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ABSTRACT

Spatial price equilibrium (SPE) models are commonly-used tools for the spatial
analysis of commodity trade. The optimization methods often used to solve SPE problems
cannot, in general, be applied in the presence of ad valorem tariffs. In this paper, we briefly
introduce an alternative method for solving SPE problems with ad valorem tariffs, the
method of variational inequalities (VI). We discuss the relationship between VI and
optimization methods, showing how incorporation of ad valorem tariffs violates the
conditions necessary for formulation of the SPE problem as an optimization problem. We
demonstrate the VI formulation for two general SPE problems, one with explicit, price-
responsive supply functions, and the other with product supplies determined from the
efficient choice of production technologies (activity analysis). A modified projection
algorithm proven to converge to an optimal solution results in computationally simple closed-
form expressions, even for nonlinear SPE problems. To demonstrate the applicability of the
VI method to the analysis of spatial commodity trade, we present three numerical examples
of SPE problems. Our method of solving SPE models with ad valorem tariffs is applicable
to modeling trade agreements such as NAFTA and GATT in which tariffication plays an
important role.
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Using Variational Inequalities to Solve Spatial Price Equilibrium
Models with Ad Valorem Tariffs and Activity Analysis

. Introduction

In the early 1950s, Samuelson (1952) demonstrated that market equilibria could be
computed using optimization techniques. During the 1960s and 1970s, applied economists
devoted much effort to formulating empirical market equilibrium models, and to the
development and refinement of methods for their solution. By the late 1960s, spatial price
equilibrium (SPE) models had become commonly-used tools for spatial analysis of
commodity trade (cf. Judge and Takayama, 1973; Thompson, 1989), and optimization
methods such as quadratic programming (QP) were most frequently used for their solution.
The QP approach, hows:ver, was limited to problems characterized by linear and
"symmetric" supply and demand price functions.

By the early 1970s, however, the limitations of optimization methods for solution of
SPE problems were widely appreciated. In particular, Takayama and Judge (1971) noted
that optimization methods could not be applied to solve SPE problems involving supply and
demand functions with asymmetric cross-price terms, or SPE problems incorporating
discriminatory ad valorem tariffs (differential tariff rates imposed by the importing country
on exporting countries). Methods of computing solutions to SPE problems that optimization
methods could not solve thus received greater attention during the 1970s and 1980s. These
methods include fixed-point algorithms, complementarity programming, and variational
inequality methods.

Over 20 years ago, Takayama and Judge (1971) employed linear complementarity
techniques to solve a SPE problem with linear, asymmetric price functions and non-
discriminatory ad valorem tariffs. At about the same time, nonlinear complementarity
methods were under development (Cottle et al., 1970), but to date these methods have been
proven convergent for a limited number of applications (cf. Matheisen, 1985). Holland and
Sharples (1984) applied the Vector Sandwich Method of Kuhn and MacKinnon (1975) to
solve a SPE model of world wheat trade including ad valorem tariffs. Preckel (1985) noted,
however, that the fixed-point approach for solving large-scale equilibrium problems is often
less computationally efficient than other methods. ;




Ginsburgh and Van der Heyden (1988) noted that an iterative optimization method
could be applied to solve SPE models with discriminatory ad valorem tariffs. However, this
method cannot be shown theoretically to converge to an optimal solution, although it appears
to converge often in empirical applications. Most recently, Nagurney ez al. (1995b)
developed a variational inequality formulation for SPE problems with discriminatory ad
valorem tariffs, proving global convergence for problems with certain characteristics, and
exploring computational aspects of small and large SPE problems.

Since the 1960s, the conditions under which the various algorithms applied to solve
SPE problems could be proven to converge to a set of equilibrium conditions has been a
continuous theme in the literature. Methods such as reactive programming, which came into
use for a brief period in the early 1960s, were supplanted by methods such as QP, which
could be theoretically shown to converge to the equilibrium conditions under suitable
linearity, symmetry, and convexity assumptions. Convergence conditions remain an
important aspect of the choice of methodologies for the computation of solutions to SPE
problems.

The importance of incorporating characteristics, such as asymmetric cross-price terms
and discriminatory ad valorem tariffs, that limit the use of optimization methods for spatial
economic models has been underscored by recent developments in trade policy. The
emphasis on the conversion of non-tariff trade barriers, such as quotas, to tariffs as a
mechanism to liberalize trade implies that spatial economic models of trade liberalization
must permit explicit analysis of changes in ad valorem tariff rates. Both the North American
Free Trade Agreement (NAFTA) and the recent General Agreement on Tariffs and Trade
(GATT) negotiations, for example, specify tariffication as the primary mechanism to lower
trade barriers.

This paper has three principal objectives: 1) to briefly introduce the method of
variational inequalities (VI) and explain its relationship to optimization methods, 2) to
demonstrate the VI formulation for two SPE problems, one with explicit, price-responsive
product supply functions, and the other with product supplies determined from the efficient
choice of production technologies (activity analysis), and 3) to illustrate the computational
simplicity of the VI approach for three examples of SPE problems with discriminatory ad

valorem tariffs. A secondary objective of this paper is to contribute to the awareness of




issues (such as ease of implementation, computational efficiency, and convergence
conditions) important to the selection of appropriate methods for the computation of solutions
to SPE problems.

The Variational Inequality Problem
The variational inequality problem is a general problem formulation that encompasses
many mathematical problems, including optimization problems, complementarity problems,
and fixed-point problems (Nagufney, 1993). Variational inequalities were developed
originally to study certain types of partial differential equations defined over infinite-
dimensional spaces (Kinderlehrer and Stampacchia, 1980). For most economic equilibrium
problems, a finite-dimensional variational inequality problem is appropriate and can be

defined as follows:

Definition 1. The finite-dimensional variational inequality problem, VI(F, X), is to

determine a vector x'€ X C R, such that

Fx)T(x - x*) 20, VxeX, 0y)

where F is a given continuous function from X to R, X is a given closed, convex set, and T

indicates transpose.

The book by Nagurney (1993) contains basic results concerning the existence and uniqueness
of the solutions to the finite-dimensional VI problem, and discusses the sensitivity of
solutions to changes in the parameters of F(x).

The VI formulation is convenient because it allows unified treatment of equilibrium
problems and optimization problems. When the function F(x) in VI(F, X) has certain
properties, a direct relationship exists between VI(F, X) and a specific optimization problem.
Following Nagurney (1993), which contains the proofs, we offer the following propositions.




Proposition 1. If x° is a solution to the problem: Minimize f(x), subject to x € X, where
f{x) is continuously differentiable, and X is a closed, convex set, then x” is a solution to the
VI problem VI(V f, X)

Vfx*)(x-x*) 20, V x€X. )

An additional proposition relates the solution of VI(V f, X) to the solution of the minimization

problem.

Proposition 2. If f{x) is convex and x" is a solution to VI(V f, X), then x" is a solution to the

problem: Minimize f(x), subject to x € X.

When F = V f, we say that F is a gradient mapping. When F is a gradient mapping,
then the variational inequality problem VI(F, X} is exactly equal to the conditions for a
solution to the optimization problem. In this case, an economic equilibrium problem can be
formulated either as an optimization problem or as a VI problem. When F is not a gradient
mapping, this connection no longer exists between the VI problem and the optimization
problem. Thus, if the VI formulation VI(F, X) involves an F that is not a gradient mapping,
no equivalent optimization problem can be formulated. It is important to note, hence, that
the VI problem is the more general one.

The function F is a gradient mapping if it is symmetric; this terminology arises from
the symmetry principle, which states that F is a gradient mapping if and only if its Jacobian
matrix is symmetric. Equivalently, F is a gradient mapping if F is integrable. The
following theorem contained in Harker (1993) gives two necessary and sufficient conditions

for a continuously differentiable function to be a gradient mapping on an open domain R".

Theorem 1. Let F: S~ R” be continuously differentiable on the open convex set § € R".
Then the following three statements are equivalent:

1) there exists a real-valued function fsuch that F(x) = V f(x), V xES,

ii) the Jacobian matrix V F(x) is symmetric V xE S,

iii)  F is integrable in S.




The implication of Propositions 1 and 2 and Theorem 1 is that if the VI formulation
of equilibrium conditions is characterized by a function with a symmetric Jacobian matrix,
then the solution of the equilibrium conditions and the solution of a particular optimization
problem are one and the same. When the variational inequality formulation involves a
function whose Jacobian matrix V F(x) is not symmetric, then no equivalent optimization

problem can be specified to solve the problem VI(F, X).

The SPE Model with Ad Valorem Tariffs

In this section we introduce the spatial market model with ad valorem tariffs. We
state the governing equilibrium conditions and then derive the variational inequality
formulation. The model in the absence of tariffs simplifies to the well-known spatial price
equilibrium models pioneered by Samuelson (1952) and Takayama and Judge (1971).

Consider I supply markets involved in the production of a homogeneous commodity
and J demand markets. Denote a typical supply market by i and a typical demand market by
J. Lets; denote the supply at market i and d; the demand at demand market j. Group the
supplies into a column vector s€ R’ and the demands into a column vector JER’. Let Q,
denote the nonnegative commodity shipment between supply and demand market pair (i,j),
and group the commodity shipments into a column vector Q€ R¥. The commodity shipments

and the supplies and demands must satisfy the following conservation of flow equations:

J
5; =Y, Qp i=l, .., 1, ©)
j=
or equivalently, in vector form,
s = AQ, (4)

where A is an (I x 1J) node-arc incidence matrix with components (4); = 1, for j=1J,...,iJ,

and 0, otherwise, and




I
d=Y Qp il . J, ®

i=1

or, equivalently,

d = BQ, (6)

where B is the (J x IJ) matrix such that B = (I, |1, | ... |1, ) and where I, denotes the J x J
identity matrix. Thus, the quantity supplied at each supply market i must be equal to the
sum of the commodity shipments from that market to all the demand markets j, and the
quantity demanded at each demand market j must be equal to the sum of the commodity
shipments from the supply markets i to each demand market.

We now describe the price and cost structure. Let x; denote the supply price at
supply market i and p; the demand price at demand market j. Group the supply prices into a
row vector * € R’ and the demand prices into a row vector p € R’. The transportation cost
associated with shipping the commodity from supply market i to demand market j is denoted
by c;. Group the transportation costs into a row vector cER”.

The supply price at a supply market may, in general, depend upon the supplies of the
commodity at every supply market, that is,

T = ®n(s). @)

Similarly, the demand price at a demand market may, in general, depend on the demands for

the commodity at every demand market, that is,
p = pd. ®

Note that these static supply and demand price functions assume no uncertainty and ignore

seasonal variation in production and consumption.




The per-unit transportation cost associated with shipping the commodity between a
pair of supply and demand markets is assumed to be fixed, that is, it is independent of} the
volume of commodity shipments, although specification of per-unit costs as a function of Q
is a straightforward extension of the model presented here. The fixed generalized per-unit
transfer cost is denoted by ¢;, and the associated I/-dimensional vector by c. Thus,

c=c. )

Note that other fixed per-unit transfer costs and per-unit tariffs (or other per-unit taxes such
as fixed export taxes) can be readily incorporated into the fixed & function.

In the absence of policy interventions and under the assumption of perfect
competition, the well-known spatial-price equilibrium conditions (cf. Samuelson (1952),
Takayama and Judge (1971)) are as follows: for all pairs of supply and demand markets
(ij); i=1,....I, j=1,...,J, a commodity supply, shipment, and demand pattern (s*,Q",d’)
satisfying constraints (3) and (5) is in equilibrium if

= pj(d‘): if Q;;>o (10)

ﬂ"(st) + C-U. {Z pj(d‘)’ if Q;=o

Thus, in equilibrium, if a strictly positive amount of the commodity is shipped between a
pair of supply and demand markets, then the supply price at the supply market plus the cost
of transportation must equal the demand price at the demand market. There will be no
shipment of the commodity between a pair of markets if the sum of the supply price and
transfer costs exceeds the demand price. A

As established in Florian and Los (1982), who considered a general network and
nonfixed transportation costs, the above equilibrium conditions can be formulated as a

variational inequality problem, as stated in the following theorem.




Theorem 2. A pattern (s,Q°,d") satisfying (10), subject to constraints (3) and (5) is a spatial
price equilibrium if and only if it satisfies the variational inequality

7(5°) (5-5") + €+ (Q-0°) - pd*)-(@d-d*) = 0, an

for all (s,0,d) satisfying (3) and (5).

We digress for a moment to note the form of the Jacobian matrix of F(s,Q,d) for this

variational inequality, which is given by

[ O B
asl 1 11 aQIJ adl ad.l
k. o,
asl ad.l
aSl J
VF(,Q d = ; (12)
&y By
asl ad.l
_%, L oe
aSl ad.l
%, Opy Oy O, O, O,
asl asl anl aQIJ adl ad.l

where we typically assume that




on, _ on, -0: acu } acu -0; ap, - apj -0. (13)
aQu adj asi adj asi aQii

The partials of Q; with respect to ¢, are all zero because the ¢; = ¢ are fixed for all (i,j).
Hence, the Jacobian matrix has the block form

o 0 0
as
vFsQd = |0 -0 o], (12a)
oQ
o o -%
od |
If one makes the following assumption:
on dp, O
i“_‘=_", Y ik &=_p_’, v jel, (14)
ds, s, od, dd,

by Theorem 1, this (special) problem can be formulated as an optimization problem, as
Samuelson (1952) and Takayama and Judge (1971) have long since noted.

We now introduce discriminatory ad valorem tariffs into the above model. Let 7;
denote the ad valorem tariff, assumed nonnegative, and applied by demand market j to
imports from supply market i. The incorporation of ad valorem tariffs modifies the spatial
price equilibrium conditions as follows: For all pairs of supply and demand markets (i,j);
i=1,..,I, j=1,...,J, a commodity supply, shipment, and demand pattern (s,Q",d")
satisfying (3) and (5) is said to be in equilibrium if




= Pj(d‘): if Q;>O (15)

) T e {z pfd), if Q)=0.

Thus, in equilibrium, if a strictly positive amount of the commodity is shipped
between a pair of supply and demand markets, then the effective supply price plus
transportation cost after the imposition of the ad valorem tariff must be equal to the demand
price at the demand market. If there is no commodity shipment between a pair of supply and
demand markets, then the effective supply price plus transfer cost can exceed the demand
price.

Given constraints (4) and (6), we can define the functions

=
m

i ﬂl(AQ)’ i= l, ,I,

, = p,(BQ, J

(16)

o
Y
m
"
-
~

The variational inequality formulation of the equilibrium conditions governing the SPE
problem with ad valorem tariffs can be stated in the following theorem, the proof of which is

included for easy reference.

Theorem 3 (Nagurney, Nicholson, and Bishop, 1995b).
A commodity shipment pattern Q"€ R7" is an equilibrium pattern, that is, satisfies conditions

(15) if and only if it satisfies the variational inequality problem

I 7

Y Y (#,QD+T) U+t -p,@N@Q; - Q) = 0, VQerY. (7

i=1 j=1

Proof:
We first establish that if a pattern Q" satisfies equilibrium conditions (15), then it also
satisfies variational inequality (17). For a fixed market pair (3,j), (15) implies that

10




(mfs™) + TP +7) - pdN(Q, - Q) 20,V Q, 20, as)

or equivalently,

(RLQ) + TP + 1) - pQN(Q,; -Q) 20, VQ,;20. (19)

Summing over all market pairs (i,j), we obtain the variational inequality (17).

We now show that any solution to the variational inequality (17) also satisfies the
equilibrium conditions (15). In.variational inequality (17), set Q‘-,-=Q,fj, for all market pairs
(ij) # (k,1). Then, (17) reduces to

(RUQM + T (1 + 1y - PQN(Q, -Q) 20, VQ, 20, (20)

or,

((ns) + )L + 7)) - p,@N(Qy -Q) 20, VQ, 20, 2y

which implies equilibrium conditions (15) for market pair (k,/). Because this statement is
independent of how we select the pair, the conditions hold for all market pairs. The proof is

complete.

We now note the form of the Jacobian matrix for F(Q). Because
FLQ) = (R (Q+E)(1+1)-pQ), @2)

the elements of the Jacobian matrix V F(Q) are

11




0. oft P
FQ 3@, 3@ 23
and the Jacobian matrix is
R op, Ot p oft op
~(1+1,)-—= —(I+r)-—- - ~(1+,) -+
0Qy, 0Q,, 9Qy, » 0Qy, 0Qy oQy
oft op R op
_‘(1+1;12) -2 La +T,) - 2 . : y
VF(Q) = |9Qy; 9Q, 9, 0Q,, . @4
oft op oft op
i (l +1~U) - p" j(l +1;u) —__p.i
_aQu 9@y, oQy aQu.
If the cross-price terms are symmetric (or zero), then
oft, ) of, Oof, ) of, 9P, ) op, 0p, ) op, 25)
0Q; 0Q; 9Qy y 0y 0Qy 0Qy v

foralli # i’and j # j’, and the Jacobian matrix would be symmetric in the absence of ad
valorem tariffs. With ad valorem tariffs, the Jacobian matrix is not symmetric unless the
tariff rates are equal for all (i,j) pairs. Thus, in general, the SPE problem with ad valorem
tariffs cannot be formulated as an optimization problem'. Note that asymmetry of the
Jacobian matrix can also arise from asymmetric cross-price terms in «(s) and p(d), and it

again follows that no optimization problem can be specified.

! 'When the same tariff rate is imposed by the importing country on all exporters, and this
is true for all importers, an optimization problem based on excess supply and demand functions
can be specified. For an example, see Cramer et al. (1991).

12




Variational inequality (17) is put into standard form (1) using (22). Let F(Q)ER” be
the row vector with the (i,j)-th component, F;(Q). Then the variational inequality (17) can
be expressed in standard form as: Determine Q" € X, such that

FQRHQ@-Q)20, VQ€X, (26)

where the feasible set X = {Q | QER!’}.

We now discuss certain qualitative properties of the function F(Q) that are useful in
establishing convergence of the computational procedure for certain supply and demand
functions, which can be both asymmetric and nonlinear. In particular, we give conditions

that guarantee monotonicity and Lipschitz continuity of F.

Lemma 1 (Nagurney, Nicholson, and Bishop, 1995b). Assume that x(5) and -p(d) are

strongly monotone in s and d, respectively, i.e.,

") - n@I][s' - s 2 pbs' - 7P, Vs, s €X, en
-[p@") - p@])[d' - & 2 Ald' - &P, Vd, & €X,

for some u, A > 0, then F(Q) with components F;(Q) defined in (22) is monotone, that is,

[FQ) - FRY' Q' - Q1 =20, VQ, Q* e X (28)

Note that the strong monotonicity condition holds in the simple case of linear, separable

supply and demand price functions where

nls) = ag +ays, i=1.,1

Pl(d}) = pOj - pu'dj: j=1 . ,J,

29)

13




with

o, By, >0, Vij

Lemma 2 (Nagurney, Nicholson, and Bishop, 1995b). F(Q) with components F;(Q) in
(22) is Lipschitz continuous on X, that is, there exists an L > 0, such that

IFQ") - FIO)] < LIQ' - Q*, VO' Q> € X, (30)

under the assumption that F,;(Q) has bounded first-order derivatives for all Q€ X. Further,
they show that

IVFQN s L, Vij VQeX GD

where

IVF Q1 (2)

is the norm of the row vector of V F(Q) (the Jacobian matrix of F) consisting of

oF,QY oY 33)
anl aQU
or
o _ [F ) oF Q)|
VF,(Q%] = | L] + - , (34)
IVF,(Q)] [3011] + 30,

14




where

@% = 8,@QY) + (1 - 8)(@), V 0<@,<I, (35)

is a convex combination of Q" and (?, and the existence of 6, is guaranteed by the Mean
Value Theorem. Thus, L can be determined as

max

It follows that F(Q) will have bounded first-order derivatives if the supply and

demand price functions have bounded first-order derivatives and the tariff rates are finite.

An SPE Model Incorporating Activity Analysis

It often is useful to incorporate activity analysis into a SPE problem when a raw
material undergoes transformation before being traded, when analysis of different production
technologies in a trade context is of interest, or when insufficient information is available to
specify continuous supply price functions for the supply markets. Takayama and Judge
(1971) discuss a number of variations of SPE models using activity analysis. We now
develop a VI formulation of a SPE problem incorporating both ad valorem tariffs and activity
analysis. The model is analogous in many ways to the VI formulation of the SPE model
with continuous supply price functions.

Consider I supply markets involved in the production of a single homogeneous
commodity, J demand markets, K resources available to produce the commodity, and L
possible production activities. The set of production activities may be thought of as the
aggregate technology available to produce the commodity. Denote a typical supply market
by i, a typical demand market by j, a typical resource by k, and a typical production activity
by I. Let s, denote the amount of the good produced in region i by production activity / that
is shipped to region j, d; denote the demand at market j, and x,; denote the amount of

resource k used in region i. Let Oy denote the nonnegative commodity shipment between

15




supply region i and demand region j. Group the input supplies into a vector x € R¥, the
production activities into a vector s € R, the demands into a vector d € R’, and the
commodity shipments into a vector Q € R”. Let a,,;=0 denote the amount of input k
required to produce one unit of s;;, noting that this allows goods produced for different
markets j to have different input compositions.

The resource use, commodity shipments, and the demands must satisfy the following

conservation of flow equations:

L

J
Xi =§jzlakw.sw’ k=1, - s K i=1, ...,I,

L
Q=Y s, i=L.,Lij=1,.,J, G7
=1

L 1

I
=0 =Y s j=l.,J

i=] I=1 i=1

or, equivalently, in vector form:

AQ =
[T ]

As,
Bs, (38)
Cs,

for appropriately defined matrices 4, B, and C. These constraints imply that the total use of
input k in supply market i, x;;, equals the sum across all production activities / and demand
markets j of the requirements of that input per unit of production multiplied by the number of
units produced. Also, shipments from supply market i to demand market j, the Q;, must
equal the sum across production activities /, that is, the number of units produced in i for
shipment to j. The sum across supply markets of commodity shipments to j must equal the
quantity demanded at j.

16




To define the cost and price structures, let w, denote the supply price of input x,; in
market i, and p; the demand price for the final good in demand market j. The transportation
cost associated with shipping the good from market i to market j is denoted ¢;. We assume
that the supply price of input x,; may, in general, depend upon the demands for the input at
every supply market, that is,

® = (). (39)

Similarly, the demand price at a demand market may, in general, depend upon the demands

for the final commodity at every demand market, that is,

p = p@ (40)

These static input supply and product demand price functions assume no uncertainty and
ignore seasonal variation in production and consumption.

The per-unit cost of transportation associated with shipping the commodity between a
pair of supply and demand markets can be assumed to be a function of the total volume of
commodity shipped between all markets (i,j), or

¢; =¢Q, i=1,.,I;j=1,.,J, @1)

where c is a IJ-dimensional vector. Note that other fixed per-unit transfer costs and per-unit
tariffs can be readily incorporated into the ¢;(Q) function.

In the absence of policy interventions, and under the assumption of perfect
competition in input and final goods markets, the spatial price equilibrium conditions for this
problem can be stated as follows: For all combinations of supply markets, production

activities, and demand markets (1,i,j); I=1,...,L; i=1,....I; j=1,...,J, an input use,

17




production, commodity shipment, and demand pattern (x°, s°, Q°, d*) satisfying the
constraints in (37) is in equilibrium if

= pfd), I 50,

k 2 p,(d‘), if s;;=0.
Given constraints (38), we can define the functions
0, = 0, 4s), k=1,.,K; i=1,.,1],
év = c(Bs), i=1,.5 j=1,.,J, (43)
B, = PCS), Jj=1,..J.
Thus, the equilibrium conditions (42) can be expressed as
= p,(s"), if s;;>0,

Y ay 0457 + &45") .
k 2 6j(s.)’ l.fsbj=0’

with appropriate substitutions from (43).

Thus, in equilibrium, if a positive amount of the commodity is produced by activity /
and shipped from supply market i to demand market j, the total value of the inputs used in
production plus the cost of transportation from i to j is equal to the product demand price in
region j. If the value of the inputs used in production plus the transportation cost from i to j
exceed the product demand price in the demand market, no commodity is shipped from

supply market i to demand market j.
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We are now ready to derive the variational inequality formulation of the equilibrium
conditions governing the spatial price equilibrium model incorporating activity analysis; We
state the following:

Theorem 4. A commodity production pattern s € R is an equilibrium pattern, that is it
satisfies conditions (44) if and only if it satisfies the variational inequality problem

X LIE ay0u) + 460 - BNy - 5 2 0,
[ B | k (45)
Vs e Rf”.

Proof:
We first establish that if a pattern s” satisfies equilibrium conditions (44) then it also
satisfies variational inequality (45). For a fixed (1,i,j), (44) implies that

[ 0 04" + 6457) = MGy = i) 2 0, (46)
k

because if s}ﬁ> 0, then the term in brackets, [/ ® ], equals zero and (46) is satisfied. If
s;,,-=0, then [ ] is greater than or equal to zero, and is multiplied by s,;, which is greater
than or equal to zero, so again the condition (46) is satisfied. If (46) holds for any (1,i,j), the
summation across all (1,i,j) also holds, and this summation equals the variational inequality
(45).

Now we show that any solution to variational inequality (45) also satisfies equilibrium
condition (44). In (45), set 5;; = s},.,- for all 7,ij) = (1',i'j'). Then (45) reduces to

[Y Gy ®pls™) + 68" = Sy - Spyy) 2 0. @7
k
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which implies equilibrium conditions (44) for (1',i';j'). Because this statement is independent
of how we select the (1,i,j), the condition holds for all (,ij). The proof is complete. -

The variational inequalities formulation with ad valorem tariffs is given by a minor
modification to (45), or

};}:Z (Y Gy 0,7 + 6 -(L+1) - b5y - si) 2 0,
i j k (48)

Vs eRY

where the 7; are the ad valorem tariff rates applied by demand market j to imports from
supply market i.

The qualitative properties of F(x) in this case can be derived in a manner analogous to
that used for the VI(F, X) formulation of the SPE with continuous product supply price

functions. Define

K
Fy(®) = (X ay; 0,67 + &6 (L +1p - B, ¥ Liy, “9)
k=1

and let F(s) € R™ be the row vector with (1,i,j)-th component Fy(s). We now demonstrate
that F(s) with components F;(s) is monotone and Lipschitz continuous on X, under suitable

assumptions.

Lemma 3. Assume that w(x), c(Q), and p(d) are each strongly monotone in x, Q, and d,
respectively, that is,
[0G) ~ 0@)]x' - 2% 2 plx! - 2P, Vxlx}
[«@") - «@)]1Q" - Q"1 2 A1Q" - Q*F, V Q. ©0)

~[p@") - p@11d" - &1 2 81d" ~ d*F, 'V d'.&%,
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for some u, A, and & > 0. Then F(s) with components F;(s) defined in (49) is monotone,

i.e.,

[Fh) - FE)I'E) - D120, Vs's® e X

Proof:

(&35

We use the fact that if V F(s) is positive semidefinite for all s € X, then F(s) is monotone.

The Jacobian matrix of F(s) is given by

kit OF ;]
05,y Sy
VF(s) = : :
oF,  oF,
i 05y}, 0spy |

or, equivalently, in terms of the component functions

o0 ok oé
@y 2 +a“”-—” +—h( +Ty) -
111 111 m
VF(s) = :
o0 Fele) oé
(au_u'_u"'"""auu' 2+ )1 +T) -
as;yy asy; 98y,

ow

2]

A

op,

A

ap,
3511

AT %‘)]A . AT[E]Ar . BT[%]B N BT[%]Br + CT

aslll

(52)

(53)

2,
od




where A4 is a KI x LIJ matrix

Ayy O = 0
0 A. ~ 0

A= Ky 54)
0 0o . ij-

and the (4,;) submatrices are given by

i i
Qyir " %u %21 v G

_ %211 7 %aw %2u 7 Guy (55)

Ay

%1 " % Qir

and 7 is the (IJ x IJ) dimensional matrix with diagonal components {7,; ,...,7;; ,..., 7

cees Tyt

Under the assumption of strong monotonicity of w, ¢, and -p,

are positive definite, and 7 is a positive definite matrix. Therefore,

A’[%‘:-]A, AT[%‘"]A:, BT[%]B, BT [%]Bt, and C7 -QB]C

are all positive semidefinite matrices. Moreover, because the sum of positive semidefinite
matrices is a positive semidefinite matrix, it follows that V F(s) is positive semidefinite, and

consequently, F(s) is monotone. The proof is complete.
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Lemma 4. F(s) defined in (49) is Lipschitz continuous on X, that is, there exists an L>0
such that

IFG") -F(sH)1 < LIGs") -(H)1, Vs',s*e X (56)

under the assumption that Fj;(s) has bounded first-order derivatives for all s € X. The proof

is analogous to that for Lemma 2.

The Computational Procedure
We now discuss the computational procedure used to solve the SPE problem with
discriminatory ad valorem tariffs described above when formulated as a variational
inequality. The same algorithm will also be applied to the SPE problem with activity
analysis. A general approach to solving the variational inequality VI(F, X) consists of
creating a sequence {x!} S X such that each {x**’} solves an approximate and

computationally simpler problem VI(F, X*) at each iteration k=1,2,...
Frab Y (x-x¥1 >0, V x€X, 57

where F*(x) is some approximation to F(x).

For a linear approximation,
FYx) = F(x%) +AGHx-x", (58)

where A(X*) is a n x n matrix. Several methods exist that differ in their choice of A(x*). For
example, when A(X})= V F(x*), this is called Newton’s method. When a fixed, symmetric,
positive definite matrix G is used, this is called the projection method. Thus, the linear
approximation method consists of iteratively solving (57) for a suitable choice of A(X). See
Dafermos (1983) for a further discussion of the linear approximation method.
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In what follows, we propose the modified projection method (MPM) of Korpelevich
(1977) as the computational procedure for the solution of variational inequality (17)
governing the spatial price equilibrium model with discriminatory ad valorem tariffs.
Projection methods are linear approximation methods, and the MPM has less stringent
conditions for convergence than the projection method. The MPM resolves the VI problem
considered here into computationally simple sub-problems. In particular, one obtains a
closed-form expression for the determination of commodity shipments at each iteration. The

statement of the algorithm is as follows.

The Modified Projection Method

Step 0: Initialization. Start with X’ € X. Set the iteration number k=1 and select v such
that 0<+ <(1/L) where L is the Lipschitz constant defined in (30) and (36).

Step 1: Construction and Computation. Compute X *’ by solving the variational inequality

sub-problem:
X' + (WFx*) - N7 [x -X*']1 20, VxEX. 9
Step 2: Adaptation. Compute x* by solving the variational inequality sub-problem:
[x*+ FE)Y -x*) - [x -x*% 20, VxEX (60)

Step 3 Convergence Verification. If | x* - x*' | < ¢, for € > 0, a prespecified tolerance,
then stop. Otherwise, set the iteration index to k=k+1] and return to Step 1.

In the context of the above SPE model, problem (59) can be solved for all supply and
demand market pairs (i,j); i=1,...,I; j=1,...,J by setting

0, = max {0, /(7" - T + 7,) + @) + 07}, 1)
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and problem (60) can be solved for all supply and demand market pairs (ij); i=1,...,1,
j=1,...,J by setting '

Q; = max{0,v((-x,(5*¥') - )1 + 1) + pj(z RNt (©2)

The derivation of (61) and (62) as closed-form solutions to the approximate and
simpler problem VI(F*, X) is presented in Appendix 1. Note that because the values in the
vector (s,0,d) are given by a previous step for both (61) and (62), evaluation of the
expressions is computationally simple even for nonlinear supply and demand price functions
with asymmetric cross-price terms. Computing values for (61) and (62) thus requires no
optimization techniques. Rather, a series of assignment statements evaluated iteratively in a
suitable programming language suffices to compute the solution to the SPE problem.

Given expressions (61) and (62), all of the 7 x J commodity shipments can be solved
simultaneously at each iteration. This suggests that an "ideal" computér architecture for the
solutions of such problems may be one in which there are as many processors as there are
pairs of markets, that is, a massively parallel architecture. This issue is investigated
computationally in Nagurney et al. (1995a).

Nagumey er al. (1995b) also show that the MPM above converges to the solution of
the variational inequality (17), provided a solution exists, if x(s) and -p(d) are each strongly
monotone in s and d, respectively, with bounded first-order derivatives, and if tariff rates 7;
are finite for all (i,j) pairs. Thus, convergence of the MPM is guaranteed for nonlinear
supply and demand price functions (under monotonicity conditions) with bounded first-order
derivatives (to satisfy Lipschitz continuity), but it is not proven for nonlinear price functions
with non-bounded derivatives. (An example of the latter would be the constant elasticity of
substitution function often used in empirical SPE and general equilibrium models. The
algorithm may, nevertheless, converge in this case.) The computational simplicity of these
expressions (even for nonlinear x(s) and p(d)) and the global convergence of the algorithm
for characteristics commonly assumed for «(s) and p(d) are the principal advantages of the

variational inequality approach to solving SPE models with ad valorem tariffs.
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The computational procedure for the SPE problem incorporating activity analysis and
ad valorem tariffs is similar to that just presented for the SPE problem with continuous
product supply functions. The modified projection method uses closed-form expressions such

as

Sy =max (0, YI(-Y (ay; 0 N -c QN (L +x+pfd; D +sy ), (63)
k

and

sy =max (0, ¥[(-3 @y 0p( F*N-efQ N (Wrrp+pfd sy ™ ) (64

The MPM above converges to the solution of the variational inequality (45), provided a
solution exists, if w(x), c(Q), and p(d) are each strongly monotone in x, Q, and d,

respectively, with bounded first-order derivatives, and if tariff rates 7; are finite for all (i,j)
pairs.

Numerical Examples of the SPE Model with Ad Valorem Tariffs and
Incorporating Activity Analysis
To clarify the application of the modified projection method to variational inequalities
of the form in (59) and (60), consider a trivial example for two supply and demand markets
(I=2, J=2) with linear, separable supply and demand price functions. Suppose that the
relevant supply and demand price functions, transportation costs, and tariff rates are given
by:
n,(s) =10 + 1s,, ¢, =1, T, =00,
n,(s) =15+ 05s,, ¢, =2, <, =05

p,d) =25 -1d, T, =2, <1, =025
po(d) =30 -05d, T, =1, 1, =00.

(65)
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Expressions representing (59) from Step 1 can be written for the four (i,j) pairs in this

simple model as follows:

0,
0;
0,
0y

max {0, y((~10 - 1s? - 1)1 + 0) + 25 - 14%) + OO}

max { 0, y((-10 - 1s) - 2)(1 + 0.5) + 30 - 0.5d5) + Q%}

max { 0, y((-15 - 0.5s5 - 2)(1 + 0.25) + 25 - 1d}) + Q%}

max { 0, y((-15 - 0.5s) - 1)1 + 0) + 30 - 0.5d)) + O%}.

(66)

Quantities supplied and demanded for each market can be assigned based on the conservation

of flow restrictions (3) and (5), or

—0_50. 70, =0_20.7~0_ S0_=0.~0 T0_=0 =0
5,7 =Q+Q5 8 =Qy+ Q5 d =Q;+Qy;  dy =Q,+ Q.

Similarly, expressions for (60) from Step 2 can be written for the four (7,j) pairs as:

Ou
O
On
O

max {0, y((-10 - 152 - 1)(1 + 0) + 25 - 14, + O}

max { 0, y((-10 - 15° - 2)(1 + 0.5) + 30 - 0.54,) + O3}

max { 0, y((-15 - 0.55° - 2)(1 + 0.25) + 25 - 1d,") + 0%}

max { 0, y((-15 - 0.55° - 1)(1 + 0) + 30 - 0.5d,) + 0%}

Supply and demand quantities are again determined using (3) and (5), or

1 A1 1, 1_Al 1, 1_ A1 1, 1_ Al 1
51=0 40 570 +Qp; d1=0Q;+Qy; & =0Q1+Qy.
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These expressions can be easily computed in spreadsheet packages (or with assignment
statements in modeling packages such as GAMS (Brooke et al., 1992)) without the use of
optimization algorithms. Setting y=0.1, the initial values of all supply, shipment, and
demand quantities, (s°,0°,d°), in Step 0 to zero,? and using a convergence tolerance of
e¢=0.001, the modified projection algorithm returned a solution in 78 iterations. This

solution was as follows:

5,=10 Q,=70 Q,=00 d,=70 =x,=170 p,=180
5,140 Q=00 Q=140 d,=140 =,=220 p,=230 .

(70)

Imposition of the ad valorem tariffs in this example eliminates a positive inter-market trade
flow, Q,,, existing in the absence of tariffs. Note that nonlinear supply and demand price
functions and (or) asymmetric cross-price terms can be incorporated into the closed-form
expressions without additional computational complexity. In addition, the size of the
problem can be expanded in a straightforward manner by increasing the number of
expressions such as (66) through (69) to account for more (i,j) pairs.

As an additional demonstration of applying the MPM to the SPE problem with ad
valorem tariffs formulated as a variational inequality, we solved the two-good, three-region
SPE model from Takayama and Judge (1971, p. 272). This problem specified linear,
nonseparable supply and demand price functions and non-discriminatory ad valorem tariffs
(the linearity of x(s) and p(d) allowed the problem to be solved with linear complementarity
programming). The closed-form expressions of the modified projection method are more
numerous in this case, and thus are not presented here. For e=.0000] and y=0.1, the
modified projection method converged in 2,707 iterations. This problem was solved using
GAMS, and a more detailed description of the problem and the GAMS code to solve it are
presented in Appendix 2.

2 Initial values of zero for all variables are commonly used to initialize the MPM.
However, it is sometimes necessary to select non-zero initial values to achieve the non-zero
solution.
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Nagumney et al. (1995a) propose an evaluation of the variational inequality solution
based on the difference between the computed solution and the true underlying equilibrium
conditions. The average error between the computed solution and a true equilibrium is
defined as:

Average Error = 100 Y |(x; + ¢,)A + 7)) ~ o , (71)
p ij (T,' + Ci)(l + Tg)

where p is the number of market pairs (i,j) for which Q:j> 0. The maximum error between

the computed solution and the equilibrium conditions is defined as:

1 o+ . )1 ) - p.
Maximum Error = max 00| (x + c)(1 + 1) - o)

72
i (Ti + Cii)(l + T‘y‘) ( )

By these measures, our variational inequalities formulation performed very well, with an
average error of 0.0004% and a maximum error of 0.001% from the true equilibrium
conditions (15).

We now present an example incorporating activity analysis. Consider a problem with
K=2, L=2, I=2 and J=2, where the input supply, product demand, transport cost

functions, and ad valorem tariff rates are given by

©0,=1G)%,  ¢,=1, p,=100-54, <,,=00,
©,=20, y=2,  p,=50-3d,  1,=00, o
@,,=0.5(x,)%, €5 =2, t,,=0.3,

0y =1  Gp=1, 1,,=0.0,

and the input requirements for production of the good are given by
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&Gip=
111

112 121 122 211 212 221 222

]

(74

Eight expressions for the §}7] are necessary in this problem, and are defined as in

(63). The values of x}7’, and &} necessary in the closed-form expressions are calculated

using the values of s};] in the conservation of flow constraints (37). Values for s}; are

calculated analogously. With v = 0.0], and an error tolerance of ¢ = 0.00001, the

modified projection method required 180 iterations to converge to the optimal solution of

x,, =4.421
x,,=2.697
5, =8.843
55, =1.182
Q,,=8843
d, =10.025
w,,=19.550
p,=49.874

The GAMS code for this problem is provided in Appendix 2.

x, =8.843
x,,=5.394
5,,, =0.000
519 =4.212
Q,,=0.000
d,=4.212
w,, =39.099
p,=37.365 .

$34, =0.000
$13, =0.000
Q, =1.182

©,,=14.546

5,,, =0.000
8,,, =0.000 (75)
Q,=4212

0, =29.092

Note that with this problem, nonlinear functional forms for p can be incorporated into

the closed-form expression without additional computational complexity. The number of

supply markets, demand markets, and production activities could be increased by simply

adding additional closed-form expressions. Increasing the number of resources k in the

problem does not increase the number of expressions, only the number of terms in each

expression. Increasing the number of goods in the problem requires an additional subscript

to distinguish among goods, and is therefore straightforward.
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Concluding Comments

In this paper, we describe two SPE models with discriminatory ad valorem tariffs and
apply the methodology of the theory of variational inequalities for their formulation and
computation. The motivation for this work originates, in part, from the recent emphasis on
tariffication as a means of trade liberalization. We propose an algorithm, the modified
projection method, which is proven to converge for our models under nonlinear (and strongly
monotone) supply and demand price functions with bounded first-order derivatives and finite
ad valorem tariff rates. However, the algorithm may, nevertheless, converge to the
equilibrium conditions even when these conditions are not satisfied.

A notable feature of the algorithm is that for the specified problems, commodity
shipments may be computed using a simple, closed-form expression at each iteration rather
than optimization algorithms. This is true even for problems incorporating nonlinear supply
and demand price functions and nonlinear, nonseparable transportation cost functions. As a
result, additional (i,j) market pairs can be included simply by increasing the number of
closed-form expressions. |

Our method of solving SPE models with discriminatory ad valorem tariffs is
applicable to modeling trade agreements such as NAFTA and GATT in which tariffication
plays an important role. However, other trade and domestic policies and differences in
production technologies are also determinants of international trade patterns. Nagumey
(1993) provides a detailed treatment of individual policy instruments important to trade
analysis (e.g., quotas and price restrictions). However, to date there appear to be no
empirical applications of VI methods that simultaneously incorporate all relevant domestic
and trade policies. Thus, incorporating a broader range of policies and technologies into a
VI framework including ad valorem tariffs is a logical extension of the models presented
here.

In addition, further research to explore the theoretical and empirical convergence
aspects of the various methods for calculating solutions to SPE problems, and comparisons of
the computational efficiency for SPE problems with certain characteristics would be a

significant contribution to the applied economist’s use of SPE models for analysis of trade.
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APPENDIX 1

Derivation of the Closed-form Expressions (61) and (62)
to Compute the Solution to the SPE problem

Following Harker (1993), we begin with the following definition.

Definition A1. Let X be a non-empty, closed and convex subset of R*, and let G be a
n x n symmetric positive definite matrix. The projection under the G-norm of a point
y € R onto the set X, denoted by x; «(y) is defined as the solution to the following
mathematical programming problem

min % y-xP , st xe X, (AL.1)
where
Ixlg = (G (A1.2)

In other words, the projection = (y) is the vector in the set X that is closest to y under the
G-norm.

We can now use Definition Al to establish the following fixed-point formulation of a
variational inequality problem.

Proposition A1. Let X be a non-empty, closed, convex subset of R*, and let Gbeanx n
symmetric positive definite matrix. Then, x" solves the problem VI(F, X) if and only if

x* = mox* - GIF(x"); (A1.3)

i.e., if and only if x” is a fixed point of the mapping H:R-R defined by

H(x) = ngx - GT'F(x)). (Al.4)

When X = R}, H(x) takes the form
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H(x) = max(0, x - F(x)) . (AL5)

Recall that a general approach to solving VI(F, X) consists of creating a sequence {x*} € X
such that ¥**'* solves an approximate and computationally simpler problem VI(F*, X)

Fk(xkfl')T(x_xkﬂ') > 0, vV x EX, (Al .6)

where F*(x) is some approximation to F(x). When F*(x) is a linear approximation, the form

F(x) is

FXx*!) = Fxb) +AH(x* 1 -xb), (AL7)

where A(x") is a n x n matrix. For the projection method, we choose G, a n x n fixed,
symmetric, positive definite matrix as A(x*). So the approximate problem VI(F*, X) can be
written as find x**!* such that

Fk(xkfl')T(x_xkd') > 0’ Vv x EX, (Al 8)

or, substituting our linear approximation of F*(x) in (A1.7), find x**'* such that

[FahH+GE -xH)T(x-x*"Y) 2 0, V xeX. (AL9)

From (A1.3) and (A1.4), we know that x**'" solves the problem VI(F*, X) if x***" is a fixed
point of the mapping

HGHY) = mg, (o6 -G 'FxTY), (A1.10)

or, substituting the linear approximation of F(x) in (A1.10),
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H(MY

%o (8" - GF N +GEH -2 )
gt - GHF(xh) x4 x* (AL11)

R (~G'F(x") +x%)
From (A1.5) we know that this projection has the form

max (0, -G 'F(x*) +x5). (A1.12)

Let

G=1L1, (Al1.13)

where L is the Lipschitz continuity constant in (30) and (36). Thus, G is a n x n fixed,
symmetric, positive definite matrix for L> 0, and

G - (%)-1,, -y, (Al.14)

Thus, the form of the solution to the approximate problem VI(F*, X) is

x*1 = max (0,-y-F@x¥ +x5. (AL.13)
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Appendix 2

GAMS Code for Solving the Numerical Examples

The Takayama and Judge Problem Formulated as a VI Using the Modified Projection
Method

$TITLE VITAK.GMS CFN/PMB 9-27-94

$OFFSYMXREF OFFSYMLIST OFFUELLIST OFFUELXREF OFFUPPER

*x

MODEL TO REPLICATE THE TAKAYAMA-JUDGE 3 REGION, 2 PRODUCT
TRADE PROBLEM WITH AD VALOREM TARIFFS USING VARIATIONAL
INEQUALITIES. THE MODIFIED PROJECTION METHOD IS USED.

SEE TAKAYAMA AND JUDGE, 1971 P. 267-272.

ALPHA DENOTES SUPPLY FUNCTION PARAMETERS

BETA DENOTES DEMAND FUNCTION PARAMETERS

1=1,2,3 SUPPLY REGIONS

J=1,2,3 DEMAND REGIONS

K=A,B PRODUCTS

% % % 2 X X X X X x

SETS I regions 11*3/
K products /A, B/
ITER iteration /1*3000/
ALIAS (1,));

TABLE PARAMS(,K,*) supply and demand function parameters

ALPHAO ALPHA1 ALPHA2 BETA0 BETA1 BETA2
1.LA 46150 0.1003 -0.0067 21.6080 -0.1005 -0.0050
1B 38462 0.0669 -0.0033 32.1608 -0.1005 -0.0100
2A 23824 00501 -0.0020 234694 -0.2041 -0.0204
2B 23524 0.0400 -0.0010 34.6939 -0.2041 -0.0408
3.A 46154 0.1003 -0.0067 21.6981 -0.1258 -0.0063
3B 3.8462 0.0669 -0.0033 27.1698 -0.1006 -0.0126
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TABLE TCOST({1,],K) unit transport costs from I to J

1A 1B 2A 2B 3A 3B
o o 2 3 2 3
3 0 0 1 2

1
2
32 3 1 2 O O

2
2
TABLE TARIFF(1,J,K) ad valorem import tariffs imposed by region J
1.A 1B 2A 2B 3A 3B
1 0 0 0 O 03 03

20203 0 0 0 O
30203 0 0 O0 O

S0d,K)
DO(J,K)
Q0(,J,K)

PARAMETER
S0({1,K) supply of product K in region I
SOBAR(,K) supply of product K in region I
S1(1,K) supply of product K in region 1
Q0({,1,K) shipment of K from region I to region J
QOBAR(,J,K) shipment of K from region I to region J
Q1{,J,K) shipment of K from region I to region J
D0({J,K) demand of product K in region J
DOBAR(J,K) demand of product K in region J
D1(J,K) demand of product K in region J
SP({1,K) supply price of K in region I
DP(J,K) demand price of K in region J
QDIF(1,],K) difference between QO and Q1
ERR(,],K) error computation
COUNT(1,1,K) count of non-negative Q1’s ;

SCALAR
ITCOUNT iteration count 10/
GAMMA inverse of Lipschitz constant /0.1/
MAXQDIF maximum value of QDIF /1/
AVGERR average error 10/
MAXERR maximum error 10/ ;

* INITIALIZING THE RIGHT-HAND-SIDE PARAMETERS
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LOOP(ITER$(MAXQDIF GT 0.00001),

QOBAR(,J,K) $ (ORD(K) EQ 1) = MAX(0,
GAMMA*((-(PARAMS(I,K,’ ALPHAQ") + PARAMS(I,K,” ALPHA 1°)*S0(I,K)
+ PARAMS(,K,’ALPHA2)*SO(I,K +1)) - TCOST(,J,K))*(1 + TARIFF(,],K))
+ (PARAMS(J,K,"BETAQ’) + PARAMS(J,K,’BETA1")*D0(J,K)
+ PARAMS(,K,"BETA2")*D0(,K+1))) + Q0(,J,K));

QOBAR(,],K) $ (ORD(K) EQ 2) = MAX(0,
GAMMA*((-(PARAMS(I,K,’ALPHA0’)+ PARAMS(L,K,’ ALPHA 1')*S0(1,K)
+ PARAMS(,K,’ALPHA2")*S0(,K-1)) - TCOST(,]J,K))*(1 + TARIFE(,],K))
+ (PARAMS(J,K,’BETAQ’) + PARAMS(J,K,’BETA1")*D0(J,K)
+ PARAMS(,K,"BETA2")*D0(J,K-1))) + QO(1,J,K));

SOBAR(I,K) = SUM(J, QOBAR(,J,K));
DOBAR(,K) = SUM(, QOBAR(,J,K));

Q1d,J,K) $ (ORD(K) EQ 1) = MAX(0,
GAMMA*((-(PARAMS(I,K,’ALPHA0’) + PARAMS(I,K,’ ALPHA 1")*SOBAR(I,K)
+ PARAMS(I,K,”’ALPHA2")*SOBAR(I,K + 1)) - TCOST(,J,K))*(1 + TARIFF(,J,K))
+ (PARAMS(J,K,’BETA0’) + PARAMS(J,K,’BETA1")*DOBAR(,K)
+ PARAMS(,K, ’BETA2")*DOBAR(,K+1))) + Q0(1,J,K));

Q1(@,J,K) $ (ORD(K) EQ 2) = MAX(0,
GAMMA*((-(PARAMS(,K,’ALPHA0") + PARAMS(I,K,’ALPHA1")*SOBAR(,K)
+ PARAMS(,K,”ALPHA2")*SOBAR(,K-1)) - TCOST(,J,K))*(1+TARIFF(,],K))
+ (PARAMS(J,K,’BETA0") + PARAMS(J,K,’BETA1")*DOBAR(J,K)
+ PARAMS(,K, ’BETA2")*DOBAR(J,K-1))) + QO(,J,K));

QDIF(I’J’K) = Qla’J’K)'QO(I’J’K)’
MAXQDIF = SMAX((I,],K), ABS(QDIF(,],K)));
ITCOUNT = ORD(TER);

SO0(,K) = SUM(J, Qid,J,K));
Q0(,J,K) = QI1({,J,K);
DO0(J,K) = SUM(, Q1(,],K))
)
* QUANTITIES
S1(1,K) = S0(1,K);
Q1d,J,K) = QO{J,K);
D1({J,K) = D0(J,K);
* PRICES

SP(1,K)$(ORD(K) EQ 1) = PARAMS(,K,’ALPHAQ") + .
PARAMS(,K,’ALPHA1")*S1(I,K) + PARAMS(,K,’ALPHA2")*S1(I,K+1);
SP(,K)$(ORD(K) EQ 2) = PARAMS(I,K,’ALPHA(") +
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PARAMS(I,K,’ALPHA1")*S1(1,K) + PARAMS(I,K,’ALPHA2")*S1(I,K-1);
DP(J,K)$(ORD(K) EQ 1) = PARAMS(J,K,”BETA0Q’) +
PARAMS(J,K,’BETA1")*D1(J,K) + PARAMS(J,K,’BETA2’)*D1(J,K+1);
DP(J,K)$(ORD(K) EQ 2) = PARAMS(J K,’BETAQ’) +
PARAMS(,K,’BETA1")*D1(J,K) + PARAMS(J,K,’BETA2’)*D1(J K-1);

* ERROR COMPUTATIONS
ERR(,],K)$(Q1(1,J,K) NE 0) =

100*(ABS((SP(,K)+TCOST(,J,K))*(1 + TARIFF(1,J K))-DP(J,K))/
(SP(,K)+TCOST(,J,K))*(1+TARIFF(,],K)));

COUNT(,],K) = 1$(Q1(1,J,K) NE 0);
AVGERR = SUM((1,J,K), ERR(1,],K))/(SUM((1,],K),COUNT(,J,K)));
MAXERR = SMAX((,J,K), ABS(ERR(,J,K)));

DISPLAY MAXQDIF, ITCOUNT, S1, Ql, D1, SP, DP, ERR, AVGERR, MAXERR;

The SPE Model Incorporating Activity Analysis Formulated as a VI Using the Modified
Projection Method

$TITLE VIAA.GMS CFN/PMB 9/27/94

$OFFUPPER OFFSYMXREF OFFSYMLIST OFFUELLIST OFFUELXREF

%*

* A SIMPLE TRADE MODEL INCORPORATING ACTIVITY ANALYSIS AND
* AD VALOREM TARIFFS, AND SOLVED USING VARIATIONAL

* INEQUALITIES. THERE ARE 2 REGIONS, 2 RESOURCES (INPUTS),

* AND 2 PRODUCTION TECHNOLOGIES.

* THE MODIFIED PROJECTION METHOD IS USED.

* [=1,2 PRODUCTION REGIONS

* J=1,2 CONSUMPTION -REGIONS

* K=1,2 RESOURCES (X’S)

* L=1,2 PRODUCTION TECHNOLOGIES TO PRODUCE A SINGLE GOOD

*®

SETS 1 /1%2/
ITER iterations /1*1000/ ;
ALIAS (I,J,K,L);
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TABLE PARAMS(J,*) linear demand function parameters

BETAO0 BETAl
1 100 -5
2 100 -3

TABLE A(K,L,I,J) input output coefficients

1.1 12 21 22
1.1 0.5 05 05 05
12 2 2 2 2
211 1 1 1
22 05 05 05 05

TABLE ACOST(,K) scale parameter on quadratic input cost functions

1 2
1105
221

TABLE TARIFF(1,J) ad valorem import tariffs imposed by region J

1 2
1 00
2030

TABLE TCOST(,J) unit transport costs from I to J

12
112
221

PARAMETER
X0({,K) resource K used in region I
XOBAR(,K) resource K used in region I
X1{d,K) resource K used in region I
SO(L,LJ) production in region I by technology L for region J
SOBAR(L,1,J) production in region I by technology L for region J
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SIL,LJ)
STOTAL(T)
Q1(,J)
DOQ)
DOBAR())
D1()
XP(1,K)
SP(L,L,J)
DP(QJ)
SDIF(L,1,J)

SCALAR
ITCOUNT
GAMMA
MAXSDIF

production in region I by technology L for region J

total production in region I

shipments from region I to region J

demand in region J

demand in region J

demand in region J

price of resource K in region I

supply price of the good in I produced by L and shipped to J
demand price of the good in region J

difference between SO and S1 ;

iteration count - Jo/
inverse of Lipschitz constant /0.01/
maximum value of SDIF 1/

* INITIALIZING THE RIGHT-HAND-SIDE PARAMETERS

X0d,K)
DO(J)
SO(L,1,J)

0,
0;
0;

LOOP(ITER$(MAXSDIF GT 0.00001),
SOBAR(L,I,J) = MAX(0, GAMMA*((-SUM(K, A(K,L,I,J)*ACOST(I,K)
*(X0(1,K)**2)) - TCOST(,T))*(1 + TARIFF(,]))
+ PARAMS(,’BETA0’) + PARAMS(J,"BETA1')*D0(J)) + SO(L,I,)));

XOBAR(LK) = SUM((L,)), A(K,L,I1)*SOBAR(L,L,J));

DOBAR(QJ)

SI(L,LJ) =

= SUM((L,L), SOBAR(L,L,)));

MAX(0, GAMMA*((-SUM(K, A(K,L,I,T)*ACOST(,K)

*(XOBAR(,K)**2)) - TCOST(1,J))*(1+TARIFF(,J))
+ PARAMS(J,’BETA(Q’) + PARAMS(J,’BETA1’)*DOBAR(J)) + SOBAR(L,1,J));

SDIF(L,1,J)
MAXSDIF
ITCOUNT
SO(L,LJ)
DO(J)
X0(@,K)

);

* QUANTITIES
X1(,K)

S1(L,LJ)
STOTAL()

= S1(L,L])-SO(L,LJ);

= SMAX((L,1,J), ABS(SDIF(L,L,1)));
= ITCOUNT+1;

= SIL,LJ);

= SUM((L,L), S1(L,1,J));

= SUM((L,)), AKK,L,L1)*S1(L,L,7))

= X0(I,K);
= SO(L,LJ);
= SUM((L,)), SI(L,L));
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Q1@,J) = SUM(L, S1(L,L,3));

DI1()) = D0Q);
* PRICES
XP(1,K) = X1(1,K)**2;
SP(L,L,J) = ACOST(,K)*SUM(, AK,L,L))*XP(1,K));
DP(J) = PARAMS(J,’BETA0’) + PARAMS(J,’BETA1’)*D1(J);

DISPLAY MAXSDIF, ITCOUNT, X1, S1, STOTAL, Q1, D1, XP, SP, DP;

43




No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

94-04

94-05

94-06

94-07

94-08

94-09

94-10

94-11

94-12

94-~-13

OTHER A.R.M.E. WORKING PAPERS
(Formerly A.E. Working Papers)

Fishing in Stochastic Waters

Implementing the Convolutions
Approach: A Companion to
"Measuring the Difference (X-Y) in
Simulated Distributions: A
Convolutions Approach"

Can Price Supports Negate the
Social Gains from Public Research
Expenditures in Agriculture?

Bioeconomics of Regulating Nitrates
in Groundwater: Taxes, Quantity
Restrictions, and Pollution Permits

Rethinking Contracts for Purchasing
Power: The Economic Advantages of
Dispatchability

Structural Adjustment and
Agricultural Export Response in
Latin America

Population: Past Growth and Future

Control

Environment and Trade: A Review of

the Literature

Development of Angola's
Agricultural Sector

Efficiency, Technology, and
Productivity Changes on Individual
Dairy Farms

Gunter Schamell
John M. Conrad

Greqg Poe

Harry de Gorter

Johan F.M. Swinnen

Arthur C. Thomas
Richard N. Boisvert

Gary W. Dorris
Timothy Mount

Kristin A. Markussen
David R. Lee

Thomas T. Poleman

Jean Agr
Vivek Suri
Duane Chapman

Steven C. Kyle

Loren W. Tauer




