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Abstract

The present study formalizes and quantifies the importance of uncertainty, irreversibility,
and managerial flexibility for investment in a corn-stover based cellulosic biofuel plant.
Using a real options model, we recover prices of gasoline that would trigger entry into the
market and compare it to breakeven entry price (long run average cost). Our analysis shows
that the price premium (above breakeven) likely to be required by investors to enter the
market due to the uncertain and irreversible nature of investment is substantial. Managerial
flexibility (embedded by the option of mothballing and reactivating the plant) does not
sensibly reduce the entry premium. Results also suggest that price volatility may greatly
increase hysteresis (i.e. a range of gasoline prices for which there is neither entry nor exit
in the market) in firm behavior and decrease supply elasticity. In combination all of these
results suggest that, 1) policies supporting second generation biofuels may have fell short
of their targets because of their failure to alleviate price uncertainty, and 2) the use of price-
based instruments such as reverse auctions, either in isolation or in combination with

mandates, may be warranted.



1 Introduction

Over the past decade, the United States has increasingly pushed for the development of
economical forms of renewable fuels. This is due to increased concerns over climate change,
energy security, and the desire for domestic job creation. Biofuels in particular, and lately
cellulosic biofuels, have received a large amount of attention due to their potential benefits in
addressing these problems. The first renewable fuel standard was established in 2005, and
expanded to the form used today with the passage of the second renewable fuel standard in 2007
(RFS2). The RFS2 requires by the year 2022, 36 billion gallons of biofuel (ethanol equivalent) to
be used annually within the United States, 16 billion of which must come from cellulosic sources.
It also sets a cap on the maximum amount of biofuel from corn ethanol at 15 billion gallons.

Despite policy support and high gasoline prices, cellulosic biofuel production has
continually fallen well short of mandates set forth by RFS2. In 2013, cellulosic biofuel production
totaled six million gallons, 994 million gallons below the target goal of 1 billion gallons for the
year set by the RFS2 (Schnepf and Yacobucci, 2010). Numerous studies, in both business and
academic realms, have routinely found that a cellulosic biofuel plant built today could have a
positive mean return on the investment (Anex et al., 2010; Brown et al., 2013; Gonzalez et al.,
2012b; Brown and Brown, 2013b; Petter and Tyner, 2014; Jones et al., 2009). However, they have
also found that there is significant uncertainty around that mean. For instance Petter and Tyner
(2014) found that the probability of economic loss is almost 50%.

Unfortunately the approach used by these studies (net present value of investment) does
not allow calculation of an entry trigger price and, consequently, precludes quantification of the
role of uncertainty on behavior. The present study applies real options analysis to quantitatively

evaluate the hypothesis that, due to the uncertain and irreversible nature of investment in this



industry, investors in second-generation biofuels require a substantial premium, above and beyond
breakeven gasoline price, that is not covered by currently observed prices. We also hypothesize
that managerial flexibility (the possibility of mothballing and reactivating the plant) may reduce
such premium. Our results offer insights into the inability of the RFS2 to trigger investment and
discusses alternative or complementary policy instruments that can be more effective in addressing

uncertainty.

2  Methods

Biofuels are defined as “transportation fuels like ethanol and diesel that are made from
biomass materials” (EIA, 2013). Currently there are three main types (generations) of biofuels.
First generation biofuels are produced from the sugars found in crops such as corn or sugar cane.
These sugars are processed through various pathways to produce ethanol which is then blended
with gasoline. Second generation biofuels differ from first generation in that they are produced
from cellulosic plant matter such as corn stover, switch grass, or trees rather than sugar (EIA,
2013). They have also recently advanced to the point where the process produces a gasoline or
diesel equivalent fuel referred to as a “drop in” instead of ethanol, which is subject to blending
limits. Third generation biofuels typically use algae or bacteria to break down a cellulosic
feedstock to produce biodiesel (Carere et al., 2008).

This paper focuses on second-generation drop-ins. The advantage of a drop in is that
existing combustion engines can burn it without any modifications. This chemical similarity to
petroleum-derived fuels gives second-generation biofuels an advantage over ethanol as it
eliminates constraints on blending (Tyner et al., 2011). Nine trillion dollars’ worth of

transportation infrastructure exists in the United States to handle petroleum-based products (Halog



and Bortsie-Aryee, 2013). Pipelines cannot transport ethanol and most cars cannot burn a mixture
that contains more than ten to fifteen percent ethanol without damaging the engine (Blanco and
Isenhouer, 2010; Tyner and Taheripour, 2014). Wholesale gasoline price per gallon is used as a
proxy for the price received for a gallon of drop in biofuel as they are, by their chemical nature,
perfect substitutes.

Investment in second generation biofuels is subject to a great deal of uncertainty and
irreversibility. There are many sources of uncertainty affecting investment in a biofuel plant (Petter
and Tyner, 2014). First, there is market uncertainty. The price of gasoline, the cost of stover,
hydrogen, even equipment can vary over time. There is also uncertainty inherent within
production; i.e. the amount of biofuel that can be produced per ton of biomass processed. In this
study we focus on uncertainty caused by volatility in output price; i.e. gasoline price. Several
reasons motivate this choice. First, biofuel price is perhaps the most important determinant of
plants net revenue (Petter and Tyner, 2014). Second, once a biofuel market is well established
technical uncertainty and feedstock price uncertainty will likely diminish, whereas gasoline price
uncertainty will remain substantial. Finally, volatility in gasoline price, in contrast to other sources
of uncertainty, can be measured and its evolution over time can be modeled and quantified based
on historical data.

In addition to being subject to a great deal of uncertainty, investment in a biofuel plant is
also largely irreversible. Much of the equipment is specific to the industry. For instance, a tank
used for pyrolysis may cost millions of dollars by the time it is installed but if the industry becomes
unprofitable it does not have many other uses. If one plant becomes unprofitable due to a systemic
risk in the industry, such as low gasoline prices, the only other firms that would be interested in

purchasing a pyrolysis tank would be firms in the same industry. They however would not buy it



upon the initial plant’s exit for anywhere near its purchase price since they would also be in a

similar position.

2.1  Real Options Defined

Large-scale investment projects such as second generation biofuel refineries have been
evaluated from a Net Present VValue (NPV) point of view. The NPV model is centered on standard
discounting. Projected revenue and costs are discounted from the future at a pre-specified discount
rate. The summation of all of these expected discounted values are combined to compute the
expected value of a project in the current period. An NPV analysis of biofuel plants can, and has,
incorporated risk. An NPV that incorporates risk by modeling the probability distribution of
stochastic variables over the life time of the project allows calculation of a probability distribution
of NPVs (Petter and Tyner, 2014). Such analysis allows recovery of conditions under which the
probability of a negative NPV is below some threshold.

Unfortunately an NPV approach is not designed to provide estimates of entry (or exit)
trigger price. The breakeven price of output (i.e. the price that would result in zero NPV) can be
calculated and used as a reference but previous literature (Dixit, 1994) has convincingly argued
that such measure greatly underestimates entry prices when investment is subject to substantial
uncertainty and irreversibility. Such underestimation comes from the fact that a breakeven price
based on present value of future cash flows, ignores the investors’ option to wait and invest in the
future. In other words, the price at which an investor, operating under rational expectations in an
uncertain environment, is indifferent between investing and waiting cannot be recovered from an

NPV.



One way of formalizing and quantifying the value of waiting and, consequently, the role
of uncertainty in entry trigger prices is using a real options analysis. Factoring uncertainty into the
cost/benefit analysis for entry into the biofuel supply chain has recently gained popularity (Schmit
et al., 2009; Brandao et al., 2009; Song et al., 2011; Pederson and Zou, 2009; Gonzalez et al.,
2012a) but this approach has not been applied to the analysis of investment in a second generation
drop-in biofuel plants. This paper fills this gap by developing a real options model of a plant’s
decision making for optimal entry, exit, mothball, and reactivation trigger prices for a second-
generation corn stover fed biofuel plant. Moreover, we calculate entry and exit trigger prices with
a real options model that ignores the managerial flexibility embedded in mothball and reactivation.
Solving a real options model with and without mothball and reactivation, allows identification of
the risk premium required by investors to enter the market and the offsetting effect of managerial

flexibility.

2.1.1. Investment States and Transitions

There are three different states a plant can be in: idle, active, or mothballed. In an idle state,
a plant is not paying variable or capital costs since it has not been built yet. It is also not receiving
income but has the option of activating in the future. An active plant pays an investment cost k to
enter the market and then pays, every period, operating costs w, and earns revenue, P. An active
plant also has the option of converting to a mothballed state in which the plant is not producing,
but it is kept ready for potential reactivation.

To get to a mothballed state an active plant must pay a fixed cost of E,,, and pays an ongoing
operating mothball maintenance cost m to keep the plant in working order should it decide to use

its option of reactivating in the future for a fixed cost . In a mothballed state a plant also has the



option of exiting the industry. In the event that the firm decides to exit the market, it forfeits its
mothball maintenance cost, and gets a fraction of the initial capital, [, back. The plant would incur
some costs for exiting but after combining them with the value it gets for selling the plant we
assume [ to be positive. By exiting, a plant also loses its option to reactivate. The ability to switch
between these different states is represented in Table 1, where an X (-) indicates that transition
from the state indicated in the row to the state indicated in the column, is (not) possible.

Table 1. States and Transitions

Idle Active Mothballed
Idle - X -
Active - - X
Mothballed X X -

We denote output prices that trigger entry, mothball, exit, and reactivation under real
options by Py, B,, P;, and P. respectively. The output prices that trigger entry and exit under
Marshallian behavior (waiting is not an option and expectations are myopic) are denoted by W,
and W; respectively. The wholesale price of a gallon of bio-gasoline is denoted by P. This price is
assumed to be log-normally distributed and, consequently, its change over time is modeled
according to a Geometric Brownian Motion (GBM) process.*

GBM is a stochastic process that allows incorporation of a drift parameter and a random
parameter governing the evolution of gasoline price. The GBM process is depicted as dP =
uPdt + oPdz. A change in price (dP) is dependent upon a combination of the drift rate (i) and
the passage of time (dt). The change in price is also determined by a random shock (dz) in

combination with the standard deviation, o. The shock is a function of random noise and time,

! This assumption is consistent with statistical tests conducted with historical gasoline price data. Tests will be
presented and discussed in detail in Section 2.2.



dz = ,\/dt. The factor ¢, is a random variable distributed standard normal, so the unconditional

expectation of dz is equal to zero.

2.1.2. Value of an idle investment

Let us denote an idle project’s discounted expected value by V,(P). An idle plant has no
revenue or expenses, but can earn profits in the future if the option to enter is exercised and the
plant is brought to an active state. As shown elsewhere (Dixit, 1994) the Bellman equation
describing optimal behavior of a firm holding the option to invest in a project is:
6Vo(P)dt = Ec[dV,(P)] 1)
where § is the discount rate dt is an infinitesimal time period, and the rest is as defined before.

Equation (1) simply states that the expected return on the investment opportunity over a
time interval dt is equal to the project’s expected rate of capital appreciation.

The value of the idle project, V,(P), is a function of gasoline price which is, in turn, a

random variable following a geometric Brownian motion process. Applying Ito’s Lemma yields:

dv =2dp _ 2V gp2 @)

"~ 20p2
Substituting dP (the GBM defined before) into (2) yields:
v a%v (1 av
dv =S (uPdt) + 37 (302 P2dt) + 2~ (oPdz) 3)
Substituting (3) into (1), dividing both sides by dt, and taking expectations results in:
] _

5Vo(P) = E, |2 (uP) + 22 (202P2)| + E, [2 oPdz(dt ™) (4)

Given that dz is proportional on &; which is distributed standard normal, E;[dz] = 0.

Hence, equation (4) is simplified to:

5Vo(P) = 22 (uP) + 2 (2 52P2) 5)

oP?
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Equation (5) constitutes a second order homogenous ordinary differential equation. As
such, it has the solution (Dixit, 1994, p. 213-235):
Vy = AyP~% + B, PP (6)
Parameters a and S capture and incorporate the uncertainty modeled by GBM into the
model:
—a = 0.5[(1 — 2uc72?) — (1 — 2uc™2)2 + 886072)°]1 < 0
£ =05[(1—-2uc"2) + ((1-2u072)2+86072)°>1
where A, and B, are unknown constants. The term A,P % represents the option value of changing
states if output price decreases, and B,P# represents the option value of switching to another state
if output price increases. The term A,P~* vanishes when the project is idle as there is no value to
the project when output price approaches zero. Therefore:

Vo = Bopﬂ (7)

2.1.3. Value of an active investment
We denote an active project’s discounted expected value by V;(P). A plant in an active
state is producing biofuel and earning an ongoing net revenue stream (per liter) equal to P — w.
The Bellman equation in this state is depicted by:
SVidt = (P — w)dt + E;[dV;(P)] (8)
The value function V; is derived following the same procedure by which we derived V.
Such procedure results in:
V,(P)=P(—wW t—wé '+ AP %+ B,PF 9)
where A4; and B; are unknown constants, A;P~% and and B,P# capture the option value of

mothballing the plant if output price decreases and the option value of mothballing if the output
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price increases respectively. When the output price is sufficiently high to induce the firm to keep

the plant active, B, P? converges to zero. Therefore:

ViiP)=P@E—wWt—ws1+4,P¢ (10)
We now look at a situation where a firm that has a mothballed plant, has the option to

reactivate or exit the market altogether.

2.1.4. Value of a mothballed investment

A firm with a plant in a mothballed state is experiencing an ongoing maintenance cost of m. The

Bellman equation for a plant in a mothballed state is:

SV, dt = E.[dV;,,(P)] — m(dt) (12)
By using the same procedure used for equations (1) and (8) this expression converts to:

Vn(P) = ApyP~% + B,,PP —ms~! (12)

where A, and B, are unknown constants, 4,,P~% represents the option value of being able to

exit, B, PP represents the option value of being able to reactivate, and mé& ~* represents the present

value of maintenance cost if the plant never changes states. The option value to exit is positive

only if the price decreases, and the option value to reactivate is positive only if the price increases

which is why each option has only one term.

2.1.5. Deriving the Trigger Prices

Our representative plant has the option to switch from idle to active, active to mothballed,
mothballed to exit, and mothballed to active at any given point in time. Each of these options will
be exercised at a specific price which we denote by Py, B, P;, and B. respectively. These prices
are referred to as trigger prices. Trigger prices are characterized by two conditions known as the

value matching condition and the smooth pasting condition at each switching point. The value
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matching condition depicts the output price at which the firm is indifferent between two states.
Switching occurs when, due to a change in output price, the value of the project under the current
state becomes lower than the value of the project under the state to which the firm would like to
switch minus the switching cost. Switching costs are denoted by k, E,,, r, or [ when the firm
switches to from idle to active, active to mothball, mothball to reactivation, and mothball to exit
respectively. The smooth pasting condition requires these value functions to be tangent to one
another at the trigger price.

We start by looking at the trigger price for switching a biofuel plant from an idle state to
an active state. The value matching condition occurs between these two states at a gasoline price
we denote by Py,. At this price, the value of the option to enter equals the value of an active project
minus the fixed cost of switching states k:

Vo(Pr) = Vi(Py) — k (13)

The corresponding smooth pasting condition between these two states is:

V'o(Pr) = V'1(Ppn) (14)

The value matching condition corresponding to the transition from active to mothball can
be denoted by:
Vi(Pn) = Vin(Pn) — Em (15)
where P,, represents the trigger price that will take a plant from an active state to a mothballed
state and E,,, denotes the fixed cost of mothballing. The corresponding smooth pasting condition
between active and mothballed states is:
V'3 (Pr) = V' (P) (16)

A mothball state has two options for switching states. It can change back to an active state

for a fixed reactivation cost of r. It could also change back to an idle state and receive a net scrap
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value [. Since there are two options for this state there needs to be two value matching conditions

and two smooth pasting conditions satisfied. The decision to move from a mothballed state to an

active state occurs at B.. The value matching condition for this is:

Vn(B) =Vi(B) — 7 17)
The corresponding smooth pasting condition is:

V() =V'(B) (18)
The value matching condition between a mothballed state and an idle state is:

Vin(P) = Vo(P) — 1 (19)
The corresponding smooth pasting condition is:

Vlm(Pl) = VIO(PI) (20)
We now substitute value functions (7), (10), and (12) into their corresponding value

matching equations (13), (15), (17), and (19) at their designated trigger prices and the derivative

of the value functions with respect to P into the smooth-pasting equations (14), (16), (18), and

(20). These substitutions result in a nonlinear system of eight equations in eight unknowns. Four

of these unknowns are trigger prices (P, B, B-, P;) and the other four are constants associated

with the option value of switching states (44, 4,,, By, and B,,,):

BoPyP =P, (6 — W) ' —ws 1+ AP, % —k (21)
Po(6—w) ' —ws 1+ A4,P,% = ApPy* + B,PP —mé' —E,, (22)
AP %+ ByPP —ms 1 =P —p) 1 —ws 1+ APL* —7 (23)
ApnP* + B, PP —més1 =B,PF —1 (24)
BBoPP ™t = —Py(8 — )72 + aA P, (25)
—P,(6 — W) 2+ ws 2+ aA P, ' = aA, Py + BB, PP (26)

AP+ BB, PPt + mE 2 = —P.(6 — W) 2 + a4, BY7! (27)
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AP, “* + BB, PPt = BByPF! (28)
The first four equations constitute direct corollaries of the value matching conditions and
the next four equations are derived from the smooth pasting conditions. This system is solved
numerically in Matlab using the code presented in Appendix A. Solution of the system without
managerial flexibility (i.e. without the option to mothball and re-entry) is, in turn, presented in

Appendix B.

2.2 Price of Gasoline: Identification of the Stochastic Process

There is significant variation in gasoline price (P) from year to year. This variation in P
over time, can either evolve following a stationary or a non-stationary process. These processes
are most simply and commonly modeled using a mean reversion or Brownian motion (including
GBM) process respectively (Dixit, 1994). Therefore the validity of assuming a GBM as the data
generating process (DGP) of gasoline prices is evaluated by conducting a unit root test for non-
stationarity of the price series. If the change in price between two periods is not a function of the
price in the first period, then a Dickey Fuller unit root test will fail to reject the null hypothesis of
non-stationarity (Wooldridge, 2012) and a GBM is more appropriate than a mean reverting
process.

Mathematically this explanation is modeled as P, — P,_; = a + b(P;_,) + e or, including
a drift, P, — P,y = a+ b(P;_;) + cu + e, where P, is the price in period t, P,_; is the price
lagged by one period, a is the intercept, e is the residual, and b is the slope which is the parameter
to be tested. If b = 0 (null hypothesis), the data is non-stationary and a GBM is an appropriate
specification of gasoline prices. We conducted unit root tests under both specifications; i.e. with

and without a drift. Dickey-Fuller tests were run with STATA based on average monthly wholesale
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gasoline prices in the Midwest for the past twenty years (Figure 1). The test fails to reject
nonstationarity with the first specification (test statistic of -1.48) but rejects nonstationarity under
the second specification (test statistic of -3.50). These answers give conflicting results.

Figure 1. Average real wholesale gasoline price in the Midwest (PADD, area 2) (EIA, 2013)
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There has been a large amount of debate in the literature over the similarity in results given
by models using GBM and those resulting from use of mean reversion assumptions (Pindyck,
1999; Sarkar, 2003; Metcalf and Hassett, 1995). Based on that literature a case for using a GBM
process to model gasoline prices can be made despite these conflicting results. First, GBM has the
advantage of analytical tractability (Dixit, 1994). Secondly, a mean reverting process converges
asymptotically to a GBM process as the rate of mean reversion tends to zero (Sarkar, 2003;
Pindyck, 1999; Metcalf and Hassett, 1995). Pindyck (1999) and Metcalf and Hassett (1995) argue
that a Brownian motion is a good approximation even if the true DGP is a mean-reverting one as
long as the speed of reversion is low.

We have estimated the rate of mean reversion to determine the appropriateness of a GBM

as an approximation to the data generating process. In particular we regressed the change in
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gasoline wholesale prices on its lagged price, with and without drift rate. Estimates of mean
reversion, n, are highly sensitive to the period of time considered (subsets of the last twenty years)
and range from zero to 0.66. Again, these estimates offer conflicting views. Henceforth, with the
caveat that there is significant uncertainty on reversion speed, we assume gasoline prices follow a
GBM process.

Given recent potential structural changes in the oil and gasoline markets, instead of
extrapolating past price trends to the future, we use the U.S. Energy Information Administration
(EIA, 2014) 30 year projections for wholesale gasoline prices. This gives us a drift rate of 1.85%.
Unfortunately, the EIA offers no projections for standard deviation so extrapolation of past
standard deviation is our only option. The yearly standard deviation in percentage changes in
gasoline price over the past five years was 0.21 (0.35 over the last twenty years). For our base case
analysis we use the more conservative estimate since dramatic spikes in prices during 2004-2007,
and the subsequent crash in 2008, may result in overestimation of past, and consequently future,
standard deviation of gasoline prices.

Consistently with the assumption of GBM for gasoline prices, we have calculated the

standard deviation of ln(Pi) as prices are assumed to be log-normally distributed (Schmit et al.,
t—1

2009; Dixit, 1994). The standard deviation can be interpreted as the standard deviation of a one
percent change in price. We use prices in the Midwest since a stover fed plant would most likely

locate and sell there, due to high corn density and low transportation cost to local markets.

2.3 Fixed and Operating Costs
There are three main types of second-generation technology that converts cellulosic

biomass into biofuels. These technologies are gasification, hydrolysis, and fast pyrolysis (Hughes
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et al., 2013; Brown and Brown, 2013a). We analyze the case of fast pyrolysis as it has been found
to be the most cost-competitive process to produce drop-in biofuels (Wright et al., 2010; Brown
and Brown, 2013a; Petter and Tyner, 2014).

Unless otherwise noted we use fixed and operating costs reported by Brown et al. (2013).
These costs are summarized in Table 2. The operating cost w, is calculated by combining yearly
operating cost in Brown et al. (2013), our calculations for capital replacement, and federal tax.
Capital replacement is added into w to ensure an infinite life of the plant.? The cost of replacing
capital is calculated by annualizing capital cost. We assume a 20% effective tax rate on net income.
Yearly operating cost is then divided by the number of gallons of biofuel the plant produces a year.
This paper breaks operating cost into four categories, stover cost, hydrogen cost, capital
replacement cost, and miscellaneous. These costs are reported in Table 2 and were obtained from
Brown et al. (2013) with the exception of feedstock cost. Total yearly operating cost per gallon

(for a plant producing 47.4 million gallons per year) is equal to w = $2.56.

Table 2. Operating costs per gallon for project
Stover $1.15
Hydrogen $0.51
Depreciation upkeep $0.79
Miscelaneous $0.11
Total $2.56

Regarding the cost of feedstock, the literature offers a wide range of estimates. The
predicted cost for one dry metric ton of stover delivered to the plant ranges from approximately
$16 to $112. (Gallagher et al., 2003; Fiegel et al., 2012). Most predictions fall into a range between

$40 and $101 (Brechbill et al., 2011; Perrin et al., 2012; Brown et al., 2013; Gonzalez et al.,

2 The assumption of infinite horizon greatly simplifies the problem. On the other hand, this assumption may
overestimate the entry trigger price. However the upward bias generated by the infinite horizon assumptions has
been found to become very small when time to maturity is 20 years (Grasselli, 2011). Since cellulosic biofuel plants
are typically assumed to operate for 20 years (e.g. Petter and Tyner, 2014; Brown et al. 2013), we assume an infinite
horizon.
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2012b). These discrepancies in predicted cost exist due to the fact that the corn stover market
remains largely undeveloped and assumptions on nutrient replacement, soil effects of removal,
corn yields, weather, and tillage vary widely across studies (Wilhelm et al., 2004). In this study
we assume that a refinery can purchase a ton of stover at $83 a dry ton, which seems a reasonable
central tendency of previously reported estimates. Finally, while Brown et al. (2013) assumed that
85 gallons of bio-gasoline can be obtained per metric dry ton of stover processed, Kior, which is

currently the only commerical scale cellulosic biofuel drop-in plant reported a yield of 72 gallons

per metric dry ton (Biofuels Digest, 2013). Kior’s reported value is used in this study.?

In this paper, capital cost k, is calculated as the present value of investment cost. The
assumptions under which capital cost is calculated are reported in Table 3. The construction period
is three years. The plant pays back the investment cost with interest in full after three years of
construction. Our model assumes 100% loan financing for only the three years of construction.
We then took the principal of this loan after three years, paid it all at once, and divided by capacity
to obtain k. Notice that the financing assumption was only used to calculate the principal. This
cost is then divided by the total number of gallons produced in a year to get k = $9.91 per gallon
of plant capacity.

Table 3. Assumptions for Financing

Parameter Value Source
Investment cost $429,000,000 Brown et al. 2013
Construction time 3 years Wright et al. 2010
% of investment in year one 8% Wright et al. 2010
% of investment in year two 60% Wright et al. 2010
% of investment in year three 32% Wright et al. 2010
Interest rate 7.5% Wright et al. 2010
PV of investment cost (after interest) $470,350,236 author's calculation
Gallons of bio-gasoline produced per year 47,448,000 gallons author's calculation

3 A note of caution is in place here. Kior’s primary feedstock is yellow pine and previous studies suggest that there
could be a yield reduction when converting from yellow pine to corn stover (Demirbas, 2011; Brown et al., 2013).


http://www.biofuelsdigest.com/bdigest/2013/08/12/kior-mulls-columbus-ii-facility-to-accelerate-path-to-profits-as-2013-production-forecast-is-cut/
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The parameters E,,, r,1,and m are all calculated as percentages of k. Due to the infancy

of this industry, there is little information on the costs associated with mothballing and reactivation

for second generation drop in biofuel plants. Following Schmit et al. (2009), who conducts a real

options analysis for a first generation corn ethanol plant, m was calculated as 0.025k and [ was

calculated as 0.25k. Slight modifications were introduced to E,, and r relative to Schmit et al.

(2009). Schmit et al. (2009) adjust pre-existing estimates based on the scale of production of the

plant they are analyzing and find that E,,, = 0.05k and r = 0.1k. We follow this procedure and

adjust these figures to our plant which is approximately four times larger than the largest ethanol

plant in Schmit et al. (2009). The adjustment results in E,, = 0.025k and r = 0.05k. All

parameter values used in our analysis are summarized in Table 4.

Table 4. Assumptions of all parameters used in this study.

Parameter Definition Value Scale Source
U Drift rate 1.85% per year EIA 2014
o Standard deviation 20.92% per year EIA 2014
) Discount rate 10.00% per year Brown et al. (2013)
i Interest rate 7.50% per year Brown et al. (2013)
w Operating cost $2.56 per gallon produced Brown et al. (2013)
m Mothballcrz)lsa;ntenance $0.25 per gallon produced Schmit et al. (2009)
k Capital cost §9.91 | Ppergallonoftotal 4 p ol 2013)
capacity
! Scrap value $2.48 per gallon of total Schmit et al. (2009)
capacity
Em Mothball fixed cost | $0.25 | Pereallonoftotal g oot al 2009)
capacity
r Reactivation cost $0.50 per gallon 0 Ftotal Schmit et al. (2009)
capacity
3 Results and Discussion

Trigger prices resulting from numerical solution of the system (21)-(28) are reported in

Table 5. Trigger prices of entry, mothball, reactivation, and exit are denoted by Py, B,,, B-, and P,
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respectively. Entry and exit trigger prices calculated without managerial flexibility (without
mothballing and reactivation) were obtained from value matching and smooth pasting conditions
depicted in Appendix B, and are also reported in Table 5 and denoted as P,, and P;. The Marshallian
entry trigger price, Wy, is the long run average cost, composed of operating cost and the interest
on the sunk cost of investment, W, = w + ik (Dixit, 1994, pp 219). This is, essentially, the price
at which the firm breaks even. The Marshallian exit trigger price, W, is the average variable cost
plus the interest on scrap value, W; = w + il (Dixit, 1994, pp 219), and the rest is as defined in
Table 4. Entry and exit trigger prices under Marshallian behavior (which assumes static
expectations, as opposed to rational expectations assumed by real options) are also calculated and
reported in Table 5 for comparison with real options.

Table 5: Marshallian trigger prices and real options trigger prices

Trigger price | Price trigger occurs Definition
Wy, $0.87 Marshallian entry trigger price
W, $0.73 Marshallian exit trigger price
Py, $1.29 RO entry price with managerial flexibility
P, $0.51 RO exit price with managerial flexibility
By $0.51 RO mothball price
B. $0.76 RO reactivation price
P, $1.29 RO entry without managerial flexibility
P, $0.51 RO exit without managerial flexibility

Under parameter values in Table 4, results suggest that uncertainty plays a major role in
both the decision to enter and the decision to exit. The real options entry trigger price, Py, is 50%
above the Marshallian entry trigger price, W,,. Real option exit trigger price, P;, is 30% lower than
the Marshallian exit trigger price, W;. Our results demonstrate that, under our assumed level of
uncertainty and drift rate, a Marshallian approach would greatly underestimate the price of
gasoline that would trigger entry into the market. This, in turn, shows the importance of using real

options to evaluate entry into the second generation biofuel industry. Moreover, our results indicate
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that managerial flexibility has almost no impact on entry behavior. Having the option to mothball
and reactivate later does not reduce entry trigger price (as conceptually expected). Similarly,
managerial flexibility has no effect on exit trigger prices.

Volatility and drift rate of gasoline price are not only critical drivers of these results but
also highly uncertain parameters. Therefore it is important to conduct sensitivity analysis to
evaluate the robustness of our results to changes in those parameters. Results from such sensitivity
analysis are reported in Figures 2-5. We will discuss each in turn. Figure 2 shows how changes in
volatility of gasoline price affects the trigger price for entry. This graph compares the real option
entry price (the price Py, is used so that the effect of uncertainty is not confounded with managerial

flexibility) with Marshallian entry price.

Marshallian entry price =~ === RO entry price
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Figure 2. Entry trigger prices over different levels of uncertainty
As revealed by Figure 2, the gap between W, and P, vanishes under certainty; i.e. when
o = 0. Increased uncertainty has no effect on Marshallian entry trigger price as this value assumes
static expectations, so that a more volatile gasoline price in the future is not incorporated into
current behavior. The real option entry trigger price raises with increased gasoline price volatility

as the real options framework considers rational expectations (Dixit, 1994). Results show that
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investors will ask for a higher price premium to enter the market as gasoline price volatility
increases. The real option entry trigger price seems quite sensitivity to changes in volatility. It is
worth noting that even if gasoline price volatility is halved (from currently observed 20% to 10%),
the real option entry price is still 25% higher than the breakeven price.

Uncertainty and irreversibility in investment may result in conservative firm behavior.
Firms are less responsive to profitability signals because they are anticipating potential changes in
these signals in the future. Technically, this inaction is called hysteresis and it denotes a situation

in which firms tend to maintain the status quo and avoid switching to other states. [EREOM

REICrCHCEISOUCEIRGMGNRRN i1ustrates the link between uncertainty and hysteresis. If gasoline
price varies within the entry and reactivation boundaries in [ERTOIMRCICICHCCSOUECCIOMIOUNoY.

idle plants will not be activated and active plants will not be mothballed. If gasoline price varies
between the reactivation and mothball boundaries, idle plants will not be activated, mothballed
plants will not be reactivated, and active plants will not be mothballed. Moreover, if gasoline price
varies between the exit and mothball boundaries idle plants will not be activated, and mothballed
plants will not be reactivated or sold. Figure 3 reveals that these zones of hysteresis widen as
gasoline price volatility increases.

The positive link between uncertainty and hysteresis has important policy implications.
First, an increase in gasoline price volatility, which has been the case over the past decade (EIA
2014), makes firm entry into the market more unlikely. This result suggests that, if policies
designed to support biofuels remain unadjusted, recent increases in gasoline price volatility may
have greatly diminished their effectiveness, and their likelihood of success. Second, the volatility
in gasoline price is associated with volatility in oil prices. Therefore as volatility of oil price raises,

hysteresis in the biofuel market will increase (as indicated by a widening of the vertical distance
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between lines) resulting in an increasingly inelastic industry supply. The inelastic nature of supply
may generate large swings in bio-gasoline prices as production levels adjust lethargically to
demand shocks. Therefore supply inelasticity exacerbates the volatility of bio-gasoline prices

relative to oil and regular gasoline, reducing even more the effectiveness of biofuel policies.
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Figure 3. The impact of uncertainty on hysteresis

Figure 3 also reveals that mothball and exit trigger prices converge at 25% volatility. This
means that firms will not be interested in mothballing the plant at low prices for levels of price
volatility of 25% or lower. At these levels of uncertainty, if the price drops significantly the firm
will exit the market without mothballing the plant first. When uncertainty is low enough,
profitability signals embedded in gasoline price are taken with certain degree of confidence; i.e.
they are not expected to change significantly in the future. This makes firms less likely to switch
to intermediate states such as mothballing. A high cost of mothballing, all else constant, will also
make firms less likely to switch to that state. Therefore for a given vector of costs associated with
entry (k), mothball (m and E,,;), reactivation (r), and exit (1), there will be a level of uncertainty
that is low enough to reduce the value of mothballing to zero. Figure 3 reveals that, given our

estimated costs, that level of uncertainty is 25%. Note, finally, that under 25% volatility the
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reactivation trigger price is trivial since that plant will never be mothballed and, as a result, will
not be reactivated.

It is important to compare, at our assumed levels of volatility and drift rate, the inactivity
zone under real options to the inactivity zone under Marshallian entry and exit trigger prices. The
difference reveals the importance of firms’ expectations formation process on behavior. With a
20% volatility in gasoline price and 1.85 drift rate, no entry or exit occurs under myopic
expectations (Marshallian prices) between $0.87 per liter and $0.73 per liter. Under the same
volatility and drift rate, the range of inaction under rational expectations (real options prices) takes
place between $1.29 and $0.51. This demonstrates that, under rational expectations, firms
incorporate future potential changes in profitability signals and, consequently, behave much more
conservatively. This suggests that using breakeven analysis or NPV, even incorporating risk, may
greatly overestimate firms’ reactions to changes in prices driven by policy or market conditions
due to their failure to incorporate rational expectations.

The positive drift rate calculated for wholesale gasoline price reveals an expected
improvement in profitability. We explore whether such expected improvement in future
profitability affects entry trigger price and to what extent that effect is magnified or softened by
uncertainty and irreversibility. Figure 4 displays the relationship between drift rates and entry
trigger prices under real options and Marshallian behavior.

An increase in drift rate has conflicting effects on real option entry trigger price.* On one
hand, a higher drift increases the value of waiting since profitability conditions become more

favorable in the future (i.e. because future prices are discounted by & — p). On the other hand a

4 This figure uses real options entry and exit trigger prices without managerial flexibility so that the effects of such
flexibility are not confounded with those of uncertainty and irreversibility. It is worth noting, however, that prices
with and without managerial flexibility are virtually the same.
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higher drift lowers the likelihood of negative outcomes in the short run, making investment now
more attractive. The latter effect dominates the former so that increases in the drift rate reduce
entry trigger prices under rational expectations. Since Marshallian behavior assumes myopic
expectations, the Marshallian entry price is not affected by the future trajectory of gasoline price.
Therefore increases in the drift rate decrease the price premium required by investors to enter the

market above and beyond the breakeven price (i.e. long term average cost).
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Figure 4. Drift Rate and Entry Trigger Prices

Results in Figure 4 suggest that policies aimed at increasing the future price of bio-gasoline
without substantially reducing uncertainty may not be very effective at inducing entry into the
market. As shown in Figure 4, while increases in drift rate are associated with lower entry trigger
price, the reduction in such price is very modest. Therefore these results may offer an explanation
to the fact that quantity instruments, namely the RFS2, have not been very effective. On the other
hand, price instruments, which by design reduce price uncertainty, may be much more effective as
suggested by results in Figure 3.

Figure 4 also displays the real options exit trigger prices so that we can explore the

sensitivity of hysteresis (the range of inaction) to the drift rate. While higher drift rates slightly



26

decrease hysteresis (i.e. the distance between entry and exit frontiers), they do so at a small rate.
In fact the drift rate has a close to proportional effect on entry and exit trigger prices. Hence
uncertainty and irreversibility, as opposed to drift rates, are the main drivers of hysteresis within
the biofuel industry. Therefore, this furthers the argument that policies that increase drift rate, in
addition to being relatively ineffective at inducing entry, may also be ineffective at increasing the
elasticity of aggregate bio-gasoline supply.

The cost or even the possibility of mothballing and reactivation assumed in this study are
highly uncertain, as there are no market observations based on which these can be assessed. It is
then important to understand entry and exist behavior when such flexibility is not available to
firms. Managerial flexibility enhances the profitability of plants facing random prices. Therefore
it is expected that managerial flexibility will alleviate uncertainty and reduce the price premium
required by investors. Consequently, the absence of managerial flexibility should raise the price
premium required by investors but the magnitude of such increase is unknown.

Fortunately our framework allows calculation of trigger prices without managerial
flexibility as well as with flexibility. This allows us, not only to determine the price premium for
entry without flexibility but also the magnitude of the offsetting effect of flexibility on uncertainty
and irreversibility. Real options entry trigger prices with and without flexibility and Marshallian
entry trigger price are plotted in Figure 5. The price premium required for entry is depicted by the
vertical distance between these lines. Results in Figure 5 suggest that managerial flexibility has
virtually no effect on the price premium required by investors at all levels of uncertainty.
Therefore, the absence of flexibility would not worsen the prospects of entry into the industry. In
other words, our results in terms of price premiums for entry are robust to the assumption of

flexibility held in this study.
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Figure 5. Volatility and Entry Trigger prices
4 Conclusion and Policy Implications

This study has used a real options approach to compute the premium (above and beyond
breakeven price) that investors would require on the price of gasoline to enter the biofuel market.
It has also computed mothball, reactivation, and exit trigger prices for a range of uncertainty levels,
captured by the volatility of percentage changes in gasoline price.

Our analysis reveals that uncertainty is likely a significant barrier to market entry in the
cellulosic biofuels industry. It also reveals that managerial flexibility, if technologically viable,
does not alleviate the effect of uncertainty on the price premium required for entry. Moreover there
seems to be significant potential for hysteresis in this market which will greatly inhibit supply
response to demand shocks, magnifying price volatility. Hysteresis is positively associated with
gasoline price volatility. Expectations of future increases in gasoline price (positive drift rate) help
the prospects of the cellulosic biofuel industry only to a small degree.

The US government has, so far, implemented a quantity-based policy (RFS2), by which
gasoline blenders are forced to purchase a minimum amount of biofuels. Yet, this policy has failed

to achieve the stated targets. Our analysis may offer some insights into the failure of the RFS2.
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Mandates impose a lower bound on demand. This demand level would, in theory, intersect supply
at a price that is high enough to induce the desired production. However, an aggregate supply does
not currently exist in the cellulosic biofuel industry, so the price that would result from the
intersection of supply with the government mandated demand is unknown. Therefore this policy
fails to address price uncertainty which, according to our analysis, may severely dampen its
effectiveness. Other policies that have been implemented alongside the RFS2 are subsidies to
lower production cost (e.g. biomass crop assistance program), and programs that enhance
financing conditions. While both policies may result in a reduction of entry premiums (by reducing
w and k respectively), they also fail to address the price uncertainty that introduces a wedge
between breakeven price (Marshallian entry price) and real options entry trigger price.

These insights suggest that price-based policy instruments, by directly hindering output
price volatility, may be more effective than renewable fuel standards. Therefore policy instruments
such as reverse auctions or minimum prices could be viable avenues to end with the chronic
production shortage that has forced the government to repeatedly waive the RFS2. Our analysis
demonstrated that reductions in price volatility, even if leaving future trend of gasoline price
unaffected, can substantially reduce the price premium required by investors to enter the market.

However, under zero bio-gasoline price volatility, the entry trigger price is reduced to $0.89
per liter while the wholesale price of gasoline has hovered around $0.79 in the last year. This
suggests that uncertainty-reducing policies may not be sufficient by themselves to increase biofuel
production. Similarly, our analysis indicates that policies that increase expected price but do not
reduce uncertainty would require a subsidy that is approximately 50% of current price. This seems
too costly to be implemented by the government. Therefore an instrument capable of reducing

uncertainty and increasing the mean of bio-gasoline price simultaneously, seems warranted if the
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cellulosic biofuel industry is to fulfill the mandate embedded in the RFS2. Some instruments
previously discussed in the scholarly literature (e.g. Tyner et al., 2010; Petter and Tyner, 2014;
Song et al., 2011) like reverse auctions or minimum price entail such combination.

A reverse auction is a contract by which the government guarantees the producer the
purchase of a given volume of biofuels at a contract price. If the market price is lower than the
contract price the government makes the purchase. Otherwise, the producer sells the fuel in the
market. Hence reverse auctions work, in effect, as a minimum price. This policy has two effects.
It reduces downside risk without curtailing upside outcomes. This results in reduced price volatility
and increased drift rate. Both effects, but particularly the former, would reduce the price premium
required by investors to enter which enhances the effectiveness of the policy.

Another option is to combine price and quantity-based policy instrument to achieve stated
biofuel inclusion targets. For instance, a mandated volume can be maintained through the RFS2
but combined with a reverse auction or forward contract. A reverse auction can be used so that
entry price is reduced and an aggregate supply developed. Mandates can then be established in
accordance with built capacity which makes the mandate easier to enforce. As the industry
develops price instruments can be phased out and the mandate can be maintained. The framework
used in this study can be adapted to model and quantify the effect of these policy instruments. In
addition the cost at which each instrument can reduce entry price to a certain target can be
calculated so that alternative instruments are evaluated based on cost-effectiveness. This seems
like a promising avenue for future research.

There is also a dynamic dimension to policy design whose importance is underscored by
our results. Our analysis indicates that policy interventions that do not adjust to changes in market

conditions may fail to deliver the desired goal. Empirical evidence shows that volatility in oil
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markets has undergone structural changes in the recent past (e.g. Salisu and Fasanya, 2013).
Structural changes that increase volatility of oil and gasoline prices (Salisu and Fasanya, 2013
found evidence of such increase in 2008) call for more aggressive biofuel policies, as investors
will require a higher premium in response to increased uncertainty.

This study is not without limitations. The study focuses on gasoline price uncertainty and
does not account for the uncertainty inherent within production. The cost of stover, hydrogen, even
equipment can all vary over time. A model that accounts for multiple sources of uncertainty may
provide information as to whether these sources operate linearly on entry price, or they interact to
produce non-proportional effects on the entry premium (Schmit et al., 2011). Another limitation
of this study, and one shared with other studies in this literature, is the uncertainty surrounding
parameter values such as plant cost and its relationship with scale of production. While all sources
of information have been documented here, only one large scale plant with this technology exists
(KIOR), limiting the reliability of these figures. However, these analysis could (and should) be re-

run once new information arrives. Our framework easily allows for such exercise.
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Appendix A: Numerical analytical approach in MatLab

Code

function F = ROA (x)
alpha=-2.0628;
beta=2.2155;
delta=0.1;
mu=.01854;
w=2.56;
k=9.91;
m=0.25;
em=0.25;
r=0.50;
1=-2.48;

F = [x(7)*(x(1l)"beta)-x (1) *((delta-mu)"-1)+w* (delta™-1)-x(5) *(x(1)~alpha) +k;
x(3)*((delta-mu)"-1)-w*((delta)"-1)+x(5)*(x(3) *alpha) -
X (6)*(x(3)~alpha)-x(8)* (x(3) *beta) +tm* (delta™-1) +em;
X (6) *(x(4) ~alpha)+x(8) * (x(4) "beta) -m* (delta”-1)-x(4) * ((delta-mu) "~
1)+w* (delta”-1)-x(5)*(x(4) ~alpha) +r;
X (6) *(x(2) "alpha)+x(8) * (x(2) *beta) -m* (delta™-1) -x(7) * (x(2) “beta) +1;
beta*x (7) * (x (1) " (beta-1))-((delta-mu) "-1)-alpha*x (5) *(x (1) " (alpha-1));
((delta-mu)*-1)+alpha*x(5) * (x(3) " (alpha-1))-alpha*x(6)* (x(3) " (alpha-
1)) -beta*x(8)* (x(3) " (beta-1));
alpha*x(6)* (x(4) " (alpha-1))+beta*x(8)* (x(4) *~ (beta-1))-((delta-mu)"-1) -
alpha*x(5)*(x(4) " (alpha-1));
alpha*x (6) * (x(2) " (alpha-1))+beta*x(8)* (x(2) * (beta-1)) -
beta*x (7)) * (x(2) " (beta-1))1;

Steps for solving

options = optimset ('MaxFunEvals',10000, 'MaxIter',10000)
x0 = [5;1;1;2;1;1;1;1]; % Make a starting guess at the solution

[x,fval] = fsolve (QROAG,x0,options)

Appendix B: Equations defining value matching and smooth pasting conditions without the

managerial flexibility to mothball or reactivate



34

Code

function F = ROAS5 (x)
alpha=-2.0628;
beta=2.2155;

delta=0.1;

mu=.01854;

w=2.2.56;

k=9.91;

1=-2.48;

F = [x(4)*(x(1)"beta)-x(3) *(x(1)"alpha)-x(1)*((delta-mu) *-1)+w* (delta”-1) +k;
beta*x (4) * (x (1) " (beta-1))-alpha*x(3) * (x (1) " (alpha- 1)) ((delta-mu)~-1);
x(3)*(x(2) "“alpha)+x(2) *((delta-mu) *-1) -w* ((delta)~-1) -

x(4)*(x(2)" (beta))+1;
alpha*x(3)* (x(2) " (alpha-1))+((delta-mu)"-1)-beta*x(4) * (x(2) " (beta-1))1;

Steps for solving

options = optimset ('MaxFunEvals',10000,'MaxIter',10000)

x0 = [4;1;1;1]; % Make a starting guess at the solution
[x,fval] = fsolve (QROAS5,x0,options)



