used in the bivariate Hermite polynomial ex-
pansion. The default is order1(3).

order2(#) specifies the order R2 to be used in the bivariate Hermite polynomial ex-
pansion. The default is order2(3).

dplot(filename) plots the estimated marginal densities of the two error terms together
with Gaussian densities with the same estimated means and variances. This option
generates three new graphs: The first is a plot of the estimated marginal density of
U1 and is stored as filename 1. The second is a plot of the estimated marginal density
of U2 and is stored as filename 2. The third combines filename 1 and filename 2 in
a single graph and is stored as filename.

8. In equation1, the noconstant option is specified by default.
9. Our tests suggest that the ml command under version 11 has slightly better numerical stability

than the ml command under version 10.
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from(matname) specifies the name of the matrix containing starting values. By default,
starting values are the parametric ML estimates from the opsel command, plus a
vector of zeros for the Hermite polynomial parameters γ. If the opsel command
does not converge, then starting values are the probit estimates for the coefficients
in the selection equation, the oprobit estimates for the coefficients in the outcome
equation, plus a vector of zeros for the Hermite polynomial parameters γ.

5.3 Postestimation commands after opsel and snpopsel

After parametric and SNP estimation with opsel or snpopsel, the predict command
can be used to compute linear predictions and predicted probabilities. The syntax of
this command is

predict newvarlist
[
if

] [
in

] [
, pmargin pjoint pcond psel xb xbsel

outcome(#)
]

where

pmargin calculates the predicted marginal probabilities Pr (Y2 = h). If the outcome()
option is not specified, newvarlist must contain H + 1 new variables, where H is the
number of categories of the dependent variable. If the outcome() option is specified,
newvarlist must contain only one new variable. pmargin is the default.

pjoint calculates the predicted joint probabilities Pr (Y1 = 1, Y2 = h). If the outcome()
option is not specified, newvarlist must containH+1 new variables. If the outcome()
option is specified, newvarlist must contain only one new variable.

pcond calculates the predicted conditional probabilities Pr (Y2 = h | Y1 = 1). If the
outcome() option is not specified, newvarlist must contain H + 1 new variables,
where H is the number of categories of the dependent variable. If the outcome()
option is specified, newvarlist must contain only one new variable.

psel calculates the predicted selection probability Pr (Y1 = 1). In this case, newvarlist
must contain only one new variable.

xb calculates the linear prediction β̂ �
2 X2 of the outcome equation. In this case, new-

varlist must contain only one new variable.

xbsel calculates the linear prediction β̂ �
1 X1 for the selection equation, including the

contribution of the constrained intercept. In this case, newvarlist must contain only
one new variable.

outcome(#) specifies the category of the dependent variable Y2 for which the marginal,
joint, or conditional probability must be calculated.

In addition, the margins command allows the user to make an inference on any of
the statistics that can be computed from predictions of a previously fit model at fixed
values of the covariates (see [R] margins). The lists of covariates in equation1 and
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equation2 cannot contain factor-variable operators. Thus it is the user’s responsibility
to ensure that all functionally related covariates in the model are set to the appropriate
fixed values when one of them is set to a fixed value. Some examples are provided in
sections 6 and 7.

5.4 Updated routines of other SNP commands

Updated versions of the SNP Stata commands (sneop, snp, snp2, and snp2s) written
by Stewart (2004) and De Luca (2008) are also provided. As discussed at length in
this article, these commands fit, respectively, a univariate ordered response model, a
univariate binary response model, a bivariate binary response model, and a bivariate
binary response model with sample selection. The updated routines account for two
important improvements. First, they are faster and more precise because they are
written in Mata. Second, after SNP estimation, one can use the predict and the
margins commands to compute linear predictions, predicted probabilities, and marginal
effects.10 In the following sections, we refer to the models considered by Stewart (2004)
and De Luca (2008) to briefly describe the syntax of the predict commands associated
with these SNP estimators.

The syntax of predict after sneop is

predict newvarlist
[
if

] [
in

] [
, pr xb outcome(#)

]
where pr, the default, calculates the predicted probabilities Pr (Y2 = h) and xb calcu-
lates the linear prediction, ignoring the contribution of the cutpoints.

The syntax of predict after snp is

predict newvar
[
if

] [
in

] [
, pr xb

]
where pr, the default, calculates the predicted probability of success Pr (Y1 = 1) and xb
calculates the linear prediction, including the contribution of the constrained intercept.

The syntax of predict after snp2 is

predict newvar
[
if

] [
in

] [
, p11 p10 p01 p00 pmarg1 pmarg2 pcond1 pcond2

xb1 xb2
]

where p11, the default, calculates the joint probability Pr (Y1 = 1, Y2 = 1); p10 cal-
culates the joint probability Pr (Y1 = 1, Y2 = 0); p01 calculates the joint probability
Pr (Y1 = 0, Y2 = 1); p00 calculates the joint probability Pr (Y1 = 0, Y2 = 0); pmarg1 cal-
culates the marginal probability Pr (Y1 = 1); pmarg2 calculates the marginal probability
Pr (Y2 = 1); pcond1 calculates the conditional probability Pr (Y1 = 1 | Y2 = 1); pcond2
calculates the conditional probability Pr (Y2 = 1 | Y1 = 1); xb1 calculates the linear pre-
diction of the first equation, including the contribution of the constrained intercept; and

10. The new routines also take into account other minor drawbacks of the old routines.
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xb2 calculates the linear prediction of the second equation, including the contribution
of the constrained intercept.

The syntax of predict after snp2s is

predict newvar
[
if

] [
in

] [
, pmargin p11 p10 p01 p00 pcond psel xb xbsel

]
where pmargin, the default, calculates the marginal probability of success Pr (Y2 = 1)
in the outcome equation; p11 calculates the joint probability Pr (Y1 = 1, Y2 = 1); p10
calculates the joint probability Pr (Y1 = 1, Y2 = 0); p01 calculates the joint probability
Pr (Y1 = 0, Y2 = 1); p00 calculates the joint probability Pr (Y1 = 0, Y2 = 0); pcond cal-
culates the conditional probability of success Pr (Y2 = 1 | Y1 = 1); psel calculates the
selection probability of success Pr (Y1 = 1) for the selection equation; xb calculates the
linear prediction of the outcome equation, including the contribution of the constrained
intercept; and xbsel calculates the linear prediction of the selection equation, including
the contribution of the constrained intercept.

As before, the margins command allows the user to make an inference on any of the
statistics computed from prediction of a previously fit model.

6 Examples

In this section, we use simulated data to provide some examples of the new opsel and
snpopsel commands. The Stata codes for our data-generating process are:

. version 11.1

. set seed 1234

. matrix define sig=(1,.3 \ .3,1)

. quietly drawnorm u1 u2, n(5000) cov(sig) double

. generate double x1=(runiform()*2-1)*sqrt(3)

. generate double x2=rnormal()

. generate double x3=(rchi2(1)-1)/sqrt(2)

. generate double y1s=-.1+x1-x2+2*x3+u1

. generate double y2s=.5*x2-.5*x3+u2

. generate y1=(y1s>0)

. quietly generate y2=1 if y1==1 & y2s<=-2

. quietly replace y2=2 if y1==1 & y2s>-2 & y2s<=-1

. quietly replace y2=3 if y1==1 & y2s>-1 & y2s<=0

. quietly replace y2=4 if y1==1 & y2s>0 & y2s<=1

. quietly replace y2=5 if y1==1 & y2s>1 & y2s<=2

. quietly replace y2=6 if y1==1 & y2s>2

This generated model includes two equations—one for the binary indicator of sample
selection y1 and one for the ordered outcome y2. The indicator y1 is equal to one for
positive values of the latent variable y1s, and it is equal to zero otherwise. The outcome
y2 can assume six values, depending on the interval in which the latent variable y2s
falls. The sample size is set to 5,000 observations, but observability of y2 is restricted
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to the subsample of 2,142 observations for which y1 is equal to one. The set of covari-
ates includes three independent variables: x1 is drawn from a uniform distribution on
(-sqrt(3), sqrt(3)), x2 is drawn from a standardized Gaussian distribution, and x3
is drawn from a chi-squared distribution with one degree of freedom and then trans-
formed by subtracting 1 and dividing the results by sqrt(2). The model is identified by
excluding x1 from the predictors of y2s. The errors u1 and u2 are drawn from a bivari-
ate Gaussian distribution with zero means, unit variances, and a correlation coefficient
equal to 0.3. The ordered probit estimates of the equation for y2 are

. oprobit y2 x2 x3, nolog

Ordered probit regression Number of obs = 2142
LR chi2(2) = 966.95
Prob > chi2 = 0.0000

Log likelihood = -2956.4436 Pseudo R2 = 0.1405

y2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x2 .5474133 .0272248 20.11 0.000 .4940536 .6007731
x3 -.6348228 .0232483 -27.31 0.000 -.6803886 -.589257

/cut1 -2.291752 .0570215 -2.403513 -2.179992
/cut2 -1.213969 .0391274 -1.290657 -1.13728
/cut3 -.1844953 .0331939 -.2495542 -.1194364
/cut4 .7816241 .0373806 .7083594 .8548888
/cut5 1.750415 .0597042 1.633397 1.867433

. estimates store oprobit

This ML estimator is inconsistent because it does not account for the selectivity effects
operating through the unobservables in the model. Because errors are drawn from
a Gaussian distribution, a consistent ML estimator can be obtained with the opsel
command11

11. The same estimator can be obtained with the ssm command of Miranda and Rabe-Hesketh (2006)
by specifying a binomial family with an ordered probit link. In this example, the opsel command
is about nine times faster than the ssm command.
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. opsel y2 x2 x3, select(y1=x1 x2 x3) nolog

oprobit with sample selection Number of obs = 5000
Wald chi2(2) = 427.96

Log likelihood = -4495.5214 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y2
x2 .4923275 .0299206 16.45 0.000 .4336843 .5509708
x3 -.5588938 .0287723 -19.42 0.000 -.6152864 -.5025011

y1
x1 .9744772 .0327524 29.75 0.000 .9102837 1.038671
x2 -.9883017 .0343198 -28.80 0.000 -1.055567 -.9210361
x3 1.986383 .0623045 31.88 0.000 1.864269 2.108498

_cons -.0954922 .027679 -3.45 0.001 -.149742 -.0412423

Thresholds:
/cut1 -2.106863 .071516 -29.46 0.000 -2.247032 -1.966694
/cut2 -1.043992 .0552638 -18.89 0.000 -1.152307 -.9356765
/cut3 -.0210024 .0484422 -0.43 0.665 -.1159473 .0739426
/cut4 .9429836 .0489877 19.25 0.000 .8469695 1.038998
/cut5 1.911481 .065758 29.07 0.000 1.782598 2.040365

/athrho .2750448 .0607469 4.53 0.000 .1559831 .3941065

rho .2683128 .0563736 .1547303 .374895

LR test of indep. eqns. (rho = 0): chi2(1) = 20.25 Prob > chi2 = 0.0000

. estimates store opsel

This command detects a positive and statistically significant correlation coefficient. The
resulting ML estimator performs much better than the ML estimator of the oprobit
command. Next we use the snpopsel command with R = (3, 3)
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. snpopsel y2 x2 x3, select(y1=x1 x2 x3) order1(3) order2(3) nolog
Order of SNP polynomial - (R1,R2)=(3,3)

SNP oprobit with sample selection Number of obs = 5000
Wald chi2(2) = 734.71

Log likelihood = -4495.0926 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y2
x2 .4929962 .0260326 18.94 0.000 .4419733 .5440192
x3 -.561258 .0229991 -24.40 0.000 -.6063354 -.5161805

y1
x1 .9938567 .0422441 23.53 0.000 .9110598 1.076654
x2 -1.007823 .0444209 -22.69 0.000 -1.094886 -.9207598
x3 2.030603 .0822262 24.70 0.000 1.869443 2.191764

Intercept:
_cons1 -.0954922 Fixed

Thresholds:
/cut1 -2.106863 Fixed
/cut2 -1.057836 .0455188 -23.24 0.000 -1.147051 -.9686208
/cut3 -.035201 .0570138 -0.62 0.537 -.146946 .076544
/cut4 .9346139 .0764289 12.23 0.000 .7848159 1.084412
/cut5 1.917374 .1269033 15.11 0.000 1.668648 2.1661

SNP coefs:
g_1_1 .0745515 .0956116 0.78 0.436 -.1128437 .2619467
g_1_2 -.0049985 .0258943 -0.19 0.847 -.0557504 .0457534
g_1_3 .0084641 .0242935 0.35 0.728 -.0391504 .0560785
g_2_1 -.0080358 .0604061 -0.13 0.894 -.1264295 .1103579
g_2_2 -.0113104 .0198303 -0.57 0.568 -.050177 .0275562
g_2_3 .0000508 .0161207 0.00 0.997 -.0315453 .0316468
g_3_1 .0192734 .0325395 0.59 0.554 -.0445029 .0830497
g_3_2 .0042744 .0100659 0.42 0.671 -.0154544 .0240033
g_3_3 -.0012314 .0091104 -0.14 0.892 -.0190874 .0166246

Estimated moments of errors distribution
Main equation Selection equation
Standard Deviation = 1.007877 Standard Deviation = 1.021227
Variance = 1.015816 Variance = 1.042905
Skewness = .0223663 Skewness = .0105038
Kurtosis = 3.046291 Kurtosis = 3.168797

Estimated correlation coefficient
rho = .2461318

. estimates store snpopsel
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Because of the large sample size, the estimated correlation coefficient and moments
(standard deviation, skewness, and kurtosis) of the distributions of the error terms are
quite close to the true values. The intercept coefficient in the selection equation and the
first threshold coefficient are set equal to their parametric estimates because they can
be absorbed in the unknown distribution functions and are not separately identified.
Moreover, because of the different scale normalizations, SNP estimates of the remaining
coefficients are not directly comparable with the parametric probit estimates. Below we
compare ratios of the estimated coefficients using the nlcom command:

. quietly estimates restore opsel

. nlcom (b12_b11: [y1]_b[x2]/[y1]_b[x1]) (b13_b11: [y1]_b[x3]/[y1]_b[x1])
> (b23_b22: [y2]_b[x3]/[y2]_b[x2]) (cut2_b22: [cut2]_b[_cons]/[y2]_b[x2])
> (cut3_b22: [cut3]_b[_cons]/[y2]_b[x2]) (cut4_b22: [cut4]_b[_cons]/[y2]_b[x2])
> (cut5_b22: [cut5]_b[_cons]/[y2]_b[x2]), nohead

Coef. Std. Err. z P>|z| [95% Conf. Interval]

b12_b11 -1.014187 .0363359 -27.91 0.000 -1.085404 -.9429695
b13_b11 2.038409 .065566 31.09 0.000 1.909902 2.166916
b23_b22 -1.135207 .0619191 -18.33 0.000 -1.256566 -1.013848

cut2_b22 -2.120522 .1083519 -19.57 0.000 -2.332888 -1.908157
cut3_b22 -.0426593 .0969984 -0.44 0.660 -.2327727 .1474541
cut4_b22 1.915358 .18147 10.55 0.000 1.559684 2.271033
cut5_b22 3.88254 .2947022 13.17 0.000 3.304934 4.460145

. quietly estimates restore snpopsel

. nlcom (b12_b11: [y1]_b[x2]/[y1]_b[x1]) (b13_b11: [y1]_b[x3]/[y1]_b[x1])
> (b23_b22: [y2]_b[x3]/[y2]_b[x2]) (cut2_b22: [cut2]_b[_cons]/[y2]_b[x2])
> (cut3_b22: [cut3]_b[_cons]/[y2]_b[x2]) (cut4_b22: [cut4]_b[_cons]/[y2]_b[x2])
> (cut5_b22: [cut5]_b[_cons]/[y2]_b[x2]), nohead

Coef. Std. Err. z P>|z| [95% Conf. Interval]

b12_b11 -1.014053 .0362937 -27.94 0.000 -1.085187 -.9429183
b13_b11 2.043155 .065341 31.27 0.000 1.915089 2.171221
b23_b22 -1.138463 .0633154 -17.98 0.000 -1.262559 -1.014367

cut2_b22 -2.145728 .1320379 -16.25 0.000 -2.404518 -1.886939
cut3_b22 -.0714022 .1151801 -0.62 0.535 -.2971509 .1543466
cut4_b22 1.895783 .1858832 10.20 0.000 1.531459 2.260107
cut5_b22 3.889227 .3119916 12.47 0.000 3.277735 4.50072

Once differences in the scale of the error terms are taken into account, the SNP esti-
mates of the coefficients and their standard errors are very close to those obtained with
the parametric ML estimator. Of course, in this Gaussian design, the SNP estimates
are somewhat less efficient than the parametric ML estimates. An alternative way of
comparing the estimation results is that of using the margins command to compute
marginal effects. Below we compare the true and the estimated marginal effects for the
probability Pr (Y2 = 1) at the sample means of the continuous covariates x2 and x3:
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. quietly summarize x2

. local m_x2=r(mean)

. quietly summarize x3

. local m_x3=r(mean)

. noisily display "The true marginal effect of x2 is "
> normalden(-2-.5*`m_x2´+.5*`m_x3´)*(-.5)
The true marginal effect of x2 is -.02710986

. noisily display "The true marginal effect of x3 is "
> normalden(-2-.5*`m_x2´+.5*`m_x3´)*(.5)
The true marginal effect of x3 is .02710986

. quietly estimates restore oprobit

. margins, dydx(_all) predict(outcome(1)) atmeans noesample noatlegend

Conditional marginal effects Number of obs = 5000
Model VCE : OIM

Expression : Pr(y2==1), predict(outcome(1))
dy/dx w.r.t. : x2 x3

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

x2 -.0159133 .0018665 -8.53 0.000 -.0195717 -.012255
x3 .0184543 .0021164 8.72 0.000 .0143063 .0226023

. quietly estimates restore opsel

. margins, dydx(x2 x3) predict(pm outcome(1)) atmeans noesample noatlegend

Conditional marginal effects Number of obs = 5000
Model VCE : OIM

Expression : predict(pm outcome(1))
dy/dx w.r.t. : x2 x3

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

x2 -.0214554 .0026902 -7.98 0.000 -.0267282 -.0161826
x3 .0243563 .0029028 8.39 0.000 .018667 .0300457

. quietly estimates restore snpopsel

. margins, dydx(x2 x3) predict(pm outcome(1)) atmeans noesample noatlegend

Conditional marginal effects Number of obs = 5000
Model VCE : OIM

Expression : predict(pm outcome(1))
dy/dx w.r.t. : x2 x3

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

x2 -.0218608 .0041623 -5.25 0.000 -.0300187 -.0137029
x3 .0248877 .0046567 5.34 0.000 .0157608 .0340147
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The marginal effects of the oprobit command are clearly underestimated, and the 95%
confidence intervals do not include the true values. On the other hand, the marginal
effects of the opsel and snpopsel commands are not statistically different from the
true values.

Finally, we use the predict command to compute the predicted marginal probabil-
ities of each of the six possible categories of y2:

. quietly estimates restore oprobit

. predict p1_op p2_op p3_op p4_op p5_op p6_op
(option pr assumed; predicted probabilities)

. summarize p?_op

Variable Obs Mean Std. Dev. Min Max

p1_op 5000 .0439708 .1120831 2.24e-06 .9999826
p2_op 5000 .122631 .1096923 .0000173 .4100385
p3_op 5000 .2611747 .1031767 9.06e-08 .393263
p4_op 5000 .2967529 .0902117 2.09e-10 .3709466
p5_op 5000 .1946248 .1122201 2.74e-13 .3718935

p6_op 5000 .0808459 .0917647 1.40e-16 .7071775

. quietly estimates restore opsel

. predict p1_ops p2_ops p3_ops p4_ops p5_ops p6_ops
Predicted marginal probabilities

. summarize p?_ops

Variable Obs Mean Std. Dev. Min Max

p1_ops 5000 .0487627 .1067814 .0000157 .9998292
p2_ops 5000 .1435943 .1068764 .0001691 .4048828
p3_ops 5000 .2893592 .0895097 1.70e-06 .3909952
p4_ops 5000 .295368 .0898223 7.23e-09 .370189
p5_ops 5000 .1672553 .1021479 1.66e-11 .3717906

p6_ops 5000 .0556606 .0640666 1.48e-14 .5576032

. quietly estimates restore snpopsel

. predict p1_snp p2_snp p3_snp p4_snp p5_snp p6_snp
Predicted marginal probabilities

. summarize p?_snp

Variable Obs Mean Std. Dev. Min Max

p1_snp 5000 .0497109 .1077748 .0000231 .9997523
p2_snp 5000 .1417356 .1056396 .0002434 .399078
p3_snp 5000 .2880323 .0895862 4.23e-06 .389899
p4_snp 5000 .2961262 .0899017 3.25e-08 .3713396
p5_snp 5000 .1683228 .1023657 1.29e-10 .3759109

p6_snp 5000 .0560722 .0632733 1.83e-13 .5533184

As for the estimated coefficients and marginal effects, the predicted marginal proba-
bilities of the SNP model are quite close to those of the parametric model. Because
of the positive correlation between u1 and u2, ignoring sample selection leads instead
to underestimating the marginal probabilities of low outcomes and overestimating the
marginal probability of high outcomes.
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7 Empirical application

In this section, we present an empirical application on self-reported health (SRH) sta-
tus of the elderly European population. Our data are from the first two waves of
SHARE, a multidisciplinary and cross-national household panel survey coordinated by
the Mannheim Research Institute for the Economics of Aging. In each wave, the target
population of SHARE consists of people aged 50 and older, plus their (possibly younger)
partners. The first wave, conducted in 2004, covers about 28,500 individuals in 11
European countries (Austria, Belgium, Denmark, France, Germany, Greece, Italy, the
Netherlands, Spain, Sweden, and Switzerland). The second wave, conducted in 2006,
covers about 33,300 individuals in a larger set of countries. In this analysis, we only
focus on the countries that have participated in both waves of the panel, and we ex-
clude refreshment samples that have been drawn in the second wave to compensate for
sample attrition between the first and the second waves. After selecting respondents
aged 50 and older in the first wave, our sample consists of 25,278 individuals, of whom
8,376 were interviewed in the first wave only and of whom 16,902 were interviewed in
both waves. Further information on survey design and response rates can be found in
Börsch-Supan et al. (2005).

In SHARE, SRH is measured on a five-point ordered scale (poor, fair, good, very
good, excellent). We are interested in estimating a model for the transition probabili-
ties Pr (SRH2 = s | SRH1 = j,X2), s, j = 1, . . . , 5, where SRHt is the SRH status in wave t
and X2 is an additional set of conditioning variables from the first wave. For simplicity,
we fit an ordered response model for SRH2 by using as predictors four binary indicators
for SRH1 and the conditioning variables in X2.12 However, a more general approach
could be estimating separate ordered response models for each status of SRH1 to ac-
count for both differential effects of the conditioning variables in X2 and for differential
attrition effects.13 The conditioning variables in X2 include a set of socio-demographic
characteristics, a set of cognitive ability measures, a set of mental and physical health
indicators. In particular, we use a second-order polynomial in age, household size, the
logarithm of household income, the scores obtained in the cognitive ability tests (math-
ematical, orientation in time, recall, and fluency), the Euro-D depression scale, a set of
binary indicators for being female, educational attainments, living without a partner,
living in a small city, having children, and having health diseases (heart attack, stroke,
arthritis, cancer, or Parkinson’s disease) diagnosed by a doctor. Due to the high level
of comparability of the SHARE data, we also pool data from the various countries and
include a set of country dummies to control for unobserved heterogeneity at the country
level.

Because of sample attrition that occurred between the first and the second waves,
SRH2 cannot be observed for about one-third of the original sample. Moreover, there
are reasons to believe that the selection mechanism underlying sample attrition is not
random. Deaths, serious illness, cognitive impairments, and moving into institutional

12. Good SRH is our reference category.
13. We thank Franco Peracchi for this comment. Here we use a more parsimonious model specification

because of the large number of covariates included in X2.
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care are health-related reasons for sample attrition that may induce a positive sur-
vivorship bias in SRH (that is, those remaining in the panel are likely to be healthier
than those dropping out). To allow for selection on unobservables due to sample at-
trition, we need some variable that helps predict the attrition probability but does
not help predict SRH2. As suggested by Fitzgerald, Gottschalk, and Moffitt (1998),
Nicoletti and Peracchi (2005), and De Luca and Peracchi (2010), interviewers’ charac-
teristics and features of the interview process may provide the required set of exclusion
restrictions. Because these variables are external to the individuals under investigation
and are not under their control, one may expect them to be irrelevant for SRH. On
the other hand, results from several validation studies suggest that these variables are
important predictors of the attrition probability. Thus, in addition to variables used
to predict SRH2, predictors of the attrition probability include age, gender, and educa-
tional attainments of the interviewers, an indicator for good willingness to answer (as
perceived by the interviewer during the interview of the first wave), and an indicator
for completing the self-administered paper-and-pencil questionnaire that is handed to
respondents after the computer assisted personal interview (CAPI).14 Definitions and
summary statistics of all the relevant variables are presented in table 1.

14. The unique interview mode adopted by SHARE is CAPI supplemented by a self-administered paper
and pencil questionnaire (the drop-off questionnaire). The CAPI interview represents the largest
part of the interview, while the drop-off questionnaire is used to ask more sensitive questions. As a
fieldwork rule, the drop-off questionnaire is handed to respondents only after completing the CAPI
interview. Thus completing the drop-off questionnaire can be interpreted as an indicator of the
respondent’s motivation toward the survey request.
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Table 1. Definitions and summary statistics

Variable Description Obs. Mean Std.

part Dummy for participating to wave 2 27519 0.66 0.47
SRH2 SRH wave 2 18070 2.93 1.06
SRH1 1 Dummy for SRH wave 1 poor 27378 0.07 0.25
SRH1 2 Dummy for SRH wave 1 fair 27378 0.23 0.42
SRH1 4 Dummy for SRH wave 1 very good 27378 0.20 0.40
SRH1 5 Dummy for SRH wave 1 excellent 27378 0.10 0.30
female Dummy for female respondent 27519 0.54 0.50
age Age of respondent 27519 64.88 10.16
edu l Dummy for primary respondent’s education 27234 0.52 0.50
edu h Dummy for tertiary respondent’s education 27234 0.19 0.39
single Dummy for respondent living as single 27477 0.27 0.44
hsize Household size 27519 2.16 0.98
children Dummy for having any children 27383 0.89 0.31
small city Dummy for respondent living in a small city 27519 0.49 0.50
working Dummy for respondent working 27317 0.31 0.46
ln income Log household income 27322 10.20 1.10
heart attack Dummy for heart attack 27367 0.12 0.33
stroke Dummy for stroke 27367 0.04 0.19
arthritis Dummy for arthritis 27367 0.20 0.40
cancer Dummy for cancer 27367 0.05 0.23
parkinson Dummy for Parkinson’s 27367 0.01 0.08
eurod Euro-D depression scale (0–12) 26858 2.29 2.23
orient Respondent score on orientation in time (1–5) 27335 3.75 0.71
recall Respondent score on recall (0–10) 26949 4.78 1.87
math Respondent score on math (1–5) 27246 3.29 1.16
fluency Respondent score on fluency (0–90) 26793 18.71 7.41
iv fem Dummy for female interviewer 26810 0.65 0.48
iv age Age of interviewer 26754 47.46 13.33
iv edu l Dummy for primary interviewer’s education 26596 0.10 0.30
iv edu h Dummy for tertiary interviewer’s education 26596 0.46 0.50
will ans Willingness to answer 27117 0.88 0.32
drop off Dummy for completing the drop-off quest. 27519 0.82 0.38
AT Dummy for Austria 27519 0.07 0.25
BE Dummy for Belgium 27519 0.13 0.34
CH Dummy for Switzerland 27519 0.03 0.18
DE Dummy for Germany 27519 0.11 0.31
DK Dummy for Denmark 27519 0.06 0.24
ES Dummy for Spain 27519 0.09 0.28
FR Dummy for France 27519 0.11 0.31
GR Dummy for Greece 27519 0.10 0.30
IT Dummy for Italy 27519 0.09 0.29
NL Dummy for the Netherlands 27519 0.10 0.31
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7.1 Sample attrition

In the first two columns of table 2, we compare the probit and SNP estimates of a
univariate binary response model for the probability of participating in wave 2 given
participation in wave 1. For the SNP estimator, we considered three alternative specifi-
cations obtained by varying the order of the Hermite polynomial expansion (R = 3, 4, 5).
For brevity, we present only the estimates of the specification with R = 3, which is the
one selected by BIC. As mentioned above, the estimated coefficients of the probit and
SNP models are not directly comparable because of the different scale normalizations.
Accordingly, we compare ratios of the estimated coefficients by dividing the coefficient of
each variable by the coefficient of the dummy variable for completing the drop-off ques-
tionnaire. The standard errors of these ratios are computed through the delta method
(see [R] nlcom).

Table 2. Estimates for the probability of participating in wave 2 given participation
in wave 1. Results are based on the normalization |βdrop off| = 1. SNP-estimated
coefficients of the Hermite polynomial expansions are omitted to save space. * denotes
a p-value between 1 and 5%, ** denotes a p-value below 1%. Sample size n1 = 25,278.

Variable probit snp opsel snpopsel

SRH1 1 −0.411 ** −0.421 ** −0.411 ** −0.456 **

SRH1 2 −0.306 ** −0.302 ** −0.306 ** −0.318 **

SRH1 4 −0.036 −0.038 −0.037 −0.069

SRH1 5 0.119 0.108 0.119 0.041

female 0.040 0.039 0.040 0.050

age1 0.010 * 0.010 * 0.010 * 0.010 *

age2 −0.002 ** −0.002 ** −0.002 ** −0.002 **

edu l 0.093 0.101 0.093 0.046

edu h 0.143 0.139 0.143 0.157

single 0.266 ** 0.260 ** 0.268 ** 0.241 **

hsize 0.072 * 0.070 * 0.073 * 0.069

children 0.426 ** 0.413 ** 0.427 ** 0.430 **

small city 0.352 ** 0.338 ** 0.353 ** 0.353 **

working 0.030 0.031 0.030 0.043

ln income −0.051 −0.048 −0.051 −0.079 **

orient 0.114 * 0.120 * 0.114 * 0.078

recall 0.059 ** 0.057 ** 0.059 ** 0.059 **

math −0.001 0.005 −0.001 −0.007

fluency 0.033 ** 0.032 ** 0.033 ** 0.035 **

eurod 0.046 ** 0.044 ** 0.046 ** 0.046 **

heart attack 0.141 0.146 0.142 0.106

stroke 0.247 0.245 0.247 0.263

arthritis 0.242 ** 0.241 ** 0.243 ** 0.244 **

cancer −0.365 ** −0.360 ** −0.363 ** −0.423 **

parkinson −0.368 −0.376 −0.371 −0.361
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iv fem 0.037 0.037 0.031 0.042

iv age1 −0.002 −0.002 −0.002 −0.000

iv age2 −0.000 * −0.000 * −0.000 * −0.000

iv edu l −0.074 −0.070 −0.077 −0.076

iv edu h 0.170 ** 0.167 ** 0.172 ** 0.173 **

will ans 1.166 ** 1.176 ** 1.175 ** 1.149 **

AT −0.001 0.015 −0.007 0.001

BE 0.614 ** 0.601 ** 0.611 ** 0.702 **

CH 0.497 ** 0.504 ** 0.496 ** 0.554 **

DE −0.969 ** −0.958 ** −0.977 ** −0.958 **

DK 0.858 ** 0.829 ** 0.860 ** 0.865 **

ES −0.291 * −0.276 * −0.297 * −0.281 *

FR 0.013 0.021 0.010 0.073

GR 1.518 ** 1.453 ** 1.507 ** 1.808 **

IT 0.552 ** 0.542 ** 0.550 ** 0.590 **

NL −0.309 ** −0.297 * −0.308 * −0.280 *

Skewness 0.382 −0.190

Kurtosis 3.059 3.873

Our estimation results suggest that the relationship between sample attrition and
the health status of the first wave may differ across health dimensions. On the one hand,
we find that the attrition probability is negatively associated with cognitive abilities,
and it is significantly higher for respondents with a diagnosed cancer and for those with
fair and poor SRH1. On the other hand, the attrition probability is significantly lower for
respondents suffering from arthritis and depression problems—probably because they
can be easily traced and approached by the interviewers. Other things being equal,
the relationship between the attrition probability and the age of the respondents is
U-shaped, with a minimum at 67 years. Furthermore, we find that the attrition proba-
bility increases with household income; decreases with household size; and is significantly
lower for people who are single, have children, and live in a small city. Coherently with
the findings of the survey nonresponse literature, we also find that interviewer charac-
teristics and features of the interview process are important predictors of the attrition
probability. The assumption that the error term follows a Gaussian distribution can-
not be rejected by a likelihood ratio test that compares the SNP model with the probit
model. Once the different scale is taken into account, the differences between probit
and SNP estimates are small.

7.2 SRH status

Table 3 presents the estimates of four alternative ordered response models for SRH2,
which are labeled with the names of the corresponding Stata commands. oprobit is a
univariate ordered probit model that ignores attrition and assumes Gaussianity of the
error term in the outcome equation. sneop is a univariate SNP ordered response model
that ignores attrition but relaxes the Gaussian distributional assumption. opsel is
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our parametric ordered response model with sample selection that corrects for attrition
by assuming that errors in the outcome and the selection equations follow a bivariate
Gaussian distribution. Finally, snpopsel is our SNP ordered response model with sam-
ple selection that corrects for attrition without imposing strong parametric assumptions
on the distribution of the two error terms. For the SNP models, we again considered al-
ternative specifications by varying the order of the univariate and the bivariate Hermite
polynomial expansions.15 The preferred model specifications, selected through the BIC,
have R = 4 in Model 2 and R = (3, 3) in Model 4. In this case, we compare ratios of
the estimated coefficients by dividing the coefficient of each variable by the coefficient
of the dummy variable for respondents’ tertiary education. The standard errors of these
ratios are computed through the delta method.

Table 3. Estimates of ordered response models for SRH in wave 2. Results are based
on the normalization |βedu h| = 1. SNP-estimated coefficients of the Hermite polynomial
expansions are omitted to save space. Sample size n2 = 16,902.

Variable oprobit sneop opsel snpopsel

SRH1 1 −15.135 ** −14.981 ** −15.409 ** −15.530 **

SRH1 2 −8.028 ** −7.956 ** −8.165 ** −8.210 **

SRH1 4 5.915 ** 5.925 ** 6.062 ** 5.930 **

SRH1 5 12.937 ** 12.734 ** 13.221 ** 12.790 **

female 0.164 0.183 0.157 0.204

age1 −0.075 ** −0.065 ** −0.078 ** −0.065 **

age2 −0.002 −0.002 −0.001 −0.002 *

edu l −0.601 −0.473 −0.630 −0.478

single 0.629 * 0.589 * 0.606 0.562

hsize 0.184 0.188 0.178 0.178

children 0.469 0.514 0.398 0.645

small city 0.090 −0.023 0.036 0.045

working 1.063 ** 0.996 ** 1.088 ** 0.974 **

ln income 0.222 0.271 ** 0.236 * 0.249 *

orient 0.560 * 0.585 * 0.540 * 0.573 *

recall 0.142 0.139 0.132 0.148 *

math 0.183 0.200 0.181 0.206

fluency 0.134 ** 0.128 ** 0.131 ** 0.134 **

eurod −0.584 ** −0.553 ** −0.603 ** −0.557 **

heart attack −3.331 ** −3.173 ** −3.435 ** −3.219 **

stroke −2.110 ** −1.845 ** −2.194 ** −1.876 **

arthritis −2.140 ** −2.078 ** −2.233 ** −2.107 **

cancer −1.171 * −1.197 * −1.141 * −1.322 *

parkinson −6.939 ** −6.568 ** −7.037 ** −6.894 **

AT 0.197 0.084 0.186 0.038

15. For the univariate SNP model, we compared three specifications with R = 3, 4, and 5. For the
bivariate SNP model, we compared nine specifications with R1, R2 = 3, 4, and 5.
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BE 1.845 ** 1.546 ** 1.760 ** 1.629 **

CH 3.137 ** 2.931 ** 3.142 ** 2.957 **

DE −1.566 * −1.628 ** −1.425 * −1.937 **

DK 2.704 ** 2.599 ** 2.628 ** 2.642 **

ES −0.746 −0.769 −0.730 −0.929

FR 0.065 −0.047 0.071 −0.131

GR 3.393 ** 3.020 ** 3.224 ** 3.078 **

IT 0.156 −0.088 0.060 −0.021

NL 0.637 0.210 0.694 0.120

cut1 −12.440 ** −13.664 **

cut2 2.095 3.194 ** 1.217 3.766 **

cut3 17.380 ** 17.540 ** 16.866 ** 18.330 **

cut4 28.185 ** 28.077 ** 27.926 ** 28.863 **

ρ −0.089 0.215

Skewness −0.035 −0.218

Kurtosis 4.126 3.875

Estimates of the selection equation for the opsel and snpopsel models are pre-
sented, respectively, in the third and fourth columns of table 3. Overall, our estimation
results reveal that ignoring attrition or potential departures from Gaussianity hardly
affects estimated coefficients of the selection equation.

In table 3, estimated coefficients of the dummies for SRH1 suggest that SRH is highly
persistent. This result is consistent with the findings of Contoyannis, Jones, and Rice
(2004), who analyze the dynamics of SRH using eight waves of British Household Panel
Survey. We also find that SRH2 decreases with the age of the respondent; it increases
with household income; and it is significantly lower for people not working, those with
lower cognitive abilities, and those suffering from mental and physical health problems.
According to our parametric sample selection model, the estimate of the correlation
coefficient ρ is not statistically different from zero. The sign of this estimated coefficient
is somewhat counterintuitive because it would imply a positive correlation between
sample attrition and SRH2. A sizable and positive estimate of the correlation coefficient
is found in the SNP specification of our sample selection model where the point estimate
of ρ = 0.215. The differences between parametric and SNP estimates are likely to be
due to a misspecification of the distributional assumption in the outcome equation. In
this equation, Gaussianity is strongly rejected at the 1% level by a likelihood-ratio test
that compares the sneop estimates with the oprobit estimates.



236 Ordered response models with sample selection

7.3 Transition probabilities for SRH status

Although ratios of the estimated coefficients provide an easy way of comparing alter-
native estimation methods, their interpretation is not always straightforward. This
statement explains why in discrete choice models one is usually interested in predicted
probabilities and marginal effects.

In this section, we analyze the implications of the alternative estimation methods
for the transition probabilities Pr(SRH2 = s | SRH1 = j,X2), s, j = 1, . . . , 5. These
probabilities can be easily computed through the margins command by varying the
values of both the outcome variable SRH2 and the binary indicators for SRH1, while
setting the variables in X2 to their sample means X2. Below we present an example of
the Stata codes used to obtain transition probabilities after snpopsel estimation:

. forvalues s=1(1)5 {
2. margins, predict(pr outcome(`s´)) noesample

> at((means) _all SRH1_1=1 SRH1_2=0 SRH1_4=0 SRH1_5=0)
> at((means) _all SRH1_1=0 SRH1_2=1 SRH1_4=0 SRH1_5=0)
> at((means) _all SRH1_1=0 SRH1_2=0 SRH1_4=0 SRH1_5=0)
> at((means) _all SRH1_1=0 SRH1_2=0 SRH1_4=1 SRH1_5=0)
> at((means) _all SRH1_1=0 SRH1_2=0 SRH1_4=0 SRH1_5=1)
> noatlegend

3. matrix snpopsel_`s´=r(b)
4. forvalues j=1(1)5 {
5. local snpopsel_`j´_`s´=snpopsel_`s´[1,`j´]
6. }
7. }

Table 4 presents the estimated transition probabilities in SRH for the four models
considered in the previous sections. For each model, the elements on the main diagonal
correspond to the probabilities of reporting the same health status; those above the
diagonal correspond to the probabilities of reporting a better health status; while those
below the diagonal correspond to the probabilities of reporting a worse health status.
Our estimation results clearly reveal that sample attrition and departures from the
parametric distributional assumptions may seriously bias estimates of the transition
probabilities. For instance, let us focus on the transition probability from poor SRH1

to good SRH2. The estimate from a simple ordered probit model is equal to 18.1%.
The parametric correction for sample attrition leads to a slightly higher estimate of
19.4%. If sample attrition is associated with a positive survivorship bias, this result is
somewhat counterintuitive because we would expect a downward correction of improving
health. This is exactly the effect captured by our SNP sample selection model where
the estimated transition probability is equal to 10.7%. Similar discrepancies can be
observed for most of the other transition probabilities.
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Table 4. Estimates of the transition probabilities for SRH between the first and the
second waves.

SRH2

Model SRH1 Poor Fair Good V. good Excell.

oprobit Poor 0.320 0.488 0.181 0.011 0.001
Fair 0.131 0.455 0.362 0.048 0.004
Good 0.031 0.269 0.511 0.158 0.030
V. good 0.008 0.135 0.490 0.276 0.091
Excell. 0.001 0.042 0.336 0.375 0.246

sneop Poor 0.308 0.534 0.140 0.016 0.003
Fair 0.118 0.495 0.335 0.042 0.011
Good 0.037 0.250 0.539 0.137 0.036
V. good 0.016 0.112 0.504 0.281 0.087
Excell. 0.005 0.042 0.300 0.417 0.235

opsel Poor 0.301 0.491 0.194 0.013 0.001
Fair 0.121 0.445 0.376 0.053 0.005
Good 0.029 0.257 0.514 0.168 0.034
V. good 0.007 0.126 0.482 0.286 0.099
Excell. 0.001 0.039 0.324 0.377 0.260

snpopsel Poor 0.317 0.560 0.107 0.014 0.001
Fair 0.141 0.489 0.330 0.032 0.009
Good 0.055 0.237 0.563 0.114 0.031
V. good 0.022 0.129 0.497 0.285 0.067
Excell. 0.004 0.066 0.284 0.435 0.210
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