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Abstract: The Drought Management Plans (DMPs) are a regulatory instrument that establishes 
priorities among the different water uses and defines more stringent constraints to access to 
publicly provided water during droughts, especially for non-priority uses such as agriculture. 
These plans have recently become widespread across EU southern basins. Shockingly, in some 
of these basins the plans were approved without an assessment of the potential impacts that 
they may have over the economic activities exposed to water restrictions. This paper develops 
a stochastic methodology to estimate the expected water availability in agriculture that results 
from the decision rules of the recently approved DMPs. The methodology is applied to the 
particular case of the Guadalquivir River Basin in southern Spain. Results show that if the DMPs 
are successfully enforced, available water will satisfy in average 62.2% of the annual demand. 
This is much lower than the minimum water access reliability of 90% that the Spanish law has 
assured to irrigators so far.  

Keywords: Agricultural economics; Water economics; Risk management; Guadalquivir River 
Basin. 
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1. Introduction 

 

Population growth and the improvement of living standards have increased water demand 
worldwide and, along with climate change, the vulnerability to drought events. This situation is 
to a great extent attributable to agriculture, which is the world’s largest water consumer and is 
often believed to be wasteful (Ward and Velázquez, 2008). Consequently, policy makers in 
drought prone areas have called for measures to save water in this sector and thus guarantee 
the provision of water for priority uses, namely, drinking water and minimum environmental 
flows. However, the effectiveness of these measures has been burdened so far by the 
prevailing paradigm, which considers water demand as an exogenous variable outside the field 
of water policy. As a result, water policy has been mostly based on expensive supply oriented 
policies, such as the construction of major infrastructures or the modernization of irrigation 
devices, that paradoxically have ended up increasing water demand, reducing water 
availability and undermining the robustness and resiliency of the system and its ability to cope 
with future droughts (Ruttan, 2002; Anderies et al., 2004).  

The high financial costs of these policies in a time of crisis and especially the limits of water 
supply have forced water authorities to alter their policy action. In the EU, some important 
legal restrictions over agricultural water demand have recently been approved to address the 
problem of recurrent droughts. This is the case of the Drought Management Plans (DMPs). 
DMPs are inspired in the drought contingency plans implemented in the US since the ‘80s and 
thus follow similar rules (NDMC, 2010). Basically, the DMPs define the precise thresholds of 
possible drought situations and set the water constraints that will come into force in each of 
these cases, with the aim of guaranteeing priority uses. The drought thresholds are obtained 
from the historical assessment of water supply, while the extent of the water constraints 
varies from one basin to other and depends largely on the ratio between water demand and 
water supply, being more restrictive in the more exploited basins (EC, 2008). As a result, the 
declaration of a drought will automatically reduce, in a predictable amount, the quantity of 
water delivered to the irrigation system from publicly controlled water sources.  

In spite of being relatively new and voluntary, DMPs have rapidly spread across EU southern 
countries, such as France, Italy, Portugal and Spain1. In particular, Spain has pioneered the 
adoption of DMPs and currently every inter-regional river basin in the country has already 
approved its DMP. This is particularly shocking if we consider that there are no assessments 
available on the potential impact of DMPs over the economic activities exposed to water 
restrictions. As a result, the effects of DMPs over water availability in sectors such as 
agriculture are basically unknown. This paper wants to help bridge this gap. We develop a 
stochastic methodology to estimate the expected water availability in agriculture resulting 
from the decision rules of the recently approved DMPs. Then we apply this method to the 
particular case of the Guadalquivir River Basin in Spain, using historical data and official climate 
change scenarios. Results show that after the implementation of the basin’s DMP, available 
water would satisfy in average only 62.2% of the annual demand, with relevant spatial 
disparities. For example, in the Regulación General Sub-basin (representing 66% of the 
agricultural water demand in the GRB) water availability according to the DMP would satisfy in 
an average year only 50% of the existing agricultural water demand, with several extremely 
dry years where water availability would be below 30% of the water demand. According to the 

                                                           
1
 Unlike other water management instruments such as River Basin Management Plans, DMPs are not 

prescriptive, although they are already available in several Southern European basins in Spain, Italy, 
Portugal and France, and also in Finland, Netherlands and UK. 



previous legislation, River Basin Management Plans (RBMPs) have to guarantee irrigators a 
water access reliability of 90%. This has happened since the implementation of the first wave 
of RBMPs in 1998 (Berbel et al., 2012). However, if DMPs are successfully enforced, it will not 
be possible to guarantee a failure rate below the target of 10% -quite the contrary, this failure 
rate will be closer to 40%. 

 

2. Background to the case study: The Guadalquivir River Basin (Spain) 

 

Because most of the variables involved in the design of the DMPs are site-specific, such as 
water supply and risk exposure, we illustrate each step of the model with the results for the 
particular case of the Guadalquivir River Basin (GRB) in Southern Spain.  

The GRB is a large basin (57 071 km2) located in the south of Spain (see Figure 1). Average 
water demand amounts to 4 016 hm3/year, while renewable resources are estimated to be 3 
028 hm3/year, resulting in an overexploitation of almost 1 000 hm3/year and a water 
exploitation index (ratio of total freshwater abstraction over total renewable resources) of 
1.22 (GRBA, 2007). More recent estimations set this ratio at 1.64 (EEA, 2009). Consequently, 
the GRB is regarded as a severely overexploited basin and its recurrent droughts have 
particularly harmful effects over the economy (EEA, 2009). In addition, strong evidence 
suggests that the existing water supply deficit of the last decades has been effectively covered 
with non-renewable groundwater resources, thus reducing the resiliency of the system to 
droughts and worsening the water crisis (GRBA, 2010; WWF, 2006). Overexploitation, 
however, is not homogeneously distributed among the 14 sub-basins that constitute the GRB. 
The Regulación General Sub-basin, which is the largest sub-basin and supplies most of the 
water in the GRB, is also the most deteriorated system. The remaining sub-basins, including 
Salado de Morón, Campiña Sevillana, Alto Genil, Hoya de Guadix, Alto Guadiana Menor, 
Bembézar-Retortillo, Viar, Almonte-Marismas, Jaén, Rumblar, Guadalmellato, Huesna and 
Sevilla are less overexploited (GRBA, 2010).  

Agriculture is the main water user in the GRB and demands 87% of the total water 
consumption. Given the structural water deficit of the basin, this sector is highly vulnerable to 
drought events. Agriculture is also a traditional activity in the GRB, of relevance in terms of 
employment and income generation (Pérez et al., 2010). As a consequence, water authorities 
have traditionally prioritized water supply to agriculture over other uses, such as 
environmental flows (EEA, 2009). This has been possible because water restrictions during 
drought events until only a few years ago were based on the discretionary (and unpredictable) 
decisions taken by the water authorities. All this has changed after the implementation of the 
DMPs, which reduce in a predictable amount the quantity of water delivered to the irrigation 
systems. However, the precise impact of DMPs over the expected water supply in agriculture is 
still unknown. In this paper we estimate this value.  

 

[Insert Figure 1 about here]  

 



3. Methodology 

 

DMPs quantify the particular situation at hand and the severity of the problem by using an 
objective and publicly observable drought index. Then, they restrict water use according to the 
drought threshold in which the drought index falls. This drought index is estimated using one 
or a combination of site-relevant hydrological variables, which include rainfall, runoff, 
groundwater stock and/or water stored in reservoirs. This combination may change from one 
sub-basin to other.  

In our model we estimate first the probability density functions (PDFs) of these site-relevant 
variables. Then we use these PDFs to obtain the probability of every drought index value and 
we aggregate these probabilities to obtain the probability of each drought threshold (in the 
case of Spain, the drought thresholds are normality, pre-alert, alert and emergency). Every 
drought threshold has a predetermined water restriction associated, and from there we obtain 
the expected water availability for irrigated agriculture. In the GRB, the drought index is 
calculated at the beginning of the irrigation campaign in April (GRBA, 2007). 

 

3.1. Probability density functions (PDFs) 

 

DMPs rely on hydrological variables to assess the situation of a sub-basin. In the GRB every 

drought index is made up of one or a combination of the following hydrological variables: 

rainfall, runoff, water stored in reservoirs and the stock of groundwater. There are large data 

series of these variables (covering at least 50 years) available in official data bases (MARM, 

2009 and 2012; AEMET, 2012; GRBA, 2012). We use these data series to estimate the PDF for 

all the relevant variables in the GRB’s sub-basins. This way we obtain the probability of every 

possible state of nature. We use a Gamma PDF for the rainfall (Martin et al., 2001; McWorther 

et al., 1966), runoff (Gómez and Pérez, 2012) and groundwater (Pérez et al., 2011) and a 

Weibull PDF for the water stored in reservoirs (Gómez-Ramos et al., 2002). 

 

3.1.1. Gamma PDF 

 

The Gamma PDF is defined by a scale parameter ( ) and a shape parameter ( )2. The function 

reaches a maximum for intermediate values, decreases according to its scale parameter and 

converges to a normal distribution function as the shape parameter increases. With the 

Gamma PDF we assign a probability    (       ) for every value of the variable    

(       ): 

                                                           
2
 The parameters are estimated by maximum likelihood. All the parameters for every sub-basin are 

significant at the 1% level. 
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Where    is rainfall,    the groundwater and    the runoff, all of them expressed as a 

percentage over their maximum value in the historical data series, and   ,    and    are their 

corresponding probabilities. Table 1 shows the best fit parameters for the Gamma function. 
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3.1.2. Weibull PDF 

 

The Weibull distribution is a continuous probability distribution with a scale parameter ( ) and 

a shape parameter ( )3.  The Weibull PDF assigns a probability (  ) for every value of the water 

stored in reservoirs (  ), expressed as a percentage over the maximum value in the historical 

data:  
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Table 2 shows the best fit parameters for the Weibull function. 

 

[Insert Table 2 about here]  

 

3.2. Drought indexes 

 

Now we obtain the probability of every drought index value (  ) using the PDFs obtained 

above. For the simplest case in which only one variable is used, the drought index is obtained 

as follows (GRBA, 2007): 
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 The parameters are estimated by maximum likelihood. All the parameters for every sub-basin are 

significant at the 1% level. 



Where    is the variable’s observed value in the month of reference (April in the GRB) and      

and       are the average and minimum values in the historical data series of that variable, 

respectively (all of them as a percentage over their maximum value in the historical data). The 

corresponding probability of this drought index would be thus    (       ).  

In the case where the drought index is made up of a combination of hydrological variables, it is 

obtained as follows (GRBA, 2007): 

   ∑         
 
        [4] 

Where    is a weighting coefficient predetermined by the river basin authority that ranges 

between 0 (the variable is no relevant in the calculation of the index) and 1 (the same situation 

as in [3]), with ∑   
 
     . The probability of the mixed drought index is: 
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3.3. Drought thresholds and expected water availability 

 

We finally aggregate the indexes into the four drought stages (normality, pre-alert, alert and 

emergency) to obtain the probability of every drought stage. First we define a set of dummy 

variables:  
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Where     ,      and      are the pre-alert, alert and emergency thresholds, respectively.  

Next we obtain the probability of every drought stage (  ) in the sub-basins of the GRB. For 

example, the probability for the stage of normality (  ) is obtained as follows: 
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Where       is the value of the variable    that makes the cumulative density function equal 

to 1 (i.e., the probability of any value above this limit is zero).  

Similarly, the probability for the stages of pre-alert (   ), alert (  ) and emergency (   ) are 

obtained as follows:  
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Finally we use the water allotments specified in the DMP for every drought stage (  ) to 

estimate the expected water availability in agriculture (     ). In the GRB the plan 

establishes the following four drought thresholds and their corresponding allotments (GRBA, 

2007): i) when water stored levels are regarded as normal (       ), there are no restrictions 

(    ); ii) water for irrigation is reduced by 5% (       ) when available water falls below 

the prealert threshold (            ); iii) if the alert limits are exceeded (            ), 

water for irrigation is reduced by 30% (      ); and iv) in emergency situations (       ), 

water for irrigation is drastically reduced by 70% (      ).       is obtained for every sub-

basin in the GRB as a percentage over the amount of water allotted in a normal year (    ). 

      ∑            [15] 

 

3.4. Climate change scenarios 

 

So far we are assuming that the dynamics of the renewable water resources are endogenous 

and there is no external shock. However, there is evidence that renewable water resources in 

Spanish basins have been decreasing during the last years (MARM, 2000 and 2011). Climate 

change is regarded as the main cause and consequently it has become a matter of concern, 

especially in overexploited southern basins such as the GRB (GRBA, 2007 and 2010). Therefore, 

national and regional authorities have commissioned several reports on the effects of climate 

change over water supply in the GRB. The alternative scenarios provided by these reports are 

compiled in MARM (2011). In this paper we use synthetic indexes that are obtained from a 

weighted average of the alternative climate change scenarios (see MARM, 2011). Synthetic 

indexes are available for the periods 2011-2040, 2041-2070 and 2071-2100. We use these 

indexes to adjust the historical data series of the hydrological variables and then we repeat the 

methodology above to assess the effects of climate change over water availability in 

agriculture in the medium-long term. We consider three climate change scenarios (2011-2040, 

2041-2070 and 2071-2100), all of them showing a decrease of renewable resources. The 

synthetic indexes show that water availability falls between 7.5% and 12% in the period 2012-

2040, between 12.5% and 20% in 2041-2070 and between 19% and 33.5% in 2071-2100, 

depending on the water source, as compared to the historical data series (MARM, 2011). 



 

4. Results 

The historical overexploitation of the GRB has reduced the robustness and resiliency of the 

basin and has made it gradually more exposed to drought events. According to our model, a 

drought is declared almost one in two years and the probability of suffering an extreme 

drought (with water restrictions for agriculture of 70%) is approximately 14%. Consequently, 

the implementation of the DMP will result in an expected water availability for agriculture of 

62.2% (much lower than the 90% specified in the previous legislation), although there are 

relevant differences among sub-basins.  

Regulación General is the largest sub-basin in the GRB and represents 66% of agricultural 

water demand. It is also the most affected sub-basin by the water restrictions specified in the 

DMP, with an expected water availability only slightly above 50% in an average year. The Jaén 

Sub-basin (4% of the agricultural water demand) also has a low expected water availability of 

67%. On the other hand, the sub-basins of Alto Genil, Hoya de Guadix, Alto Guadiana, 

Bembézar-Retortillo, Viar and Almonte Marismas, which together represent 20% of the 

agricultural water demand in the GRB, have an expected water availability over 80%. The 

remaining sub-basins also show positive results, with expected water availability above 75%, 

although most of these sub-basins are located upstream and have a marginal relevance for 

irrigation (10% of the agricultural water demand) (Figure 2).  

 

[Insert Figure 2 about here]  

 

4.1. Climate change scenarios 

Now we use the official climate change estimations to introduce an exogenous shock that 

reduces the amount of renewable water resources in the system. Our results show that 

expected water availability for agriculture in the GRB is reduced in average by 4% in 2012-

2040, by 7% in 2041-2070 and by 12% in 2071-2100 as compared to the values in the 

simulation with no climate change.  

As before, there are relevant differences among sub-basins. In the Regulación General Sub-

Basin the expected water availability for agriculture is reduced by 12% throughout the century, 

from 50% to 38%, revealing a scenario in which a large share of the irrigated land in the GRB 

would be unsustainable. Expected water availability in the Alto Genil Sub-Basin, which supplies 

9% of the agricultural water demand, is reduced by almost 20%, from 84% to 66%. Also the 

Alto Guadiana (from 84% to 69%), Guadalmellato (from 78% to 67%) and Sevilla (from 80% to 

61%) sub-basins show expected water availability values for agriculture under 70% in the end 

of the century. Finally the Salado de Morón (from 75% to 58%) and Jaén (from 67% to 55%) 

sub-basins show expected water availability values for agriculture under 60% in 2100. All the 

results are displayed in the Figure 3: 



 

[Insert Figure 3 about here]  

 

5. Discussion and conclusions 

In this paper we develop a model to assess the impact of the DMPs over water availability for 

agriculture. The methodology is general and can be implemented in any basin with a DMP in 

force. We apply the methodology to the particular case of the overexploited GRB in Spain. 

Results show that, provided that the DMP is effectively enforced, the effects over water 

availability in agriculture are significant. Water availability is reduced in average to 62.5% of 

the water demand, a much lower figure than the water access reliability of 90% that the 

previous legislation foresaw. In some areas, the impact may be even larger. For example, 

expected water availability is halved in the Regulación General Sub-basin, which comprises 

most of the irrigated lands in the GRB, including the most productive areas. If we introduce 

climate change simulations in our model, water restrictions are deepened and more frequent.  

The severity of these water restrictions is largely determined by the strict water constraints 
imposed by the DMPs in order to guarantee household supply and minimum environmental 
flows. These constraints are a function of the water demand to water supply ratio. In basins 
suffering a severe water deficit, such as the GRB, water constraints are tighter and thus have a 
higher effect over agriculture. Thus, we would expect a policy aimed towards reducing and 
adapting water demand to water supply. This policy would make possible a relaxation in the 
water constraints of the DMP and would make the agricultural activity more sustainable. 
However, unlike the US contingency plans, EU DMPs do not use complementary economic 
instruments (such as water markets or water pricing) to curb water demand. As a result, water 
demand in the GRB is expected to remain in similar levels (GRBA, 2010), though water 
availability will be drastically reduced according to our model. 

It is also important to consider that in this model we have assumed a perfect enforcement of 
the DMP. Without complementary instruments to reduce water demand, a likely collateral 
effect of command and control policies in drought prone agricultural areas is the 
overexploitation of uncontrolled groundwater resources (Gómez and Pérez, 2012). 
Consequently, the final outcome of the DMPs could be the substitution of the publicly 
provided water by illegal groundwater abstractions. This may raise environmental as well as 
inequality issues, as those who have no access to groundwater would be the ones actually 
facing the consequences of water restrictions.  

In order to avoid a disproportionate impact over agriculture and at the same time guarantee 

water demand for priority uses, additional instruments need to be in place. Without 

complementary policies, DMPs may change water availability but not agents’ incentives. 

Consequently, DMPs should not be regarded as a panacea, but rather as a part of an 

institutional change towards a sustainable water management. A comprehensive policy mix 

can find the way to make the reduction of water scarcity compatible with the maintenance of 

a sound agricultural sector. DMPs are a first step and an opportunity, but the transition 

towards a sustainable water use relies on building better institutions and putting the effective 

incentives in place. 
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Table 1: Gamma function. The dependent variable is the percentage of rainfall (  ), 
groundwater (  ) or runoff (  ) over their maximum value in the historical data. 

Sub-basin Variable type 

Coefficient 

a (Scale) b (Shape) 

Campiña Sevillana x1 10.699* 
(0.764) 

0.057* 
(0.005) 

Alto Guadiana Menor x1 11.327* 
(0.755) 

0.049* 
(0.004) 

Almonte-Marismas x1 16.452* 
(1.371) 

0.032* 
(0.003) 

Alto Genil x2 7.719* 
(0.858) 

0.062* 
(0.010) 

Viar x3 1.679* 
(0.316) 

0.193* 
(0.025) 

Huesna x3 1.263* 0.324* 

Estimated maximum likelihood. Standard errors in parentheses. 

Source: Authors' elaboration from MARM, 2009 and 2012; AEMET, 2012 and GRBA, 2012. 

* Significant at the 1% level. 

 

 



Table 2: Weibull function. The dependent variable is the percentage of dam-stored water over 
dam storage capacity (  ). 

Sub-basin 

Coefficient 

a (Scale) b (Shape) 

Salado de Morón 
0.500* 
(0.036) 

1.684* 
(0.153) 

Alto Genil 
0.597* 
(0.040) 

1.683* 
(0.129) 

Hoya de Guadix 
0.818* 
(0.068) 

5.109* 
(0.426) 

Alto Guadiana Menor 
0.720* 
(0.080) 

3.062* 
(0.510) 

Bembézar-Retortillo 
0.711* 
(0.178) 

2.397* 
(0.184) 

Jaén 
0.549* 
(0.110) 

1.698* 
(0.170) 

Rumblar 
0.743* 
(0.106) 

2.538* 
(0.195) 

Guadalmellato 
0.589* 
(0.059) 

1.924* 
(0.275) 

Sevilla 
0.731* 
(0.061) 

2.137* 
(0.194) 

Regulación General 
0.347* 
(0.035) 

1.484* 
(0.212) 

Estimated maximum likelihood. Standard errors in parentheses. 

Source: Authors' elaboration from MARM, 2009 and GRBA, 2012. 

* Significant at the 1% level. 

 

 

  



Figure 1: Location of the Guadalquivir River Basin in the Iberian Peninsula and detail of its sub-

basins. 

 

 

  



Figure 2: Expected water allocation for agriculture, GRB. 

 

 

 

  



Figure 3: Expected water allocation for agriculture, GRB. Climate change simulations (2012-

2040, 2041-2070 and 2071-2100). 

  

 

 

 

 

 






