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Abstract 

Ray (1998) has proposed a model for estimating scale efficiency using a parametric 

approach. Following this methodology, a scale efficiency measure is obtained from the 

estimated parameters of the production frontier function and from the estimated scale 

elasticities. This study aims to estimate technical and scale efficiencies achieved by the 

Italian citrus fruit-growing farms. A stochastic frontier production model is considered 

in order to estimate technical and scale efficiencies. The analysis is expected to estimate 

the role of both technical and scale efficiencies in conditioning productivity. Particular 

attention is put on determining the inefficiency effects associated with a set of structural 

and environmental variables and on the relationship between technical and scale effi-

ciency scores. Findings suggest that the greater portion of overall inefficiency in the 

sample might depend on producing below the production frontier than on operating 

under an inefficient scale. Indeed, room for improving technical efficiency is, on aver-

age, larger (29%) than the margin due to scale inefficiency (18%). Results also indicate 

a weak relationship between the two efficiency measures. 

 
Key words: Technical efficiency, Scale efficiency, Stochastic Frontier Analysis, Citrus 

faming, Italy 

 
Introduction 

According to Frisch’s (1965) definition, optimal scale of production refers to an in-
put bundle where scale elasticity equals unity and, as a consequence, a plant operates 
under constant returns to scale. It describes the maximally attainable output for that in-
put mix. This definition substantially corresponds to Banker’s (1984) concept of most 
productive scale size (MPSS) in the Data Envelopment Analysis (DEA) context. 

Practically, plants rarely operate at an optimal scale for several reasons (e.g., con-
straints in the labour market or in capital disposability, land fragmentation, and exis-
tence of an inflexible land market). It means that a certain grade of inefficiency is ob-
servable. 

Scale efficiency is a measure inherently relating to the returns to scale of a technol-
ogy at any specific point of the production process. Traditionally, it measures how close 
an observed plant is to the optimal scale (Försund and Hjalmarsson, 1979). More pre-
cisely, scale efficiency reflects the ray average productivity at the observed input scale 
with respect to the efficient (optimal) scale (Försund, 1996). 

A great number of papers in the economic literature have estimated scale efficiency 
in agriculture. In most of these studies, scale efficiency is calculated using a non-
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parametric approach, specifically through DEA models (Bravo-Ureta et al., 2007). In 
the DEA model, scale efficiency is measured by estimating two technical efficiency 
measures in a preliminary step, i.e., efficiency is calculated under different assumptions 
of constant and variable returns to scale. Thus, scale efficiency is obtained by dividing 
the first measure by the second one (Coelli, 1996a). Therefore, scale efficiency should 
measure the role of scale in determining technical efficiency. 

On the other hand, a common task in parametric analysis is to estimate scale elastic-
ity, without any reference to scale efficiencyi. The most likely reason for measuring 
scale efficiency, which has not become widely held in the parametric approach, is that a 
closed form measure directly computable from the fitted model is not currently avail-
able for the more flexible functional forms, as translog specification. This is a signifi-
cant analytical shortcoming, even though more than two decades ago, several scale effi-
ciency measures were proposed in the context of the generalised Cobb-Douglas produc-
tion frontier by Försund and Hjalmarsson (1979). 

As emphasised by Orea (2002) and Karagiannis and Sarris (2005), the approach fol-
lowed for the DEA is hardly transferable when a parametric methodology is used. In-
deed, there is nothing to guarantee that the variable returns-to-scale technology is en-
veloped from the constant returns-to-scale technology in the parametric context. 

A model for estimating scale efficiency within a parametric approach was proposed 
by Ray (1998). Following this methodology, a scale efficiency measure is obtained 
from the estimated parameters of the production frontier function–under the variable 
returns-to-scale hypothesis and from the estimated scale elasticity. Ray’s (1998) model 
has the advantage of being easily tractable from the econometric point of view and be-
ing particularly suitable for a translog frontier functionii. 

In spite of these operational advantages, the model proposed by Ray (1998) has been 
scarcely adopted for estimating scale efficiency in agricultural studies. Recently, 
Karagiannis and Sarris (2005) applied this model to investigate the Greek tobacco 
farms. They analysed a sample of tobacco growers during 1991–95 and calculated tech-
nical and scale efficiencies at the farm level. They found that, on average, the degree of 
technical efficiency (which varied from 64.7% to 76.2%) was lower than the degree of 
scale efficiency (from 90.1% to 95.9%). This would indicate that overall inefficiency 
may depend mainly on producing below the production frontier than on adopting an 
inefficient scale. Mo (2009) calculates scale efficiency of wheat farms in Kansas from 
parametric measures of technical efficiencies, but adopting the model illustrated by 
Featherstone et al. (1997) suitable for cost functions measures and applied by the au-
thors to non-parametric efficiency measures.  

On the other hand, other studies calculate technical efficiency using both parametric 
and non-parametric approach, but estimation of scale efficiency is carried out exclu-
sively adopting a non-parametric technique (Andreu and Grunewald, 2006; Vu, 2006; 
Bojnec and Latruffe, 2008). It is our opinion however that scale efficiency measures 
obtained from parametric models might give us relevant information as well as non-
parametric measures about the role of scale in affecting productivity, especially when 
panel data are handled.  

In the light of these considerations, the objective of the present study is to attempt an 
empirical evaluation of the technical and scale efficiencies exhibited by the Italian citrus 
farming. The paper is focused on understanding if great inefficiency exists in using 
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technical inputs and in operational scale in order to assess how much some technical 
and structural constraints obstacle achievement of satisfactory performances by part of 
this sector.  

Estimation of efficiency was done on a balanced panel data of 107 farms that partici-
pated in the official Farm Accountancy Data Network (FADN), which was investigated 
from 2003 to 2005 (a total of 321observations). 

A stochastic frontier analysis (SFA) model (parametric) is considered in order to es-
timate technical and scale efficiencies. Specifically, a non-neutral production function 
model and the Ray (1998) model were applied to estimate technical and scale effi-
ciency, respectively. The joint estimation of these measures allowed us to evaluate the 
individual role of technical and scale efficiency in conditioning productivity. Particular 
attention was put on determining the (technical and scale) inefficiency effects associated 
with a set of structural and environmental variables that could affect efficiency and on 
assessing the relationship between technical and scale efficiency scores. 

The article is organized as follows: the empirical model for the estimation of techni-
cal and scale efficiency is presented in the section 2; background information on the 
Italian citrus fruits sector is reported in the section 3; dataset and the applied model with 
the definition of the explanatory variables are described in the section 4; the empirical 
findings are discussed in the section 5; and, finally, concluding remarks are summarized 
in the section 6. 

 
Methodological background 

Stochastic Frontier Analysis (SFA) 

Stochastic Frontier Analysis (SFA) was originally and independently proposed by 
Aigner et al. (1977) and Meeusen and van der Broeck (1977). In these models, the pro-
duction frontier is specified which defines output as a stochastic function of a given set 
of inputs. The presence of stochastic elements makes the models less vulnerable to the 
influence of outliers than with deterministic frontier models. It concerns that the error 
term ε may be separated in two terms: a random error and a random variable explana-
tory of inefficiency effects: 

(1a)  yit  =  f (xit, t; ß) • exp ε 
(1b)  ε  = (vit - uit)     i = 1,2,….N   t = 1,2,….T 
where yit denotes the level of output for the i-th observation at year t; xit is the row 

vector of inputs; t is the time index, ß is the vector of parameters to be estimated; f (•) is 
a suitable functional form for the frontier (generally Translog or Cobb-Douglas); vit is a 
symmetric random error assumed to account for measurement error and other factors 
not under the control of the firm; and uit is an asymmetric non-negative error term as-
sumed to account for technical inefficiency in production.  

The vi’s are usually assumed to be independent and identically distributed N (0, σv

2
) 

random errors, independent of the uit’s that are assumed to be independent and identi-

cally distributed and with truncation (at zero) of the normal distribution N (0, σu

2
). 

The Maximum Likelihood Estimation (MLE) of (1) allows us to estimate the vector ß 

and the variance parameters σ2=
22  + vu σσ  and γ = σu / σv; where 0 ≤ γ ≤ 1. The TE 

measure is obtained by the ratio of yit to the maximum achievable level of output: 
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(2)  TE = *y

yit

 = exp (- uit)           
where y* is the output that lies on the frontier. Furthermore, assuming a semi-normal 

distribution for uit and according to Jondrow et al. (1982), the degree of technical effi-
ciency of each firm could be estimated.  

Most of the SFA function models proposed in literature are inappropriate to estimate 
the inefficiency effects caused by factors that affect efficiency. In order to estimate 
these effects, some authors proposed a two-stage method, in which the first stage con-
sists in technical efficiency estimation using a SFA approach, and the second stage in-
volves the specification of a regression model that relaxes technical efficiency with 
some explanatory variables (Pitt and Lee, 1981; Kalirajan, 1982; Parikh and Shah, 
1994). 

One-stage SFA models in which the inefficiency effects (ui) are expressed as a func-
tion of a vector of observable explanatory variables were proposed by Kumbhakar et al. 
(1991), Reisfschneider and Stevenson (1991), Huang and Liu (1994). In this model, all 
parameters – frontier production and inefficiency effects – are estimated simultane-
ously. This approach was adapted by Battese and Coelli (1995) to account for panel 
data. They proposed an one-stage approach where the functional relationship between 
inefficiency effects and the firm-specific factors is directly incorporated into the MLE. 
The inefficiency term uit has a truncated (at zero) normal distribution with mean mit: 

(3a)  uit = mit + Wit             
where Wit is a random error term which is assumed to be independently distributed, 

with a truncated (at -mit) normal distribution with mean zero and variance σ2 (i.e. Wit ≥ 
- zit  such that uit is non-negative). 

The mean mit  is defined as: 
(3b)  mit  = Z (zit, δ)  i = 1,2,….N   t = 1,2,….T       
where Z is the vector (Mx1) of the zit firm-specific inefficiency variables of ineffi-

ciency; and δ is the (1xM) vector of unknown coefficients associated with zit. So we are 
able to estimate inefficiency effects arisen from the zit explanatory variablesiii.  

 
Parametric estimation of scale efficiency 

Orea (2002) argues that the non-parametric approach difficultly can be directly trans-
ferred into a parametric approach in order to calculate scale efficiency. Indeed when 
parametric approach is used, hypothesis that VRS technology is enveloped from CRS 
technology is weak by a theoretical point of view. 

As mentioned above, Ray (1998) proposed a model in which scale efficiency can be 
calculated from the estimated parameters of the production frontier and from scale elas-
ticity estimations. For a translog frontier function: 

(4)  ln yit = β0 +
  -   ln ln

2

1
  ln )(

111

itit

l

k

kitjitjk

n

j

n

j

jitj uvxxx ββ +⋅+ ∑∑∑
===  

and assuming an output-oriented approach for the technical efficiency estimation, 
scale elasticity at farm-specific input bundle is equal to: 

(5) 
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Remanding to Ray (1998) for a more detailed description of the methodology, it fol-
lows that the output-oriented scale efficiency (SEO) corresponds to: 

(6) 

( )








=

β2
E - 1

exp    SE
2

itO

it

 
where: 

(7) 
∑ ∑
= =

=
n

 j 

l

k
jk

1 1

    ββ
   

with ß that is assumed to be negative definite as to guarantee that 0 < 
O

itSE  ≤ 1iv. 
This output-oriented scale efficiency measures the role of scale in conditioning tech-

nical efficiency. In case of an input bundle not operate in an optimal scale, the ray aver-
age productivity of its technical efficiency correspondence is lower than what is maxi-
mally attainable at the optimal scale. It means that scale efficiency reflects the relative 
output expansion by producing at optimal scale on the frontier for the observed factor 
proportions of a firm whose technical inefficiency has been eliminated (Karagiannis and 
Sarris, 2005). In other terms, following the Frisch’s definition, scale efficiency meas-
ures the distance to full efficient scale after moving a production unit to the frontier in 
the vertical direction.  

As reported by Ray (1998), scale efficiency (6) and scale elasticity (5) are both equal 
to one only at an MPSS, i.e. where constant returns to scale prevails. Elsewhere they 
differ and SE is <1 irrespective of whether Eit is greater than or less than unity. It means 
that the magnitude of scale elasticity reveals nothing about the level of SE at the points 
different by the MPSS.  

On the basis of the definition of scale efficiency measured by (6), the sub-optimal 
scale is associated with increasing returns to scale. When Eit > 0 (increasing returns to 
scale) then SE increases with an increase in output and the optimal scale should be 
reached expanding the observed output level. Vice versa, output should be contracted to 
reach the optimal scale when a plan operates in a decreasing returns to scale (supra-
optimal) area (Eit < 0)v.  

In order to explain scale efficiency differentials among plans, Karagiannis and Sarris 
(2005) used a two-stage approach. At the first stage, SEs are estimated using the for-
mula (6) and successively, at the second stage, the SE scores are regressed against a set 
of explanatory variables. Following the procedure proposed by Reinhard et al. (2002), 
these authors in the second stage used a MLE technique to estimate this stochastic fron-
tier regression model: 

(8a) ln
O

itSE  = mit + εit  with           
(8b) mit  = Z (zit, ρ)  and 

(8c) εit  = (
*
itv -

*
itu )     i = 1,2,….N   t = 1,2,….T     

where zit represents the same set of variables used in the inefficiency model (5), ρ 

are the parameters to be estimated, εit is the error term composed by 
*
itv  that represents 

the statistical noise (independently and identically distributed with N (0,
2
*vσ ) random 

variable truncated at -mit) and by 
*
itu  that represents the conditional scale inefficiency 
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remaining even after variation in the zit has been accounted for (
*
itu  ∼ N (-mit, 

2
*uσ )). 

Regarding the technical efficiency estimation, the two-stage approach in the SFA 
models has been criticized by several authors because it is inconsistent in it’s assump-
tion regarding independence of the inefficiency effects (Battese and Coelli, 1995; 
Kumbhakar and Lovell, 2000). The rationale underlying is that the specification of the 
regression of the second stage - in which the estimated technical efficiency scores are 
assumed to have a functional relationship with the explanatory variables - conflicts with 
the assumption that ui’s are independently and identically distributed (TE is the depend-
ent variable in the second stage procedure). 

However, as underlined by Reinhard et al. (2002), a two-stage procedure can consis-
tently be used as long as the efficiency scores are calculated from the first-stage parame-
ter estimates, instead of being estimated econometrically at the first stage. In the case of 
the procedure illustrated above, no such assumption is made with respect to the depend-
ent variable SE because SE scores are obtained from the parameter estimates and the 
estimated values of scale elasticity. Thus, Reinhard et al. (2002) recommended applica-
tion of the two-stage procedure for estimating scale efficiency effects.   

 
The Italian citrus fruit sector 

Citrus fruit growing is one of the largest categories in the Italian vegetable and fruit 
sector. Since 2006, the value of production has amounted to more than 1 billion euro, 
accounting for about 10% of the total value of vegetables and fruits produced (Giuca, 
2008). Oranges comprise about 54% of citrus fruit production, whereas the contribution 
of lemons and tangerines to overall production (in terms of value) is equal to 17% and 
19%, respectively. 

The land area cultivated to citrus fruits corresponds to about 122,000 ha, while the 
number of farms is about 85,000 (Ismea, 2008). Substantially, the farms are situated in 
the southern regions of Italy and, specifically, more than 70% of the farms and about 
80% of cultivated land are located in only two regions: Sicily and Calabry. Since the 
early 1990s, however, land area covered by citrus fruits has decreased by about 30% (in 
1990, it amounted to 184,000 ha) and the number of citrus farmers decreased by about 
45% (about 170,000 in 1990). In this period, exports have slightly increased, while im-
ports has grown sixfold (Giuca, 2008). 

Several reasons for this deterioration can be explored. First, the increasing competi-
tion in the world citrus fruit market has penalised Italian farmers because of structural 
and organisational problems that historically characterised the Italian citrus fruit sector. 
Specifically, Italian farms appear significantly small (on average, the area is 1.44 ha) 
and most of the citrus farms are located in less favourable areas where economic and 
productive alternatives are limited. Furthermore, despite the small size, many farms are 
fragmented in more plots of land, with evident implications on the ability to operate 
under efficient conditions. 

These and other factors have contributed in the last few years to Italy’s declining 
competitiveness and efficiency in the world citrus fruit market. Structural constraints 
seem to negatively affect the performance of the Italian sector and inhibit economic de-
velopment of citrus farming. The detection of technical and scale efficiencies can offer 
us more information about the nature of these problems. If significant technical and/or 
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scale inefficiency were found, this would indicate that structural problems prevent farm 
expansion and the rational use of technical inputs. An analysis of the relationship be-
tween technical and scale (in)efficiency would allow us to determine direction priorities 
- technical efficiency or scale efficiency oriented measures - in order to improve overall 
efficiency in the farms.  

 
Data and the Empirical model 

Data were collected on a balanced panel data of 107 Italian citrus farms. All the se-
lected farms participated in the official Farm Accountancy Data Network (FADN) dur-
ing the period 2003-2005 and they are specialized in citrus fruit-growing (more then 2/3 
of farm gross revenue arises from citrus production). Farms with less than two Euro-
pean Size Units (ESU) were excluded from the samplevi. Therefore, our analysis is 
based on a total of 321 observations (see Table 1 for summary statistics about farms).   

 
Table 1 – Summary statistics for citrus farms in the sample (mean values) 

Variable 2003 2004 2005 

Gross revenue (euro) 54,508  53,861  56,542  
Land area (hectares)   13.21    13.26    13.41  
Expenditure for seeds, fertilizers, etc. (euro)   3,878    4,866    5,066  
Machineries (annual depreciation rate, euro)   2,395    2,489    2,962  
Capital (annual depreciation rate, euro)   5,050    5,182    5,052  
Other expenditures (euro)   1,240       939    1,322  
Labour (annual working hours)   2,785    2,814    2,772  
Age of farm owner     59.1      59.7      60.7  
Size (ESU*)       4.7        4.7        4.7  
Altitude (metres)      104       104       104  
Number of plots of land       1.6        1.7        1.7  
* ESU = European Size Units 

 
We assumed a Translog functional form as frontier technology specification for the 

citrus farms. The adopted model corresponds to the Huang and Liu (1994) non-neutral 
production function model applied on panel data, which assumes that technical effi-
ciency depends on both the method of application of inputs and the intensity of input 
use (Karagiannis and Tzouvelekas, 2005)vii. It means that the inefficiency term uit ex-
plained by (1) is equal to: 

(9) uit = δ0 + 
∑
=

	

i 1 δit zi  +
∑

=

M

m 1 δm ln xmit  +Wit  i = 1,2,….N    t = 1,2,….T 
The Translog stochastic function production model is specified as follows: 

(10a) ln Yit = β0 +
  - t ln ln

2

1
  ln )(  

7

1

77

1

itit

k

kijitjk

jj

jitj uvxxx ββ +

=≤=
∑∑∑ ⋅+

 
The dependent variable (Y) represents the output and it is measured in terms of gross 

revenue from the i-th farm. The aggregate inputs, included as variables of the produc-
tion function, are 1) X1 the total land area (hectares) devoted to citrus fruit-growing by 
each farm; 2) X2 the expenditure (euro) for seeds, fertilizers, water and other variable 
inputs used in the citrus fruits-growing; 3) X3 the value (euro) of machineries used in 
the farm; 4) X4 the value (euro) of capital (amount of fixed inputs such as buildings and 
irrigation plant, except for machineries); 5) X5 the expenditure (euro) for other inputs, 
consisting in fuel, electric power, interest payments, taxes, etc.; 6) X6 the total amount 
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(annual working hours) of labour (including family and hired workers); 7) X7 the time 
(year) that can assume value equal to 1 (2003), 2 (2004) or 3 (2005). Regarding the ma-
chineries and capital variables, they were measured in terms of annual depreciation rate 
so to have a measure of annual utilization, on average, of the capital stockviii. All vari-
ables measured in monetary terms were converted into 2003 constant euro value. 

Taking into account the formula (3), the inefficiency model (9) has the follow form: 
(10b) uit = δ0 + δ1Ageit + δ2Sizeit + δ3Altitudeit + δ4Plotsit + δ5Less favoured 

zonesit  + δ6 Rcam it + δ7 Rcal it + δ8 Rapu it + δ9 Rbas it + δ10 Rsic it + δ11 Rsar it + 

∑
=

7

1

 ln
j

jitj xβ

+ Wit  
Explanatory variables of the inefficiency effects were represented by 1) Z1 the age of 

the farm owner; 2) Z2 the dummy variable size of the farm measured in terms of Euro-
pean Size Units (ESU) that can assume a value involved from 3 to 7ix; 3) Z3 the vari-
able altitude that reflects the average altitude (in metres) by each farm; 4) Z4 the num-
ber of plots of land in which farm is fragmentized; Z5 a dummy variable that reflects the 
placement (or not) of each farm in a Less-favoured area such as defined by the EEC 
Directive 75/268 (0 = Less-Favoured zone; 1 = non Less-favoured zone); Z6-Z11 that 
represent a set of dummy variables indicating the regional location of farms (Rcam = 
Campany; Rcal = Calabria; Rapu = Apulia; Rbas = Basilicata; Rsic = Sicily; Rsar = 
Sardinia); and finally – according to the non-neutral model proposed by Huang and Liu 
(1994) - the same pool of variables (included time) used to describe the frontier function 
production (xit). 

Variables such as age of farmers, farm size, and regional location have been widely 
used in the SFA applied to agriculture. The first is generally used as a proxy of farmer 
skills, experience, and learning-by-doing (the rationale is that the expected level of effi-
ciency increases with experience). The second was implemented to evaluate the role of 
farm economic size in conditioning efficiency (the negative sign is expected: ineffi-
ciency tends to decrease in larger farms). The third serves to estimate the presence of 
territorial and geographic variability that may affect efficiency. 

Altitude and location in a less-favoured area are variables used in some efficiency 
analysis to account for geoclimatic and socioeconomic heterogeneities (Karagiannis and 
Sarris, 2005; Madau, 2007). On the other hand, the number of lots has not been a vari-
able generally employed in the efficiency analysis in agriculture. But, in our opinion 
and as highlighted above, it could be significant in conditioning both farm technical and 
scale efficiencies in the Italian citrus farming. Indeed, the subdivision of the farm land 
area into more plots of land could be an obstacle toward achieving full (technical and 
scale) efficiency on the part of farmers. Applying  the second-stage regression (8), scale 
efficiency effects were calculated using the same bundle of variables used for the tech-
nical efficiency effects model, with the exception of inputs that describe the frontier 
production. 

 
Analytical findings and discussion 

Parameters for the function and inefficiency model were estimated simultaneously. 
ML estimation was obtained using the computer program FRONTIER 4.1, created by 
Coelli (1996b). ML estimates for the preferred frontier model were obtained after test-
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ing various null hypotheses in order to evaluate suitability and significance of the 
adopted model. 

As testing procedure we adopted the Generalised likelihood-ratio test, which allows 
us to evaluate a restricted model with respect to the adopted model (Bohrnstedt and 
Knoke, 1994). The statistic associated with this test is defined as:  

(11)  λ =  - 2ln Λ  =  - 2 
ln 

L( )

L( )

0

1

H

H





   = - 2 [ln L(H0) - ln L(H1)]   

where L(H1) and L(H0) are the log-likelihood value of the adopted model and of the 
restricted model - specified by the formulated null-hypothesis - respectively. The statis-
tic test λ has approximately a chi-square (or a mixed-square) distribution with a number 
of degrees of freedom equal to the number of parameters (restrictions), assumed to be 
zero in the null-hypothesis. When λ is lower than the correspondent critical value (for a 
given significance level), we cannot reject the null-hypothesis. 

The first two tests are relative to the frontier model. The first one concerns the hy-
pothesis of adopting a neutral frontier function (H0 : δm = 0). In case this null-
hypothesis is not rejected, the preferable model should be described by the Battese and 
Coelli (1995) model illustrated by (1). The value of the likelihood ratio statistic for this 
restricted model is calculated to be 20.74 and it is significantly higher than 12.59, which 
is the critical value (at 5% significance level for 6 degrees of freedom) from the χ2 dis-
tribution (Table 2). Hence, the null-hypothesis of neutral technology can be rejected and 
it suggest that the Huang and Liu (1994) non-neutral model is an adequate representa-
tion for the observed citrus farms. The second test hypothesis aims to assess if the 
Translog frontier is an adequate representation for the citrus fruits-growing or, vice 
versa, the Cobb-Douglas model is more suitable to the data (H0 : βij = 0). The null-
hypothesis was strongly rejected and it means that the Translog form is the preferable 
specification for the data. 

 
Table 2 – Hypothesis testing for the adopted model 

Restrictions Model  L(H0)  λλλλ d.f. 2
95.0χ  

Decision 

None Translog, non neutral  -89.81     
H0 : δm = 0 Neutral -100.18  20.74  6 12.59 Rejected 
H0 : βij = 0 Cobb-Douglas -168.34  157.06  21 32.67 Rejected 
H0 : γ = δ0; δr;δm = 0 No inefficiency effects  -120.45  61.28  6 11.91* Rejected 
H0 : γ = δ0;δm = 0 No stochastic effects -101.80  23.98  9 19.92* Rejected 
H0 : δ0= 0 No intercept  -90.44  1.26  1 3.84 Not rejected 
H0 : δr;δm = 0 No firm-specific factors -118.76  57.90  11 19.68 Rejected 
H0 : δ6….δ11 = 0 No Regional effects -94.88  10.14  6 12.59 Not rejected 
H0 : δ1;  δ3 = 0 No Age and Altitude effects -92.65  5.68  2 5.99 Not rejected 
* Critical values with asterisk are taken from Kodde and Palm (1986). For these variables the statistic λ is distributed 
following a mixed χ2 distribution.  

 
The other tests are associated with the inefficiency model. The third test is devoted to 

verify if inefficiency effects are absent from the model. Rejection of the null-hypothesis 
H0 : γ = δ0; δ1…δ4 = 0 indicates that the specification of a model which incorporates 
an inefficiency model is an adequate representation of these data. The fourth test con-
cerns the nature of the inefficiency effects (stochastic or not). If the inefficiency effects 
are not random, parameters γ and δ0 will be zero because the model will be reduced to a 
traditional mean-response function, in which the explanatory variables are included in 



100 AGRICULTURAL ECO	OMICS REVIEW 

the function modelx. In this case the null-hypothesis was rejected in favour of the sto-
chastic. The fifth test regards the hypothesis H0 : δ0 = 0, where inefficiency effects do 
not have an intercept. The null-hypothesis was not rejected. The sixth test aimed to 
evaluate significance of the regional areas in conditioning inefficiency. The null-
hypothesis H0 : δ6….δ11 = 0 was not rejected and it indicates that inefficiency is not 
significantly dependent by regional placement of farms in Italy. In the seventh test, we 
assessed the influence of the selected variables on the degree of farm efficiency. Testing 
the null-hypothesis H0 : δ1; δ2; …; δ4 = 0, we can verify if the joint effect of the se-
lected variables is significant, irrespective of the significance of each variables. The fact 
that this null-hypothesis was rejected would be taken as confirmation that the selected 
variables are actually illustrative of the efficiency if taken on the whole. The last test 
concerns the degree of suitability of the model without age and altitude effect. The es-
timated parameters showed an irrelevant magnitude in the adopted model, suggesting 
that these variables would be scarcely illustrative of efficiency. The null-hypothesis H0 
: δ1; δ3 = 0 was not rejected and it means that the null hypothesis can be confirmed. 
 
Table 3a – ML Estimates for SFA parameters and for TE (pref. model) - continue 
Variables Parameter Coefficient s.d. 

FRO4TIER MODEL 

Constant β0 -0.608 0.139 

Land Area β1 -1.827 0.422 

Expenditure for seeds, fertilizers, etc. β2 1.515 0.463 

Machineries β3 1.662 0.378 

Capital β4 -0.526 0.453 

Other expenditures β5 0.193 0.287 

Labour β6 0.576 0.569 
Year βT -1.697 0.696 

(Land Area) x (Land Area) β11 0.052 0.037 

(Land Area) x (V. expenditure) β12 0.102 0.038 

(Land Area) x (Machineries) β13 0.085 0.028 

(Land Area) x (Capital) β14 0.021 0.036 

(Land Area) x (O. expenditures) β15 0.010 0.035 

(Land Area) x (Labour) β16 0.060 0.060 

(Land Area) x (Year) β1T -0.111 0.053 
(V. expenditure) x (V. expenditure) β22 0.032 0.031 

(V. expenditure) x (Machineries) β23 0.016 0.026 

(V. expenditure) x (Capital) β24 -0.053 0.037 

(V. expenditure) x (O. expenditures) β25 0.099 0.033 

(V. expenditure) x (Labour) β26 -0.328 0.069 

(V. expenditure) x (Year) β2T -0.011 0.055 

(Machineries) x (Machineries) β33 0.074 0.017 

(Machineries) x (Capital) β34 -0.088 0.033 
(Machineries) x (O. expenditures) β35 -0.125 0.035 

(Machineries) x (Labour) β36 -0.198 0.051 

(Machineries) x (Year) β3T -0.020 0.035 

(Capital) x (Capital) β44 0.030 0.024 

(Capital) x (O. expenditures) β45 0.085 0.024 

(Capital) x (Labour) β46 0.046 0.058 

(Capital) x (Year) β4T 0.076 0.051 

(O. expenditures) x (O. expenditures) β55 0.029 0.021 

(O. expenditures) x (Labour) β56 -0.137 0.072 

(O. expenditures) x (Year) β5T 0.089 0.048 

(Labour) x (Labour) β66 0.228 0.076 

(Labour) x (Year) β6T 0.141 0.065 
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(Year) x (Year) βTT 0.026 0.076 

I4EFFICIE4CY MODEL 

Constant δ0 - - 

Age δ1 -  

Size δ2 -0.495 0.087 

Altitude δ3 - - 

Number of plots of land δ4 0.014 0.031 

Less-favoured zones δ5 0.012 0.010 

Campany δ6 - - 

Calabria δ7 - - 

Apulia δ8 - - 

Basilicata δ9 - - 

Sicily δ10 - - 

Sardinia δ11 - - 

Land Area δSUP -0.679 0.147 

Expenditure for seeds, fertilizers, etc. δSV 0.359 0.105 

Machineries δQM -0.043 0.062 

Capital δQC 0.068 0.110 

Other expenditures δAS 0.319 0.149 

Labour δLAV -0.740 0.214 

Year δT 0.091 0.135 

 
Table 3b – ML Estimates for SFA parameters and for TE (preferred model) 

Variables Parameter Coefficient s.d. 

VARIA4CE PARAMETERS 

σ2   σ2 0.127 0.016 

γ  γ 0.333 0.131 

γ*  γ* 0.579  
Log-likelihood function  -92.66  

TECH4ICAL EFFICIE4CY 

Mean 0.710 
s.d 0.266 

  
Maximum 1.000 
Minimum 0.060 

 
The model was estimated in the light of the t-test results to obtain the preferred form. 

MLE for the more appropriate model are shown, as reported above, in the Table 3. 
 

Structure of production and technical efficiency 

Since the Translog function takes into account also interaction among involved in-
puts, the production elasticities were computed using the traditional formula for the es-
timation of the elasticity of the mean output with respect to the k-th input (except for the 
time variable): 
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Application of (14) indicates that, at the point of approximation, the estimated func-
tion satisfies the monotonicity (all parameters show a positive sign) and diminishing 
marginal productivities (magnitude is lower than unity for each parameter) properties 
(Table 4). The estimated production elasticities suggest that land is the foremost impor-
tant input followed by expenditure for variable inputs, labour, and machineries. It means 
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that enlargement of the land area would affect significantly farm productivity. Specifi-
cally holding all other inputs constant, an increase of 1% in land area would result in a 
0.47% increase in output. According to other research findings, the high elasticity of the 
land area is not surprising in presence of small size farms because this factor could be 
considered a quasi-fixed input (Alvarez and Arias, 2004; Madau, 2007). 

 
Table 4 – Estimated elasticities and returns to scale 

Input Elasticity s.d. 

   
Land area 0.466 0.219 

Expenditure for seeds, fertilizers, etc  0.265 0.146 

Machineries 0.112 0.101 

Capital 0.037 0.050 

Other expenditures 0.080 0.102 

Labour 0.182 0.073 

   

Returns to scale 1.144 0.372 

Time -0.001 0.145 

 
Except for land area, these findings suggest that production of Italian citrus farms is 

sensitively elastic with respect to these factors, which should allow farmers to easily 
vary their own use level in the short run - elasticity of variable inputs and labour is 
equal to 0.27 and 0.18, respectively - while the other quasi-fixed inputs (capital and ma-
chinery) affect productivity less (elasticity equal to 0.04 and 0.11, respectively). The 
time variable shows a negative sign, but the magnitude is not relevant, implying that 
time does not significantly affect production. 

Returns to scale were found to be clearly increasing (1.144). Therefore, the hypothe-
sis of constant returns to scale is rejected. It means that citrus farmers should enlarge the 
production scale by about 14%, on average, in order to adequately expand productivity, 
given their disposable resources. 

As to the estimated technical efficiencies, the analysis reveals that, on average, citrus 
farms are 71% efficient in using their technology (Table 3). Since technical efficiency 
scores are calculated as an output-oriented measure, the results imply that farmers 
would be able to increase output by about 30% using their disposable resources more 
effectively (at the present state of technology).  

Analysis of the ratio-parameter γ gives information on the technical efficiency 
weight into production. The estimated γ is significant (for α = 0.01) and it indicates that 
differences in technical efficiency among farms is relevant in explaining output variabil-
ity in citrus fruits-growing (1/3 of the variability on the whole). In the reality, the pa-
rameter value could not be taken as a measure of the relative contribution of the ineffi-
ciency term to the total output variance, but this measure can be obtained by estimating 
the parameter γ* (calculated as described in Table 3). 

Estimation of this parameter suggests that about 58% of the general differential be-
tween observed and best-practice output is due to the existing difference in efficiency 
among farmers. Therefore, technical efficiency might play a crucial role into the factors 
affecting productivity in the citrus farming. 

Empirical findings concerning the sources of efficiency differentials among farms 
are presented in Table 3. Farm size is positively related to efficiency level. The results 
indicate that improvement of technical efficiency strongly depends on citrus farms at-
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taining an adequate size (magnitude is equal to 0.495). Specifically, farm size increase 
should affect positively both productivity (returns to scale more than unity) and effi-
ciency (negative sign of Size variable). This is an empirical finding that is often found 
in the literature, even if studies show controversial results about the relationship be-
tween technical efficiency and farm size (Sen, 1962; Kalaitzandonakes et al., 1992; 
Ahmad and Bravo-Ureta, 1995; Alvarez and Arias, 2004). 

As expected, the number of lots is negatively correlated to technical efficiency. The 
findings imply that technical efficiency tends to decrease in the case of partitioning 
farms in more plots. 

On the other hand, the magnitude of this effect is low (0.014), indicating that the 
presence of a plurality of lots affect efficiency negatively but not sensitively from a 
technical point of view. Finally, as suggested by the positive sign of the associated pa-
rameter (magnitude is equal to 0.012), farms situated in less-favoured areas tend to be 
more inefficient than those located in normal zonesxi. 

Regarding the relationship between technical efficiency and technical inputs, ML es-
timation shows that all inputs have a significant part to play in determining efficiency 
(Table 3). Land area, labour, and machinery carry a negative sign, implying that an in-
crease in each variable positively affects technical efficiency. The former two variables 
show a higher magnitude, specifically 0.679 and 0.740 for land area and labour, respec-
tively. It implies that efficiency tends to increase sensitively with an increase of land 
area and number of hours devoted to labour. On the other hand, significant effects are 
also associated with expenditure for variable inputs, expenditure for other inputs, and 
capital. In these cases, however, the positive signs suggest an inverse relationship be-
tween increase in utilising these inputs and improvement of technical efficiency. In par-
ticular, on the basis of the estimated magnitudes, it seems that capital is weakly illustra-
tive of inefficiency (0.068), while expenditures for variable (0.359) and other inputs 
(0.319) sensitively affect efficiency in the citrus farms. 

Finally, the empirical findings suggest that farmers tend to become less efficient over 
time (the sign associated with the time variable is positive); also, if the magnitude is 
really low (0.091), it indicates a weak effect of time on efficiency level. 

 
Scale efficiency 

Scale elasticities and scale efficiencies were estimated applying formulas (5) and (6). 
Table 5 shows that the average scale efficiency is 81.8%. It implies that observed farms 
could have further increased their output by about 18% if they had adopted an optimal 
scale. Results also indicate that about 80% of the observations exhibit increasing returns 
to scale. They operate under a suboptimal scale, i.e., their output levels are lower than 
optimal levels and they should be expanded to reach the optimal scale. In these farms, 
scale efficiency is sensitively lower than the average (77.5%) and the average scale elas-
ticity is abundantly upper than unity (1.237). 

On the other hand, only about 6% of the observations are characterised by operating 
under an optimal scale, while about 15% of the panel reveals decreasing returns to scale. 
However, in these latter scenarios, the margin that separate them from the optimal scale 
seem to be really narrow, as suggested by the estimated scale efficiency that is, on aver-
age, close to unity (97.8%). Therefore, these results suggest that scale inefficiency is 
mainly due to the farms operating under a suboptimal scale and these suboptimal-scale 
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farms must have adjusted their output levels to a greater extent than the supra-optimal-
scale ones. These findings are not surprising, considering that recent studies have fo-
cused on realities characterised by the presence of small-sized farms and have found 
similar results about diffusion of suboptimal-scale-efficient farms (Coelli et al., 2002; 
Karagiannis and Sarris, 2005; Latruffe et al., 2005; Cisilino and Madau, 2007). 

 
Table 5 – Estimated scale efficiency and scale elasticity 

         Observations  Scale efficiency Scale elasticity 

 n. %    

Total sample (mean) 321 100  0.818 1.173 
s.d    0.213 0.416 
Maximum    1.000 1.588 
Minimum    0.012 0.662 
      
Supra-optimal scale 47 14.7  0.978 0.897 
Optimal scale 19 5.9  1.000 1.000 
Sub-optimal scale 225 79.4  0.775 1.237 

 
The underlying rationale is that these realities are often characterised by a large 

number of small-sized farms that generally face capital, structural, and infrastructural 
constraints (e.g., vast land fragmentation, huge number of single-household farms, in-
significant presence of land market). They usually do not have adequate farming im-
plements or up-to-date technologies or they are not allowed to reach their optimum size 
under their particular circumstances. Thiele and Brodersen (1999) argue that these mar-
ket and structural constraints are among the main factors that usually impede achieve-
ment of efficient scales by part of farmers. Regarding the Italian citrus farms, Idda 
(2006) and Carillo et al. (2008) found that, often, the input mix is unbalanced (with re-
spect to the rational and efficient composition of the input bundle) in favour of a high 
ratio of capital to land area and labour to land area. This should be mainly caused by a 
scarce flexibility in the land market, which forces farmers to expand the use of other 
inputs (except for land), especially labour and capital, with practical implications on the 
scale efficiency. Therefore, the presence of a quasi-fixed factor such as land should 
negatively affect scale efficiency and should favour exhibition of increasing returns to 
scale. 

The relationship between scale efficiency and farm size seems to be confirmed by 
analytical results on the scale efficiency effects (see Table 7 below). These were ob-
tained from application of (10) to the estimated data. The original proposed model – the 
second-stage regression of the scale efficiency scores to the variables described in the 
paragraph 4 - was tested using the Generalised likelihood-ratio test procedure in order to 
evaluate if a restricted model is preferable. Specifically three tests were applied and re-
sults are reported in Table 6. 

The first test aims to assess if the inefficiency effects have (or not) an intercept. As 
verified for the technical efficiency model, the null-hypothesis H0 : δ0 = 0 was not re-
jected. The second test concerns evaluation of role of the regional areas in conditioning 
the farm scale inefficiency. The null-hypothesis H0 : δ6….δ11 = 0 was rejected and it 
indicates that – in contrast with the technical inefficiency effects – geographical location 
of the citrus farms affect significantly scale inefficiency. The last test was processed 
because of the scarce estimated significance of the coefficient associated to the Less-
favoured area parameter. In this case, the null-hypothesis H0 : δ5 = 0 was not rejected. 
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On the basis of the t-test results, we estimated the preferred model that is different 
from the proposed one for the absence of the intercept and the less-favoured area vari-
able. Estimated findings of scale inefficiency effects are reported in Table 7. 

 
Table 6 – Hypothesis testing for the scale efficiency effects model 

Restrictions Model  L(H0)  λλλλ d.f. 2
95.0χ  

Decision 

       
None Translog, non neutral  123.92     
H0 : δ0= 0 No intercept  123.92  0.01  1 3.84 Not rejected 
H0 : δ6….δ11 = 0 No Regional effects 114.71  18.42  6 12.59 Rejected 
H0 : δ5  = 0 No Less-favoured area effects 112.88  2.08  1 3.84 Not rejected 
       

 

Table 7 – Scale efficiency effects (preferred model) 
Variables Parameter Coefficent e.s 

Constant δ0 - - 

Age δ1 0.006 0.001 

Size δ2 0.040 0.017 

Altitude δ3 0.019 0.024 

Number of plots of land δ4 -0.030 0.014 

Less-favoured zones δ5 - - 

Campany δ6 0.044 0.013 

Calabry δ7 0.002 0.009 

Apulia δ8 -0.016 0.050 

Basilicata δ9 -0.011 0.057 

Sicily δ10 0.055 0.061 

Sardinia δ11 0.051 0.053 

Year δT -0.066 0.099 

 
As reported above, farm size might positively affect scale efficiency. It is the factor 

that contributes the most to conditioning scale efficiency (magnitude is equal to 0.040). 
This suggests that large-sized farms tend to have, as expected, higher scale efficiency 
than small-scale farms. Furthermore, the number of plots of land represents the second 
most important factor in the order of importance that affects scale efficiency (-0.030). 
The consistent negative sign of the estimated coefficient indicates that in-farm land 
fragmentation might be a relevant structural constraint to achieving an adequate scale 
efficiency by part of citrus farmers. The low magnitude (0.006) of the farmers’ age pa-
rameter suggests that this variable has little influence on the observed efficiency differ-
entials. In other words, older and more experienced farmers tend to be more scale effi-
cient than younger farmers, but even though significant, this is not a sensitive cause of 
inefficiency. Also, altitude has positive and significant effects on scale efficiency 
(0.019). Most likely, this is probably linked to citrus fruit varieties grown by many 
farmers in Sardinia, which are more suited for cultivation in hilly areas. Similar to tech-
nical efficiency effect estimation, the relationship between time and scale efficiency is 
negative (-0.066).  

This lends support to the assertion that (technical and scale) efficiency tends to de-
crease over time. Finally, the findings show that there are statistically significant differ-
ences in scale efficiency between farms located in different geographical regions of It-
aly. Farms located in Apulia and Basilicata tend to be less scale-efficient than those lo-
cated in the other southern regions. Specifically, farms situated in the two insular re-
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gions (Sicily and Sardinia) report a higher magnitude (0.055 and 0.051, respectively), 
implying that location in these regions positively and sensitively influences scale effi-
ciency. 

 
Relationship between technical and scale efficiencies 

The empirical findings reported above show that the estimated degree of technical ef-
ficiency is significantly lower than the degree of scale efficiency (on average, the gap is 
more than 10 percentage points). According to the Ray (1998) definition and the meas-
ure of scale efficiency used in this work, it implies that the greater portion of overall 
inefficiency in the sample might depend on producing below the production frontier 
than on operating under an inefficient scale. In other words, it means that, to achieve the 
potential output, given their own structural conditions and input disposability, the prior-
ity of Italian citrus farmers should be to increase their ability in using their own techni-
cal inputs. Indeed, room for improving technical efficiency is, on average, larger (29%) 
than the margin due to scale inefficiency (18.2%). 

On the other hand, significant variability was found in the farm-specific technical 
and scale efficiency scores, leading one to argue that priorities can differ among farm-
ers. Furthermore, in contrast to other research findings (e.g., Karagiannis and Sarris, 
2005), we found a weak relationship between scale and technical efficiencies (R2 = 
0.132). Determining the direction of causality in the interrelationship between the two 
efficiency measures (technical and scale) is difficult and more empirical research is 
needed to evaluate this (Karagiannis and Sarris, 2005). However, some considerations 
can be drawn from our empirical findings. 

 
Table 8 – Relationship between scale and technical efficiency 

Scale efficiency Returns to scale 
 Technical effi-

ciency (mean) 

 Sub-optimal Optimal Supra-optimal Total   

       
< 0.200 3 - - 3  0.758 
0.201 - 0.300 9 - - 9  0.807 
0.301 - 0.400 9 - - 9  0.683 
0.401 - 0.500 17 - - 17  0.652 
0.501 - 0.600 18 - - 18  0.682 
0.601 - 0.700 18 - - 18  0.732 
0.701 - 0.800 33 - 1 34  0.594 
0.801 - 0.900 50 - 2 52  0.516 
0.901 - 0.999 99 - 44 143  0.794 
1.000 - 19 - 19  0.833 
       

Total 255 19 47 321  0.710 

 
Table 8 illustrates the farm technical efficiency scores, on average, associated with 

different levels of estimated scale efficiencies. 
It can be argued that farms with very low scale efficiency scores (SE < 0.300) show 

higher technical efficiency than the estimated average level. The technical efficiency 
scores tend to be collocated around the average level in the case of scale efficiencies 
that vary from 0.300 to 0.700 and progressively technical efficiencies decrease under 
0.600 in the case of scale efficiencies encompassing values between 0.700 and 0.900. 
Finally, farmers who report scale efficiency scores higher than 0.900 show, on average, 
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a very high technical efficiency score. 
These results suggest that, in the case of significant scale inefficiency (less than 

0.300), citrus farmers are able to compensate for their hard structural disadvantages and 
their low scale efficiency with higher efficiency in input use. Probably, farmers who 
operate under large suboptimal returns to scale are more conscious of their disadvan-
tages (e.g., difficulty in overcoming size farm constraints, high value of capital/land and 
labour/land ratios, wide presence of fixed and quasi-fixed inputs) and tend to be more 
cautious in their choice of technical inputs (kind and quantity) to be used. 

In the case of scale efficiency scores varying from 0.300 to 0.700, farmers probably 
put less effort in optimising efficiency in their technical input use because they are more 
able to capitalise on more advantaged structural conditions with respect to the more 
scale-inefficient farmers. Empirical findings also suggest that this behaviour tend to be 
empathised for farms that operate under more favourable but not optimal scale effi-
ciency (0.700 ≤ SE ≤ 0.900).  

Vice versa, farms that operate under optimal or quasi-optimal scale might achieve a 
good level of technical efficiency. In these farms, the proportions among inputs are effi-
cient or close to efficiency, and any (or few) adjustments are needed to attain full-scale 
efficiency. Since it is an output-oriented scale efficiency measure, it means that the ob-
served average productivity - considering that technical inefficiency has been eliminated 
- corresponds or is close to the maximum average productivity. It should be logical that 
these farms, characterised by efficient and harmonic input-output combinations, are 
more able, compared with scale-inefficient farms, in using their own disposable inputs. 
Despite the results reported above, determining the nature and the direction of causality 
in the interrelationship between scale and technical efficiencies should be studied in 
more detail; indeed, an efficient use of inputs - oriented to maximise marginal and over-
all productivity - should positively influence the input proportions and, consequently, 
scale efficiency. This implies that in case of decreasing technical efficiency in these 
farms, scale efficiency would also tend to be lower than the actual level because input 
proportions might be ‘mutated’. 

 
Conclusions 

This paper aimed to evaluate technical and scale efficiencies on a sample of citrus 
farms located in Italy. Using a parametric approach, we found that some margins exist 
to increase efficiency, both using better disposable inputs and operating on a more ap-
propriate scale. Empirical findings suggest that the overall inefficiency should depend 
on producing below the production frontier and on operating under a rational scale. The 
former reason might be more important since technical inefficiency appears greater than 
scale inefficiency. Most of the scale-inefficient farms operate under increasing returns 
to scale, i.e., under a suboptimal scale. 

Regarding factors that affect inefficiency, the results indicate that, as expected, farm 
size and the number of plots significantly and sensitively influence both technical and 
scale efficiencies. More specifically, the larger and less fragmented farms tend to show 
higher technical and scale efficiencies. Furthermore, the findings suggest that farms 
managed by older farmers (who probably have more farming experience) appear more 
technical- and scale-efficient. On the other hand, the geographical location of the farms 
significantly affect only scale efficiency, while location in a less-favoured area and at a 
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high altitude site exclusively affect scale and technical efficiency, respectively. 
A weak relationship between technical and scale efficiencies was found, with techni-

cal efficiency tending to be higher in farms with very low scale efficiency score or that 
operate under an optimal or quasi-optimal scale. This information about the nature and 
the entity of interrelationship between the two measures could be useful to give techni-
cal and policy suggestions that aim to improve overall efficiency and productivity in the 
Italian citrus fruit sector.  

In our opinion, however, more empirical research needs to be done to gather further 
information about the direction of causality of this interrelationship. Indeed, understand-
ing the “cause-effect” relationship could allow us to improve the efficiency, efficacy, 
and effectiveness of measures that may be suggested to enhance the economic perform-
ance of the sector. 

Generally speaking, understanding the specific role played by technical and scale ef-
ficiency in conditioning productivity and the degree of interrelationship between these 
two efficiency measures should give significant information to policy and decision 
makers relative to each farming practice where some technical and structural constraints 
exists. Policy implications that can drive from this sort of findings could be support pol-
icy decisions in order to improve productivity and competitiveness in a certain sector 
such as citrus farming in Italy. 
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i On the contrary, scale elasticity is scarcely measured using a non-parametric approach, even though this 
shortcoming has been resolved by Försund (1996). 
ii On the basis of the methodological contribute of Ray (1998), Balk (2001) has proposed a model suitable 
for multi-output technologies using a translog output distance function. 
iii To facilitate estimation process and following the suggestion made by Battese and Corra (1977), Bat-

tese and Coelli (1995) suggest to replacing the parameter λ with γ = ( )222 +  / vuu σσσ  because of it can be 

searched between zero and one and this property allows us to obtain a suitable starting value for an itera-
tive maximisation process. 
iv Negative definiteness of β is a sufficient but not necessary condition (Ray, 1998). 
v Among the advantages of this measure, Ray (1998) argues that “this (scale efficiency measure) should 
make findings from econometric models more directly comparable with the evidence from nonparametric 

DEA models, where scale efficiency measures are routinely reported (p. 193)”. 
vi In FADN, ESU indicates the farm economic size. ESU is defined on the basis of farm potential gross 
value added (Total Standard Gross Margin). More precisely, the Total Standard Gross Margin expressed 
in € is divided by an ESU coefficient (equal to 1,200 €) in order to obtain the economic size classification 
of farms. In FADN’s methodology, farms are classified into 9 ESU classes (see www.inea.it for more 
information about Italian FADN and the relative analytical procedures).  
vii Substantially, this model corresponds to the Battese and Coelli (1995) model with a non-neutral speci-
fication for the production frontier function. 
viii As underlined by Madau (2008), value of capital goods is estimated in different ways into the effi-
ciency analyses. Some authors have considered the total amount of value, whereas other authors have 
expressed capital in terms of annual capacity utilization. In this case, the capital measure depends on the 
adopted criteria for calculate capacity utilization.  
ix Any observed farm exhibits an ESU Class 8 or 9. 
x δ0 must be zero because the frontier model already involves an intercept 
xi Similar results were found by Madau (2007) 


