%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

o . Zentrum flr Entwicklungsforschung
® Center for Development Research
~ University of Bonn

ZEF-Discussion Papers on
Development Policy No. 193

Quang Bao Le, Ephraim Nkonya and Alisher Mirzabaev

Biomass Productivity-Based Mapping
of Global Land Degradation Hotspots

Bonn, July 2014



The CENTER FOR DEVELOPMENT RESEARCH (ZEF) was established in 1995 as an international,
interdisciplinary research institute at the University of Bonn. Research and teaching at ZEF
addresses political, economic and ecological development problems. ZEF closely cooperates
with national and international partners in research and development organizations. For
information, see: www.zef.de.

ZEF — Discussion Papers on Development Policy are intended to stimulate discussion among
researchers, practitioners and policy makers on current and emerging development issues.
Each paper has been exposed to an internal discussion within the Center for Development
Research (ZEF) and an external review. The papers mostly reflect work in progress. The
Editorial Committee of the ZEF — DISCUSSION PAPERS ON DEVELOPMENT POLICY include
Joachim von Braun (Chair), Solvey Gerke, and Manfred Denich. Tobias Wiinscher is Managing
Editor of the series.

Quang Bao Le, Ephraim Nkonya and Alisher Mirzabaev, Biomass Productivity-Based
Mapping of Global Land Degradation Hotspots, ZEF - Discussion Papers on Development
Policy No. 193, Center for Development Research, Bonn, July 2014, pp.57.

ISSN: 1436-9931

Published by:

Zentrum flr Entwicklungsforschung (ZEF)
Center for Development Research
Walter-Flex-Stral3e 3

D -53113 Bonn

Germany

Phone: +49-228-73-1861

Fax: +49-228-73-1869

E-Mail: zef@uni-bonn.de

www.zef.de

The authors:

Quang Bao Le, Swiss Federal Institute of Technology (ETH) Zurich. Contact:
guang.le@env.ethz.ch

Ephraim Nkonya, The International Food Policy Research Institute (IFPRI). Contact:
e.nkonya@cgiar.org

Alisher Mirzabaev, Center for Development Research (ZEF), University of Bonn. Contact:
almir@uni- bonn.de




With the financial support
of the Federal Ministry for Economic Cooperation and Development, Germany

This publication is a scientific contribution to the Economics of Land Degradation Initiative

| A global initiative
for sustainable
! land management

THE ECONOMICS OF
LAND DEGRADATION

http://www.eld-initiative.org



http://www.eld-initiative.org/

Acknowledgements

We would like to thank numerous institutions, colleagues and friends for their support on
this paper. We would like, first of all, to thank the German Federal Ministry for Economic
Cooperation and Development (BMZ) for financial support to conduct this research. We
greatly thank the Review Panel, consisting of Professor Rattan Lal, Dr. Zhanguo Bai and Dr.
Paul Reich for their critical and highly useful comments and suggestions. We are highly
grateful for colleagues at ZEF and IFPRI, especially Joachim von Braun, Kato Edward,
Hoyoung Kwon, Weston Anderson, Alessandro de Pinto and Valerie Graw for their
suggestions on the earlier versions of this paper. We also greatly appreciate the comments
received from the participants of the ZEF-IFPRI session on “How to mobilize societal change
to address land degradation and reduce poverty in the developing world: the role of local
policy actions?" organized during the Global Soils Week on 30th October 2013 in Berlin,
Germany. Last but not least, we would like to thank Jann Goedecke and Weston Anderson
for their outstanding research support in preparing this publication.

Quang Bao Le, Alisher Mirzabaev and Ephraim Nkonya



Abstract

Land degradation is a global problem affecting negatively the livelihoods and food security of
billions of people, especially farmers and pastoralists in the developing countries. Eradicating
extreme poverty without adequately addressing land degradation is highly unlikely. Given
the importance and magnitude of the problem, there have been recurring efforts by the
international community to identify the extent and severity of land degradation in global
scale. As discussed in this paper, many previous studies were challenged by lack of
appropriate data or shortcomings of their methodological approaches. In this paper, using
global level remotely sensed vegetation index data, we identify the hotspots of land
degradation in the world across major land cover types. In doing so, we use the long-term
trend of inter-annual vegetation index as an indicator of biomass production decline or
improvement. Besides the elimination of technical factors, confounding the relationship
between the indicator and the biomass production of the land, we apply a methodology
which accounts for masking effects of both inter-annual rainfall variation and atmospheric
fertilization. We also delineate the areas where chemical fertilization could be hiding the
inherent land degradation processes.

Our findings show that land degradation hotpots cover about 29% of global land area and
are happening in all agro-ecologies and land cover types. Land degradation is especially
massive in grasslands. About 3.2 billion people reside in these degrading areas. However, the
number of people affected by land degradation is likely to be higher as more people depend
on the continuous flow of ecosystem goods and services from these affected areas. As we
note in the paper, this figure, although, does not include all possible areas with degraded
lands, it identifies those areas where land degradation is most acute and requires priority
actions in both in-depth research and management measures to combat land degradation.
Our findings indicate that, in fact, land improvement has also occurred in about 2.7% of
global land area during the last three decades, providing a support that with appropriate
actions land degradation trend could be reversed, and that the efforts to address land
degradation need to be substantially increased, at least by a factor, to attain the vision of
Zero Net Land Degradation. We also identify concrete aspects in which these results should
be interpreted with caution, the limitations of this work and the key areas for future
research.

Keywords: land degradation hotspots, mapping, carbon fertilization, Economics of Land
Degradation

JEL classification: Q01, Q15, Q23, Q24, Q56
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1. Introduction

Land degradation is a global problem affecting at least a quarter of the global land area (Lal
et al., 2012) and seriously undermining the livelihoods, especially of the poor, in all agro-
ecologies across the world (Nkonya et al., 2011). Although land degradation has been critical
problem throughout the history (Diamond, 2005), it has attained its current global scales,
becoming a major global issue especially since the second half of the 20th century (Nkonya
et al., 2011). Since the first global mapping of desertification in 1977 (Dregne, 1977), there
have been numerous efforts at global mapping of land degradation (Oldeman et al., 1990;
USDA-NRCS, 1998; Eswaran et al., 2001). The earlier generation of these studies had been
constrained by lack of global level quantitative data which could be used for mapping soil
and land degradation, and therefore were based on expert opinions. The developments in
the remote sensing and satellite technologies allowed the later studies to be based on
guantitative satellite data, such as Global Inventory Modelling and Mapping Studies
(GIMMS) dataset of 64 km*-resolution of Normalized Difference Vegetation Index (NDVI)
data, however, several methodological challenges still exist on more accurately estimating

the land degradation hotspots (Vlek et al., 2010; Le et al., 2012).

In this context, addressing land degradation may require channeling substantial amounts of
scarce resources and making long-term investments. These investments are likely to yield
high levels of social returns and welfare improvements. However, all countries in the world
have budgetary constraints, necessitating the prioritization of such investments. To combat
land degradation, both on the international and national levels, policy makers often need
information about areas of severe degradation in order to prioritize national budgets and
plan strategic interventions (Vlek et al., 2010; Vogt et al., 2011; Le et al., 2012). To achieve
this, accurate maps of land degradation hotspots — where land degradation is most acute,

are needed. This study seeks to meet that objective at the global level.

As indicated above, there have been several efforts in the past to map land degradation at
the global scale. The major objective of this global study is the identification of regions
where degradation magnitude and extent are relatively high, i.e., geographic degradation
hotspots, for prioritizing both preventive investments for the restoration or reclamation of

degraded land, and subsequent focal ground-based studies. Consequently, this mapping of



degradation hotspots is different from, indeed not as contentious as, the production of an

accurate map of all degraded areas.

2. Literature Review

Land degradation is a major global problem. There have been many efforts to map land
degradation at global and regional scales (Dregne, 1977; Oldeman et al., 1990; USDA-NRCS,
1998; Eswaran et al., 2001; Herrmann et al., 2005; Wessels et al., 2007; Bai et al., 2008b;
Hellden and Tottrup, 2008; Hill et al., 2008; Vlek et al., 2008; Vlek et al., 2010; Le et al., 2012;
Bai et al., 2013; Conijn et al., 2013; Dubovyk et al., 2013). However, despite these efforts,
the existing global maps of land degradation are weakened by serious shortcomings. The
earlier mapping exercises used subjective expert opinion surveys as the basis for the maps,
with unknown direction and magnitudes of measurement errors. The more recent of these
studies are making use of now globally available remotely-sensed NDVI data (Tucker et al.,
2005), but NDVI also has its own shortcomings as a proxy for land degradation, such as
various confounding effects (Pettorelli et al., 2005). These include: (1) remnant cloud-cover
effects in humid tropics; (2) soil moisture in sparse vegetative areas, which reduces the NDVI
signal, (3) seasonal variations in vegetation phenology (proportional with weather
seasonality) and time-series autocorrelation; (4) site-specific effects of vegetation structure
and site conditions (e.g. topography and altitude). These confounding effects can be
mitigated at some degree, but not completely removed. As a consequence, NDVI trend is
always affected by unexpected noise, thus bearing considerable uncertainty in a way that
where there are small magnitudes of NDVI trend, the risk that errors/noises in the NDVI data

are larger than the trend itself is much higher (Tucker et al., 2005).

Moreover, there are major factors confounding the relationship between NDVI (NPP) trend
and human-induced land degradation. These confounding effects include: (1) the effect of
inter-annual rainfall variation on NDVI (NPP) (Herrmann et al., 2005), (2) the effect of
atmospheric fertilization on vegetation greenness and growth (Boisvenue and Running,
2006; Reay et al., 2008; Lewis et al., 2009; Buitenwerf et al., 2012; Le et al., 2012), and (3)
intensive uses of chemical fertilizers in intensified croplands (Vlek et al., 1997; Potter et al.,

2010; MacDonald et al., 2011). The biomass productivity of the land is often a low priority



service in many urbanized areas, where space provision is usually the most expected service

of the land.

To isolate human-induced biomass production decline from the one driven by rainfall,
currently, there are different methods: residual trend analysis method (ResTrend) (Evans and
Geerken, 2004; Herrmann et al., 2005) (Wessels et al., 2007), the trend-correlation stepwise
method (Trend-Correlation) (Le et al., 2012; Vlek et al., 2010), or trend-correlation with the
additional use of rain-use efficiency (RUE) (Bai et al., 2008a; Fensholt et al., 2013). The first
two methods use the correlation between inter-annual NDVI and rainfall data for isolating
pixels with biomass production decline not caused by rainfall inter-annual variation. If there
is no other natural drivers of biomass production decline besides the reduction of annual
rainfall, the biomass production decline in these pixels is likely caused by human activities.
The comparisons between the uses of two methods at global level (Dent et al., 2009) and
national level (Vu et al., 2013) showed similar results. While rain-use efficiency has been
recently used in some land degradation assessments in dry lands (Wessels et al., 2007;
Fensholt et al., 2013), there are concerns about the use of rain-use efficiency for continental
and global scale (Dent et al., 2009), especially in the humid tropics where rainfall is generally

not a limited factor of primary productivity.

The effect of atmospheric fertilization caused by elevated levels of CO, and NO, in the
atmosphere (Dentener, 2006; Reay et al., 2008) complicates the global assessment of land
degradation using the NDVI-based approach. Increased atmospheric fertilization (AF) can
cause a divergence between greenness trend and soil fertility change as the fertilization
effect has not been substantially mediated through the soil. The rising level of atmospheric
CO, stimulates photosynthesis in plants' leaves, thus increasing NPP, but the soil fertility may
not necessarily be proportional with the above ground biomass improvement. The wet
deposition of reactive nitrogen and other nutrients may affect positively plant growths as
foliate fertilization without significantly contributing to the soil nutrient pool, or
compensating nutrient losses by soil leaching and erosion. Global observations, both field
measurements (Boisvenue and Running, 2006; Lewis et al., 2009; Buitenwerf et al., 2012)
and remotely sensed data analyses (Vlek et al., 2010; Fensholt et al., 2012; Le et al., 2012)
show long-term improvement of biomass productivity in large areas that cannot be

attributed to either human interventions or rainfall improvement. In Africa, the biomass
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increased at a rate of 0.63+0.31 Mg ha™* yr over the past 4 decades for closed-canopy

tropical forest sites with ample rain and free of human interventions (Lewis et al., 2009).

As NDVI values can be affected by several site- and land cover- specific factors (Pinter et al.,
1985) (Markon et al., 1995; Thomas, 1997; Mbow et al., 2013), different locations with the
same NDVI value are not necessarily have the same biomass productivity. Thus, comparison
of biomass productivity between pixels using NDVI is a pitfall that should be avoided
(Pettorelli et al., 2005). Recent studies suggested interpreting the NDVI trend results for each
spatial stratum of social-ecological conditions in order to gain more insights about likely
degradation processes and affecting factors in the delineated hotspots (Vlek et al., 2010;
Sommer et al.,, 2011; Le et al.,, 2012; Vu et al., 2014). Because land use/cover refers to
ecosystem exploitation (Nachtergaele and Petri, 2008) and is conditioned by several
anthropogenic factors that define the social and ecological contexts for interpreting
causalities from statistical results, broad land-use classes have been recommended for
stratifying causal analyses and interpretations of land degradation (Vlek et al., 2010;

Sommer et al., 2011; Vu et al., 2014).

3. The Conceptual Framework

In this study, "land degradation" is understood in a broad sense. From internationally
authoritative concepts of United Nations Convention to Combat Desertification (UNCCD,
2004) and Millennium Ecosystem Assessment (MEA, 2005), land degradation is defined as
the persistent reduction or loss of land ecosystem services, notably the primary production
service (Safriel, 2007; Vogt et al., 2011). The aspects emphasized in this definition of land

degradation include:

e First, "land" is understood as a terrestrial ecosystem that includes not only soil
resources, but also vegetation, water, other biota, landscape setting, climate
attributes, and ecological processes (MEA, 2005) that operate within the system,

ensuring its functions and services.

e Second, the definition focuses on the ecological services of the land: land

degradation makes sense to our society only in the context of human benefits



derived from land ecosystems uses (Safriel, 2007). Negative changes in soil
component (e.g., soil erosion, deteriorations of physical, chemical, and biological soil
properties) are concerned as much as how serious these changes result in reductions
of supporting (e.g., primary production), provisioning (e.g., biological products
including foods) and regulating (e.g., carbon sequestration) services of the land (i.e.,

land ecosystem).

As a consequence, the definition emphasizes the pivotal role of primary production
among a wide range of land's services. The crucial reason for this emphasis is that
primary production generates products of biological origin, on which much of other
ecosystem services depend (Safriel, 2007). The primary production is the basis of
food production, regulates water, energy, and nutrient flows in land ecosystems,
sequestrates carbon dioxide from the atmosphere and generally provides habitats for

diverse species (MEA, 2005).

4. Methodology and Data

The methodological approaches applied in this study build on this previous literature and, in

fact, seek to address some of the shortcomings of the previous research on global land

degradation hotspots mapping.

4.1 Proxy indicator approach to mapping of degradation hotspots

In the context of land degradation hotspots mapping, land degradation proxies (i.e., key

indicators that approximate relevant processes of land degradation) are often used to

delineate degradation hotspots. Although using proxies of land degradation is always prone

to considerable uncertainties, the proxy method is relevant for mapping global, continental

and national degradation hotspots due to the following reasons:

The main target is the areas with high magnitude and extent of degradation, i.e.,
where temporal and spatial variations of the used proxies are high and observable.
This helps mitigate the adverse effects of the inherently high uncertainty of the used
proxies (Vu et al., 2013). The lower is the temporal and spatial variation of the used

proxies, the lower is the relevance of the proxy method.
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e The considered scale is global, or continental or national and the related need is to
delineate degradation hotspot at coarse resolution (e.g., 1 - 10 km) (Vogt et al.,

2011).

e There are no other data alternatives for long-term (> 2 decades), large scale (global

or continental) assessments (Vlek et al., 2010; Fensholt et al., 2012).

e Efforts to improve global/continental land degradation assessment require the first
version of a global land degradation map to guide where and what needed to be

verified in the next steps.

4.2 Long-term trend of annual NDVI as the proxy of long-term biomass productivity

decline

Given the global scale and long-term perspectives of the study, we used the long-term trend
of inter-annual mean Normalized Difference Vegetation Index (NDVI) over the period 1982—
2006 as a proxy for a persistent decline or improvement in the Net Primary Productivity
(NPP) of the land, thereby delineating past land degradation hotspots. This NDVI-based
assessment of land degradation has been used by many studies (Bai et al., 2008b; Hellden
and Tottrup, 2008; Vlek et al., 2010; Le et al., 2012). However, as we highlighted in the
literature review, NDVI as a proxy for land degradation has several caveats. Our strategy to
address these caveats in this NDVI-based mapping of land degradation hotspots is

summarized in Table 1.
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Table 1. Measures for mitigating or correcting confounding effects in the presented NDVI-

based mapping of land degradation hotspots.

Confounding factors

Affected relationship or
process

Mitigating/correcting
measure used in this
study

Done/advised by other
studies

Remnant cloud-cover
effect in humid tropics

NDVI vs. NPP weakened

Only non-flagged pixels
used (2)*

(Tucker et al., 2005;
Brown et al., 2006)

Effect of soil moisture in
sparse vegetative areas

NDVI vs. NPP weakened

Eliminating pixel with
NDVI < 0.05, arid zone;
cautions in sparse
vegetation areas (2)*

(de Jong et al., 2012;
Fensholt et al., 2012; Le et
al., 2012)

Seasonal variations in
vegetation phenology
and time-series
autocorrelation

Inter-annual NDVI (NPP)
trend confounded

Use annually average
NDViIs instead of bi-weekly
or monthly NDVIs (1)*

(Bai et al., 2008b; Hellden
and Tottrup, 2008; de
Jong et al., 2011; de Jong
etal., 2012)

Site-specific effects of
vegetation/crop
structure and site
conditions

NDVI vs. NPP weakened

No spatial trend of NDVI
used (3)*
Land-use/cover-specific
interpretation (6)*
Eliminate/cautious with
area having LAl > 4 (6)*

(Pettorelli et al., 2005)

(Vuetal., 2014)
(Carlson and Ripley, 1997;
Vu et al., 2013)

Larger errors /noises in
the NDVI data compared
to the small NDVI trend
itself

Not reliable Inter-annual
NDVI (NPP) trend

Not consider pixels with
no statistic significance or
very small magnitude of
NDVI trend (e.g., < 10% /
25 years) (3)*

(Le etal., 2012;Vuetal.,
2014)

Effect of inter-annual
rainfall variation on NDVI
(NPP)

Mixture between
climate-driven and
human-induced NPP
trend

Correct partly rainfall
effect by consider NDVI-
rainfall correlation (4)*

(Herrmann et al., 2005;
Bai et al., 2008b; Le et al.,
2012)

Effect of atmospheric
fertilization (AF) on NDVI
(NPP)

Mixture between
climate-driven and
human-induced NPP
trend

Correct partly AF effect by
consider NPP growth in
pristine areas (5)

(Le et al., 2012)

Effect of intensive
fertilizer uses on NDVI
(NPP)

Mixture between
fertilizer-driven NPP
soil-based NPP

Masking areas with high
fertilizer use for follow-up
study (7)

Irrelevance of
considering NPP in
urbanized areas

NPP is not relevant
indicator

Masking urban areas from
the consideration (2)

(Leetal., 2012;Vuetal.,
2014)

Note: *= number within parentheses indicates the related step in Fig. 1

The procedure of the analytical flow is shown in Figure 1. The detailed explanations of major analysis

steps are given in the corresponding results sections for better contextual understanding.
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1. Temporal lagging:
Annual mean NDVI 1982-2006

GIMMS NDVI 1982-2006

v

2. Masking of ineligible pixels

€ (25 X 24 = 600 biweekly
global images)
GIMMS flagging data,
4—

Land use(cover (GLOBCOVER) data

.

3. Temporal trend of annual mean
NDVI and statistic test

‘

4. Correction of rainfall effect
on NDVI trend

<4—— Global climate data (CRU TS 3.1)

'

Global land use/cover data

5. Correction of atmospheric
fertilization effect

(GLOBCOVER), population data
(CIESIN-CIAT), CGIAR-CSI Global
Aridity
GLASS Leaf Area Index data

I

6. Judgment of indicator’s
suitability: Declined NPP vs main
land-cover/use types, LAI's
threshold

v

7. Adding “potential” degraded
area masked by remarkable
fertilizer use

I

8. Global pattern of biomass
productivity-based land
degradation (map and per country
statistics)

.
Global fertilizer application 2000
4—
data (Potter et al. 2010)
<«4——  Countries’ boundary (ESRI)

Figure 1. Procedure of biomass productivity-based assessment of NDVI.

Note: The bold text indicates relatively new features compared to previous studies.
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GIMMSg-NDVI data

The employed dataset of vegetation index Global Inventory Modeling and Mapping Studies

(GIMMS) Satellite Drift Corrected and NOAA-16 incorporated Normalized Difference

Vegetation Index (NDVI), Monthly 1981-2006, is called GIMMSg-NDVI dataset. This dataset

is available for free at the Global Land Cover Facility (GLCF), the University of Maryland

(GLCF - http://glcf.umiacs.umd.edu/data/gimms/ -accessed in 01 May 2013).

This GIMMSg-NDVI version is selected for analysis because of the following reasons:

For global land degradation assessment over long terms, there may be no other
alternative data. At present the GIMMS-NDVI data archive is the only global coverage

dataset spanning 1982 to recent time.

The NDVI dataset was calibrated and corrected for view geometry, volcanic aerosols,
and other effects not related to vegetation change (Pinzon et al., 2005; Tucker et al.,
2005). As a result, this new GIMMS NDVI dataset, used in this study, is relatively
consistent over time and is of higher quality compared to the previous versions
produced by the GIMMS group (Brown et al., 2006). Using Terra MODIS NDVI as a
reference (Fensholt et al., 2009) in Sahel region found that the GIMMS NDVI data set

is well-suited for long term vegetation studies of the Sahel-Sudanian areas.

The GIMMSg-NDVI archive "should provide a large improvement over previously
used NDVI data sets, because the data are collected by one series of instruments, and
they give a more realistic representation of the spatial and temporal variability of

vegetation patterns over the globe" (GLCF, accessed in 01 May 2013).

Validity of the GIMMS dataset has been discussed in previous studies (Tucker et al.,
2005; Brown et al., 2006), and is subjected to ongoing validation (Fensholt et al.,
2012; GLCF, accessed in 01 May 2013).

The full list of data sources used is given in Annex 1.
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5. Results
5.1 Aggregating annual mean NDVI time-series (1982-2006) (Step 1 in Figure 1)

To minimize the confounding effects of seasonal variations and time-series autocorrelation,
we used annual average NDVI instead of the original bi-weekly GIMMS NDVI time-series,
which is similar to Hellden and Tottrup (2008) and Vlek et al. (2010). This treatment is
supported by the recent findings of de Jong et al. (2011). They found that inconsistencies
between the linear trends of annually aggregated GIMMS NDVI and the seasonality-
corrected, non-parametric trends of the original GIMMS NDVI time-series (biweekly) were
mainly on areas with weak or non-significant NDVI trends, which are not central in our
hotspot approach. The year 1981 was excluded because it has only data for the later 6
months (July-December). As a result, there are 25 annual mean NDVI images calculated from

600 original GIMMSg images.
5.2 Masking ineligible pixels (Step 2 in Figure 1)

As explained in Table 1, pixels with the following statuses were masked from the course of

the analyses:

e To partly avoid the effect of cloud cover or cloud shade, flagged GIMMS pixels, i.e.,

flag > 0 indicates a not good value of NDVI, were masked.

e As NDVI is not a suitable indicator of NPP in bare, or very sparse vegetation, pixels

with NDVI < 0.05 were masked.

e Pixels with bare surface, urban and industrial areas, based on GLOBCOVER version

2.2 data (Bicheron et al., 2008), were masked.

Figure 2 depicts the resulting global pattern of the average annual mean NDVI over 1982-

2006 on the eligible (non-grey) areas.
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Figure 2. Average annual mean NDVI (scale factor = 1000) of the period 1982-2006.
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5.3 Significant trend of annual mean NDVI over 1982-2006 (25 years) (Step 4 in Figure 1)

Temporal slope metrics and statistical test

For each pixel i, the long-term trend of annual NPP (via vegetation index) can be formalized

by the slope coefficient (4;) in the simple linear regression relationship

Vi=Aixt+B; (1)

where V; = annual mean NDVI, A, = long-term trend of NDVI, t = year (elapsing from 1982 to
2006), B; = intercept (an indicator for a possible delay in the onset of degradation). The
computed slope coefficient A for each pixel was tested for statistical significance at different
confidence levels at 90% (P <0.1), which is sufficient for long-term trend analyses of noisy

parameters like NDVI (Le et al. 2012; Vlek et al. 2010).

Figure 3 shows the significant trend in a statistical manner only. A statistically significant
trend can be with a too small magnitude that can be either not significant in practice, or
lower than errors/noises in NDVI time-series. Both cases should not be meaningful for
consideration. Thus, it is much more meaningful to look at the relative change in inter-

annual NDVI compared to the period mean (in Figure 2).

Significant biomass productivity decline

Significant biomass productivity (annual mean NDVI) decline is defined by the following

criteria:

e Negative NDVI slope with a statistical significance (p < 0.1), and

e Meaningful magnitude of the NDVI decline: relative NDVI annual reduction > 10% /
25 years (or > 0.4% / year) (Vlek et al., 2010; Le et al., 2012; Vu et al., 2013). There
are two reasons for selecting this cut-off threshold. First, from a common sense, a
reduction rate of less than 0.4 - 0.5% per year can be considered to be insignificant in
practice. Second, with these very small magnitudes of NDVI trend, the risk that
inherent errors/noises in the NDVI data are larger than the trend itself is high, making
the NDVI trend less reliable (Tucker et al. 2005). This cut-off value helps avoid that

risk.
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Figure 3. Significant (p < 0.1) slope of inter-annual NDVI over 1982-2006.

Notes: White areas are with either no data, or statistically non-significant trend. There has been no minimal threshold of NDVI slope applied yet
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Figure 4 shows spatial pattern of annual decline of biomass productivity in percentages of

the period mean of NDV (Fig. 4a) and in the dummy scale (i.e., 1= significant productivity
decline, 0= otherwise) (Fig. 4b).
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Figure 4. Significant (p < 0. and reduction rate 2 10% / 25 yrs) biomass productivity
decline over 1982-2006.

a) Annual reduction rate (% of period mean), b) dummy scale (area of significant
productivity decline = 15,336,128 km?)

5.4 Correction of rainfall variation effect

The significant decline of inter-annual NDVI shown in Figure 4 can be attributed to either

temporal variation in rainfall or human activities (e.g., land cover/use conversion and/or

change in land use intensity).
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The annual rainfall data for the period 1982-2006, which was extracted from the TS 3.1
dataset of the Climatic Research Unit (CRU) at the University of East Anglia (UK), were used
for the isolating purpose. The original data include grids of monthly rainfall data at a spatial
resolution of 0.5°, covering the 1901-2006 period (Mitchell and Jones, 2005). To match the
spatial resolution of AVHRR-NDVI data for later analysis, the grid cells of rainfall data were
re-sampled to match with the 8-km resolution of NDVI data, using nearest neighbour

statistics.

The Trend-Correlation method is used to account for rainfall variation effect. The procedure

of Trend-Correlation method (Vlek et al., 2010) involves:

e For each pixel, Pearson’s correlation coefficient between inter-annual NDVI and

rainfall over the 1982—-2006 period (R;) is calculated.

e The statistical significance for pixel-based correlation coefficients at a confidence

level of 95% (p <0.05) is tested.

e A pixel was considered to have a strong correlation between its inter-annual NDVI
and rainfall if the correlation coefficient was significant (p < 0.05) and greater than

0.5 or lower than -0.5.

e [f the pixel has a significantly negative NDVI trend (negative A;, p < 0.1) and a strongly
positive vegetation—climate correlation (R; > 0.5; p < 0.05), the NDVI decline at the
location was determined by the rainfall factor. Otherwise, the NDVI decline was likely

caused by non-climate factors.

The limitation of the method is that in the pixels with significantly negative NDVI trend and
positive vegetation—rainfall correlation (or non-significant residue trend in ResTrend
method), both rainfall and human effects can be mutually exclusive. The elimination of these

pixels may also exclude some human-induced degradation areas.

The long-term response of inter-annual NDVI to rainfall variation is shown in Figure 5. Then,

the NDVI decline pattern from which rainfall-driven pixels were masked is given in Figure 6.
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Figure 5. Long-term response of inter-annual NDVI to rainfall variation (1982-2006):
correlation coefficient (R,,) between inter-annual NDVI and rainfall, b) area of rainfall-
driven NDVI dynamics (p < 0.05 and R,, 2 0.5) that was masked from further analysis

(masked area in blue = 10,654,464 km?).
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Figure 6. Significant (p < 0.1 and reduction rate = 10% / 25 yrs) biomass production (NDVI) decline corrected for rainfall effect (area in red =
14,525,952 km?).

Based on the map in Figure 6, the total land with significant biomass production decline (p < 0.1, reduction rate > 10%/25 yrs) corrected for

rainfall effect is about 14.5 million km?, or about 10 % of the total global land area (i.e., 226,968 pixels, or 14,525,952 kmz).
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5.5 Correction of atmospheric fertilization effect (Step 5 in Figure 1)

Calculate the sub-component of AF-driven growth

The actual change in vegetation productivity can be considered the net balance between the
partial changes caused by human activities and those caused by natural processes (i.e.,
effects of rainfall and/or AF). In pristine vegetative areas, actual vegetation dynamics can be
driven by only natural drivers as the human-induced component of biomass dynamics can be
assumed to be zero. If these areas, in addition, have no correlation between biomass
productivity and weather parameters, weather effects can be neglected and the actual
growth can be assumed to be caused by atmospheric fertilization (Vlek et al., 2010). Thus,
the quantum of AF-driven growth of a particular vegetation type can be found in the pristine

(no significant human disturbance) areas of that type with no NDVI-rainfall correlation.

We defined the above-mentioned areas by applying an overlaying scheme as shown in

Figure 7.

Non-populated area
(extracted from CIAT-
CIESINE Population

Density data)

Land cover types “pristine”
(18 classes extracted Ci?,e‘:.rgmzte
from Globcover 2005- classes

2006 data )

85 composite
classes where
Climate class blomass
(5 classes based on 'dynam|cs are
CGIAR-CS Global-Aridity likely AF-driven
data)

No significant
NDVI-rainfall
correlation

Figure 7. Overlaying scheme for defining areas of pristine (no significant human
disturbance) vegetation with no NDVI-rainfall correlation, where biomass dynamics are
likely AF-driven.

As a result, we identified 246,159 pixels (i.e., 15,754,176 kmz) belonging to 85 'pristine’ (no
significant human disturbance) Cover-Climate types that are all with no significant NDVI-
rainfall correlation (see Figures 7 and 8). As explained, vegetation biomass dynamics in these
areas are likely driven by atmospheric fertilization (AF) effect.
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Figure 8. Spatial pattern of pristine vegetation with no NDVI-rainfall correlation where biomass dynamics are likely AF-driven (area in green =
15,754,176 km?).
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The correction of AF effect was then done by three steps:

e Calculate means of NDVI slope for each Cover-Climate-No Correlation types:

dNDVIag k /dt where k indexes the Cover-Climate type.

e Re-calculation of AF-adjusted inter-annual NDVI time-series through subtracting the
NDVI data by quantum dNDVIag/dt. This re-calculation of NDVI time-series was
specific for each Cover-Climate class k, i.e. AF-driven NDVI accrual for each class was

used for recalculation of NDVI time-series on elsewhere with the same class
NDVIat-adjusted, 1983, k = NDVl1ggy - 1* dNDVIag i /dt
NDVIat-adjusted, 1984, k = NDVl1ggy k - 2* dNDVIag i /dt

NDVIaf-adjusted, 1985, k = NDVl1gg2 k - 3* dNDVIag /dt

NDVIat-adjusted, 2006, k = NDVl1gg; - 24* dNDVIa  /dt

e Re-calculate the trend of inter-annual AF-adjusted NDVIs, test the statistical

significance of the trend, and calculate NDVIa.agjusted - Rainfall correlation.

The AF-corrected significant biomass productivity decline is showed in Figure 9a (in % of
period-mean NDVIag.agjusted) @and 9b (in dummy scale). There are 633 443 pixels, i.e., 40 540
352 km? of global land (i.e. 27%) likely to have experienced significant biomass productivity

decline given that the effects of rainfall and atmospheric fertilization are taken into account.

5.6 Identification of areas with saturated NDVI zone and relation to land-use/cover strata

(Step 6 in Figure 1)

The NDVI-vegetation productivity relationship can be saturated, thus biased in areas with
dense vegetation canopies (Pettorelli et al., 2005). In the areas having dense vegetation with
Leaf Area Index (LAI) more than 4, the relationship between NDVI and the vegetation
biomass tends to be saturated (i.e., NDVI is less sensitive to actual biomass change), thus

should be used with special cautions (Carlson and Ripley, 1997).
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Figure 9. Significant productivity decline with correction for both atmospheric and rainfall
effects: a) relative annual rate, b) dummy scale (area in red = 40,540,352 km?).
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We calculated the mean annual LAI of the period 1982 - 2006 by using the GLASS LAl dataset
(Liang and Xiao, 2012; Xiao et al., 2014). To avoid the computational abundance (each year
has 46 8-day LAl images), we calculated the mean of 8-day LAl in representative years 1985,

1990, 1995 and 2000 (i.e., n = 46 x 4 = 184 global images taken into account).

Sign productivity decline (AF and RF corrected, LAlI>4 masked)
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Figure 10. Significant productivity decline with correction for rainfall and atmospheric
fertilization effects and masking of NDVI-saturated pixels. a) relative annual rate, b)
dummy scale (area in red = 35,948,032 kmz)
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As a result, of 633 443 declined pixels in Figure 9 there are 71 755 pixels (11%) with LAl > 4
possibly making their NDVI trend not reliable for indicating vegetation biomass productivity.
Land degradation in these NDVI-saturated pixels should be considered with other indicators,
rather than NDVI signals. Given the NDVI-saturated pixels masked, the area of biomass
productivity decline is about 36 million km? , i.e. 24% of global land area. These areas are

shown in Figure 10a (in % of period-mean NDVIag.agjusted) @and 10b (in dummy scale).

The map in Figure 10a shows that most of NDVI degrading areas have small annual reduction
magnitude (i.e. less than 1% / year, as showed in the area in pink). Given the inherently high
noise of NDVI signal, uncertainty of the calculated degrading trend in these pink areas can be
higher than the pixels with higher annual NDVI reduction rate, i.e. the red to dark red pixels

in Figure 10a.

5.7 Relation to land cover strata

At the resolution of this global study (i.e., 8-km pixel), many sub-classes of scattered land
cover/use (e.g. slash-and-burn field, mountain paddy rice terraces and fruit plantations) will
be dissimulated. Thus, we used 7 broad land use/cover classes (see Figure 11) aggregated
from 23 classes of the Globcover 2005-2006 data (Bicheron et al., 2008). The spatial pattern
of long-term (1982-2006) NDVI decline with correction of RF and AF effects and masking of
saturated NDVI zone versus main land cover/use types is shown in Figure 11. The related
statistics for countries and territories in the world are shown in Annex 2, and also

summarized by major world regions in Table 2.

Table 2 shows at varying magnitudes of land degradation according to land use/cover types
and geographic regions. One of the key highlights of this summary is the substantial shares
of degradation in grasslands and shrublands, especially in North Africa and Near East (52%)
and Sub-Saharan Africa (40%), which negatively affects the livelihoods of especially the
pastoralist communities. In a related note, about 43% of the areas with sparse vegetation
are degraded in Asia. Quite often, these areas also serve as grazing grounds for ruminants,
for example in Central Asia (Pender et al. 2009). The share of cropland degradation seems
especially high in Asia (30%), North Africa and Near East (45%), the regions with extensive

irrigated agriculture. The absolute magnitudes of degrading areas are given in Annex 2.
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Figure 11. Areas of long-term (1982-2006) NDVI decline (with correction of RF and AF effects and masking saturated NDVI zone) versus main
land cover/use types.
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Table 2. The share of degrading area in each type of land cover by continental regions and
world (unit: % of total area of a land cover type across a continental region).

Mosaic Mosaic

Crop vegetati Forested forest-sh Shrub  Grass Sparse
Continents land on- crop land rub/grass land land vegetation
Asia 30% 31% 30% 36% 33% 24% 43%
Europe 19% 21% 21% 20% 6% 17% 17%
North Africa and Near East 45% 42% 30% 36% 39% 52% 18%
Sub-Saharan Africa 12% 26% 26% 26% 28% 40% 29%
Latin America and Caribbean 25% 16% 10% 29% 29% 24% 34%
North America and Australasia 17% 16% 32% 36% 27% 40% 22%
World 25% 25% 23% 29% 25% 33% 23%

Note: the results in grey text should be treated with caution, see explanation in the next page.

These results in Figure 11, Table 2 and Annex 2 should be treated with special cautions

regarding the following aspects:

Although pixels of saturated greenness (LAl > 4) are masked out, the indication of
biomass production dynamics using inter-annual NDVI trend in the forested areas
(data in 2005-2006) may not be reliable compared to those of herbaceous vegetation
types. The reason would be that most biomass of closed forest is in the woody
component whose annual dynamics (rather relatively slow or steady) may not be
necessary well-related to annual greenness of the forest canopy (rather rapidly
variable). Moreover, with forest ecosystems, especially those used for nature
protection, biodiversity is often a prioritized task in the ecosystem assessments.
However, increases of biomass production and/or soil nutrients may not necessarily
be correlative with biodiversity maintenance. For example, invasion of exotic plant
species can lead to high biomass productivity but dramatically reduce biodiversity,
which is not desirable regarding the land-use purpose (Nkonya et al, 2013).
Increasing of soil nutrients can reduce plant diversity in some cases (Chapin et al.,

2000; Sala et al., 2000; Wassen et al., 2005).

NDVI signal may not be a suitable indicator of degradation of sparse vegetation
areas. When wet exposed soils tend to darken, i.e., soils' reflectance is a direct
function of water content. If the spectral response to moistening is not exactly the
same in the two spectral bands (IR and NIR), the NDVI of sparsely vegetative areas

can appear to change as a result of soil moisture changes (precipitation or
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evaporation) rather than because of vegetation changes®. Although soil-adjusted
vegetation index (SAVIs) (Huete, 1988) can help improve the correlation between the
index and the actual vegetation status, vegetation biomass itself may be not so

crucial for indicating the status of the exposed soils.

e The attribution of "human-induced" degradation to the "rainfall- and atmospheric
fertilization-corrected" NDVI decline makes sense in areas where there is no other
natural drivers of biomass production decline besides the reduction of annual rainfall
and atmospheric fertilization. Event-based wild fires which may be a factor that has
likely reduced biomass production in remote, unpopulated regions like Alaska (Boles
and Verbyla, 2000) or the inland of the Australian continent (Kasischke and Penner,
2004). Thus, the term "human-induced degradation" may be less applicable in these
areas. Furthermore, the use of mean annual NDVI can reduce partly, but not
eliminate completely the effects of change in the seasonality of weather parameters

that are important in many climate change scenarios.

5.8 Potential soil degradation masked by fertilizer application

The trend of above ground biomass productivity can be an indirect indicator of soil
degradation or soil improvement if the nutrient source for vegetation/crop growth is solely,
or largely, from the soils (i.e., soil-based biomass productivity). In the agricultural areas with
intensive application of mineral fertilizers (i.e., fertilizer-based crop productivity), the net
primary productivity principally cannot be a reliable indicator of soil fertility trend (Le, 2012).

In this case, alternative indicators of soil fertility should be used.

Global patterns of fertilizer applications, based on data reported in around 2000 (Potter et
al., 2010; MacDonald et al., 2011), are shown in Figure 12. The amount of fertilizers used in
East Asia (e.g. China and Vietnam), Northern India, Europe and in considerable areas in
North America is equal to 18 - 20 times of those in sub-Saharan Africa (see Figure 12 and

Table 3), which has been only around 1 kg/ha/year (Vlek et al., 1997).

! http://en.wikipedia.org/wiki/Normalized_Difference_Vegetation_Index
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Figure 12. Global patterns of N and P fertilizers application for major crops in 2000. Data
sources: (Potter et al., 2010; MacDonald et al., 2011). a) application of nitrogen fertilizer,
b) application of phosphorus fertilizer, c¢) combination of nitrogen and phosphorus
application.
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Table 3. Fertilizer consumptions in different regions of the world in 2011 (in million metric
tons)

Countries and Regions Nitrogen Phosphorous Potash
China 33.8 11.5 5.2
India 17.4 8.0 2.6
United States 12.1 4.0 4.3
East Asia 41.7 14.1 9.5
South Asia 22.0 9.2 3.0
North America 14.4 4.8 4.6
Western and Central Europe 10.3 2.4 2.7
Latin America and the Caribbean 7.4 5.7 5.6
Eastern Europe and Central Asia 4.4 1.2 13
West Asia 2.9 1.1 0.3
Africa 3.3 1.0 0.5
Sub-Saharan Africa 1.7 0.6 0.4
World 108 41 28

Source: International Fertilizer Association (www.ifa.org, accessed on 06 February 2014). The figures
for Sub-Saharan Africa were calculated by the authors’ based on country fertilizer consumption
statistics for Africa given by IFA.

Although the global spatial data of fertilizer use is available for year 2000 or around, the
estimated regional averages and trends (Table 4) show that the 2000 fertilizer use maps can

be used to depict the relative global patterns of the study period.

Table 4. Fertilizer uses (in million tons) and average annual growth rates (in %) in different
periods

Fertilizer Use Annual Growth
Regions 1959/60 1989/90 2020 1960-90 1990-2020

East Asia 1.2 314 55.7 10.9 1.9
South Asia 0.4 14.8 33.8 12 2.8
West Asia and North Africa 0.3 6.7 11.7 10.4 1.9
Latin America 0.7 8.2 16.2 8.2 2.3
Sub-Saharan Africa 0.1 1.2 4.2 5.5 1.2
World 27.4 143.6 208 5.5 1.2

Data source: FAO and the calculations by Bumb and Baanante (1996)

Pixels with remarkable fertilizer application (e.g. > 5.8 kg/ha/yr, i.e., the global mean) and
neutral biomass productivity trend, may have a potential risk of soil degradation that cannot
be detected by NDVI-based analysis. These areas are shown in Figure 13, accounting for

about 7 million km?, or 4.8% of global land area.
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Figure 13. Pixels with remarkable fertilizer application (e.g. 2 12 kg N+P/ha/yr = twice of the global mean) but with neutral trend of biomass
productivity, may have a potential risk of soil degradation

33



5.9 Areas of soil improvement

In addition to the areas with land degradation, we have also identified that there has been
NDVI improvement in about 2.7% of global land area. The analysis identifies the areas of
land improvement (“bright spots”) by the increasing slope of inter-annual mean NDVIs:
more by 10 % or more over 25 year and at 90% statistical significance. This is also

adjusted/corrected for rainfall and atmospheric fertilization effects, LAl < 4), (Figure 14).

The major “bright spots” of land improvement are located in the Sahelian belt in Africa,
Central parts of India, western and eastern coasts of Australia, central Turkey, areas of

North-Eastern Siberia in Russia, and north-western parts of Alaska in the US.

Overlaying land degradation (Figures 10 and 13) with population density projections for
2010 (CIESIN-CIAT, 2005) shows that about 3.2 billion people are currently residing in
degrading areas. Of this total number, about 0.6 billion people live in areas where land
degradation is directly observed in the remotely sensed data, another 1.2 billion people live
in areas where land degradation is likely masked by rainfall dynamics and atmospheric
fertilization effects, finally, another 1.3 billion people reside in areas where chemical
fertilization may be masking soil and land degradation. The regional breakdown of the
population residing in degrading areas is given in Table 5 (The full data by country/territory is
given in Annex 3). The biggest number of people residing in degrading areas is found in Asia,
followed Europe, Middle East and North Africa, Latin America and Caribbean, Sub-Saharan
Africa and finally, North America and Australasia. In terms of the share of people residing in
degrading areas, the most affected are Middle East and North Africa, and Asia. In Asia and
Europe, the higher shares of land degradation and of people residing in degrading areas are
found in areas where land degradation might be masked by chemical fertilizer application.
Whereas in other regions, visible decline and masking effects of rainfall and atmospheric
fertilization seem to dominate. One caveat, these are still somewhat conservative estimates
of the livelihoods which have potentially been affected by land degradation, because the
number of people affected by land degradation is likely to be higher due to off-site and

indirect externalities of land degradation.
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Figure 14. The areas of NDVI improvement, with slope of inter-annual mean NDVIs >= 10% over 25 year and 90% statistically significant,
adjusted/corrected for RF and AF effects, LAl < 4.
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Table 5. The number of people residing in degrading areas by region, the number in millions and the share in percentages

Share of
. population in
Degradation Degradation Total Share (.)f degrading
.. masked by . Total population .
. Visible . masked by population in . . areas, excluding
Regions . rainfall and . . population in .
degradation . chemical degrading . . areas with
atmospheric e in 2010 degrading .
e e fertilization areas masking effect
fertilization areas, % .
of chemical
fertilization, %
Asia 434 834 1055 2324 4184 56% 30%
Europe 11 48 143 203 575 35% 10%
Latin America and Caribbean 45 98 57 200 583 34% 25%
Middle East and North Africa 48 133 22 202 272 74% 66%
North America and Australasia 22 55 29 107 372 29% 21%
Sub-Saharan Africa 64 113 4 180 800 22% 22%
World 624 1282 1310 3216 6 787 47% 28%
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6. Conclusions

In this study, we advance the knowledge by making the following relatively new contributions.
Firstly, the major contribution of this global study is the identification of regions where
degradation magnitude and extent are relatively high for prioritizing both preventive
investments for the restoration or reclamation of degraded land, and subsequent focal ground-
based studies. The map of degradation hotspots is different from the production of an accurate
map of all degraded areas that seems impractical at global level due to lacking data on many
aspects of land degradation. Secondly, we account for masking effects of rainfall dynamics,
atmospheric and anthropogenic fertilizations. To our knowledge, there has been no previous
published study at global level accounting for all these masking factors. Moreover, we also

identify the areas where land improvement has occurred.

The results show that land degradation hotspots stretch to about 29% of the total global land
area and are occurring across all agro-ecologies. One third of this degradation is directly
identifiable from a statistically significant declining trend in NDVI. However, the remaining two
thirds of this degradation are concealed by rainfall dynamics, atmospheric fertilization and
application of chemical fertilizers. Globally, human-induced biomass productivity decline are
found in 25% of croplands and vegetation-crop mosaics, 29% of mosaics of forests with shrub-
and grasslands, 25% of shrublands, and 33% of grasslands, as well as 23% of areas with sparse
vegetation. The share of degrading croplands is likely to increase further when we take into
account the croplands where intensive fertilizer application may be masking land degradation.
Although this study does find land degradation to be a massive problem in croplands, it also
emphasizes, in contrast to most previous similar studies, the extent of degradation in areas
used for livestock grazing by pastoral communities, including grasslands, shrublands, their
mosaics, and areas with sparse vegetation. In most countries, livestock production and its value
chains produce comparable economic product and incomes for rural populations as crop
production. In total, there are about 3.2 billion people who reside in these degrading areas.
However, the true number of people affected by land degradation is likely to be higher,
because even those people residing outside these degrading areas may be dependent on the

continued flow of ecosystem goods and services from the degrading areas.
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It is quite encouraging that about 2.7% of the global land mass has experienced significant
improvement of biomass productivity over the last 25 years. However, the improving figure is
modest as being 10 times smaller than the extent of areas with degrading lands, resulting
extremely high net land degradation over the globe. Achieving the goal of Zero Net Land
Degradation (Lal et al., 2012) would, therefore, require considerable multiplication of efforts to

rehabilitate degraded lands and also prevent further increasing rates of land degradation.

Despite being an advancement to the past studies on global land degradation mapping, the
current work has several limitations. First, conceptually and practically the present study
capture only the "primary productivity" aspect of land degradation. The other important
aspects of land degradation such as soil/water pollution and biodiversity, which do not
necessarily correlate with primary productivity, are still out of the scope of this study. Secondly,
some degraded areas may not be captured by the NDVI-based assessment employed here, such
as: the areas facing both human-induced and climate-driven declines, and areas facing
biodiversity decline in natural vegetation. Thirdly, robustness of some key parametric
procedures needs to be further evaluated. Moreover, the delineated degradation hotspots
need to be validated by ground-level studies. This ground-level verification work is planned as
the next step of our research activities. Further research is also required for evaluating the
robustness and uncertainties of the presented results. The reported results (Figure 11, Table 2
and Figure 13) should be used as rough guides for geographic focus/prioritization in
regional/national studies. The first activity of follow-up regional/national studies is to conduct

I”

activities for validating the “potential” hotspots. These may include the use of independent
data, e.g., finer NDVI time-series like MODIS, accurate land cover change over the study period,
soil degradation assessment (modeled erosion, leaching, change in key soil properties) (e.g., Le
et al., 2012), change in species composition (e.g., Mbow et al. (2013)), fertilizer/water uses and

yields.

The drivers of land degradation are numerous, complex and interrelated (Nkonya et al., 2011;
Pender et al.,, 2009). In most cases, the effects of different land degradation drivers are
modulated by context-specific factors (Nkonya et al., 2013), necessitating local level in depth

studies to identify the role of various factors on land degradation and improvement. The results
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of global level correlative studies comparing several factors, such as population pressure,
income per capita, poverty rates, governance (Vlek et al., 2010; Nkonya et al., 2011; Vu et al.,
2014) with land degradation provide with broadly useful estimates, but remain equivocal, due
to difficulty of appropriately accounting for various omitted variables and endogeneity issues at
such a broad scale. The results of this study are planned to be validated at the local level, and
also would serve as a basis for the in-depth analysis of land degradation drivers through

country case studies.
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Annex 1. Data sources used

Variable Used dataset /Resolution /Used period Primary reference

Annual mean GIMMS NDVI 1982-2006, downloaded from the (Tucker et al., 2005)

NDVI Global /8 km/ 1982-2006 (biweekly)

Land cover type GLOBCOVER version 2.2 / 300 m / average for (Bicheron et al., 2008)
2004-2006

Annual mean CRU TS 3.1/ 0.5 deg /1982-2006 monthly (Jones and Harris, 2008)

rainfall

Aridity index- CGIAR-CSI Global-Aridity data / 1 km / average for (Trabucco and Zomer, 2009)

driven climate 1950-2000/

zone

Population density  CIESIN-CIAT Gridded Population of the World (Center for International Earth
version 3 / 2.5 arc-minutes / 1990, 1995, 2000 Science Information Network

(CIESIN) and Centro
Internacional de Agricultura
Tropical (CIAT), 2005)

Fertilizer (N and Global fertilizer (N and P) application / 0.5 deg / (Potter et al., 2010)

P) application 2000

Leaf Area Index GLASS LAI / 8km /1982-2000 (8-day time-series) (Liang and Xiao, 2012; Xiao et
al., 2014)
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Annex 2. Long-term (1982-2006) NDVI decline (with correction of RF and AF effects and

masking of saturated NDVI zone) by main land cover/use types for countries and territories.

Area of NDVI decline in km” and in percentages for the corresponding land cover

Mosaic . Forested Mosaic Sparse
Country Cropland vegetation- forest- Shrub land Grassland . Total
crop land shrub/grass vegetation

Afghanistan 18752 (35%) 32192 (32%) 1152 (51%) 128 (40%) 832 (14%) 55488 (27%) 1280 (4%) 109824 (17%)
Algeria 24128 (50%) 29376 (45%) 1024 (23%) 2432 (25%) 6784 (46%) N/A 13824 (12%) 77568 (3%)
Azerbaijan 14272 (34%) 9408 (33%) 896 (8%) 1664 (32%) 3008 (28%) 0 (0%) 640 (8%) 29888 (36%)
Albania 1792 (11%) 192 (2%) 896 (9%) N/A 896 (33%) N/A 0 (0%) 3776 (14%)
Armenia 3648 (23%) 1792 (16%) 320 (6%) 64 (29%) 384 (16%) 0 (0%) 64 (17%) 6272 (22%)
Andorra 192 (50%) N/A 0 (0%) N/A N/A N/A 0 (0%) 192 (41%)
Angola 448 (58%) 47616 (50%) 226560 (36%) 25024 (48%) 177728 (57%) 86336 (60%) 6912 (53%) 570624 (46%)
Argentina 233536 (50%) 94592 (37%) 156800 (45%) 128000 (44%) 504448 (40%) 17152 (24%) 178944 (43%) 1313472 (48%)
Australia 69184 (9%) 1024 (7%) 161280 (19%) 99840 (21%) 374144 (23%) 231744 (28%) 1379712 (42%) 2316928 (30%)
Austria 6016 (19%) N/A 10752 (17%) 512 (16%) 0 (0%) 1664 (52%) 1600 (12%) 20544 (25%)
Barbados 0 (0%) 0 (0%) 0 (0%) N/A N/A N/A N/A 0 (0%)
Botswana N/A 13824 (13%) 960 (14%) 1792 (16%) 5248 (13%) 41792 (10%) 320 (23%) 63936 (11%)
Belgium 4032 (28%) N/A 64 (1%) 64 (4%) 0 (0%) 2304 (40%) 256 (2%) 6720 (22%)
Bahamas 192 (18%) 192 (25%) 832 (36%) 320 (28%) 0 (0%) 320 (13%) 0 (0%) 1856 (19%)
Bangladesh 31488 (31%) 1920 (14%) 3328 (28%) 64 (100%) 4352 (41%) 1984 (52%) N/A 43136 (33%)
Belize 128 (22%) 0 (0%) 2048 (11%) 64 (6%) N/A 384 (43%) N/A 2624 (12%)
Bosnia-Herzegovina 3968 (27%) 832 (7%) 1536 (5%) 448 (16%) 0 (0%) 1664 (38%) 0 (0%) 8448 (17%)
Bolivia 15552 (21%) 4608 (20%) 103744 (17%) 12416 (33%) 63360 (47%) 16512 (23%) 23040 (47%) 239232 (22%)
Myanmar 121408 (59%) 18304 (47%) 92608 (35%) 320 (33%) 76800 (42%) 2176 (56%) N/A 311616 (48%)
Benin 320 (1%) 576 (9%) 1472 (5%) 64 (1%) 2304 (4%) 0 (0%) N/A 4736 (4%)
Belarus 3776 (3%) 128 (0%) 1600 (1%) 0 (0%) 0 (0%) 192 (3%) 64 (5%) 5760 (3%)
Solomon Islands 640 (7%) 256 (7%) 1088 (10%) 0 (0%) N/A N/A N/A 1984 (7%)
Brazil 355776 (21%) 113984 (11%) 254016 (6%) 7232 (8%) 223936 (17%) 8960 (7%) 192 (14%) 964096 (11%)
Bhutan 512 (26%) 384 (33%) 8768 (29%) 192 (37%) 320 (18%) 448 (18%) 0 (0%) 10624 (28%)
Bulgaria 2112 (4%) 0 (0%) 1024 (2%) 0 (0%) 384 (11%) 0 (0%) 512 (2%) 4032 (4%)
Brunei 256 (29%) 0 (0%) 192 (4%) N/A 64 (100%) N/A N/A 512 (10%)
Burundi 128 (50%) 3840 (43%) 6656 (47%) N/A 1600 (85%) 0 (0%) N/A 12224 (48%)
Canada 8896 (9%) 14016 (7%) 251(%025 486528 (40%) 235520 (23%) 756544 (50%) 726016 (11%) 4746240 (52%)
Cambodia 41344 (55%) 4864 (27%) 14528 (28%) 0 (0%) 12608 (36%) 320 (100%) N/A 73664 (42%)
Chad 5440 (5%) 3840 (5%) 3392 (6%) 5504 (8%) 4992 (4%) 41920 (33%) 2688 (13%) 67776 (5%)
Sri Lanka 832 (22%) 64 (11%) 8256 (16%) N/A 256 (4%) N/A N/A 9408 (15%)
Congo N/A 5888 (18%) 83904 (38%) 3200 (32%) 27520 (48%) 8128 (80%) N/A 128640 (38%)
Zaire 640 (11%) 56960 (16%) 460352 (26%) 5504 (38%) 53120 (46%) 2560 (31%) 0 (0%) 579136 (26%)
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Area of NDVI decline in km? and in percentages for the corresponding land cover

Mosaic Forested Mosaic Sparse
Country Cropland vegetation- forest- Shrub land Grassland P . Total
land vegetation
crop shrub/grass

. 1077632
China (40%) 412608 (30%) 691712 (45%) 97280 (39%) 172480 (39%) 368832 (26%) 102528 (24%) 2923072 (31%)

(]
Chile 5504 (14%) 4480 (25%) 21824 (10%) 3264 (19%) 36224 (14%) 640 (2%) 6208 (7%) 78144 (11%)
Cameroon 1280 (5% 896 (2% 26560 (9% 192 (1% 1536 (2% 128 (7% 128 (25% 30720 (6%
(5%) (2%) (9%) (1%) (2%) (7%) (25%) (6%)
Comoros N/A 64 (25%) 128 (5%) N/A 0 (0%) N/A N/A 192 (10%)
Colombia 8256 (9%) 4928 (6%) 74176 (10%) 4096 (7%) 3456 (27%) 19200 (20%) 64 (4%) 114176 (10%)
Costa Rica 1664 (21% 1344 (8% 4096 (16% 0 (0% N/A 320 (20% N/A 7424 (15%
(21%) (8%) (16%) (0%) / (20%) / (15%)
Central African Rep 576 (5%) 128 (1%) 9728 (3%) 1024 (4%) 3648 (2%) N/A N/A 15104 (2%)
Cuba 2048 (17%) 3456 (17%) 8576 (25%) 2112 (13%) N/A 15232 (55%) 0 (0%) 31424 (30%)
Cyprus 640 (30%) N/A 512 (38%) 448 (44%) 704 (38%) N/A 896 (27%) 3200 (35%)
Denmark 448 (1% N/A 0 (0%) 0 (0%) 0 (0%) 128 (2%) 0 (0%) 576 (1%)

(1%)
Djibouti N/A N/A N/A 0 (0%) N/A 0 (0%) 0 (0%) 0 (0%)
Dominica N/A N/A 128 (25%) N/A 0 (0%) N/A N/A 128 (17%)
Dominican Republic 640 (7%) 1216 (7%) 3264 (19%) 320 (28%) N/A 320 (17%) 64 (100%) 5824 (12%)
Ecuador 960 (2%) 576 (5%) 3840 (3%) 64 (1%) 128 (1%) 1408 (9%) 64 (4%) 7040 (3%)
Egypt 20224 (61%) 448 (16%) N/A N/A 320 (27%) 0 (0%) 256 (5%) 21248 (2%)
Ireland 0 (0%) N/A 128 (4%) 1088 (4%) 0 (0%) 9536 (13%) 0 (0%) 10752 (16%)
Equatorial Guinea N/A 128 (6%) 4736 (20%) 0 (0%) N/A N/A N/A 4864 (17%)
Estonia 1984 (14%) N/A 448 (1%) 0 (0%) 0 (0%) 832 (15%) 64 (1%) 3328 (8%)
Eritrea 320 (7%) 448 (5%) N/A 2304 (18%) 192 (25%) 1216 (6%) 3264 (12%) 7744 (8%)
El Salvador 128 (3%) 320 (4%) 1152 (29%) 0 (0%) N/A 960 (25%) N/A 2560 (12%)
Ethiopia 35904 (18%) 30976 (19%) 9984 (16%) 59776 (27%) 37824 (20%) 7808 (14%) 45888 (32%) 228160 (23%)
Czech Republic 6208 (12%) N/A 1280 (3%) 64 (3%) 0 (0%) 1280 (30%) 384 (3%) 9216 (12%)
French Guiana 0 (0%) N/A 2112 (3%) N/A 64 (20%) 0 (0%) N/A 2176 (2%)
Finland 0 (0%) N/A 53056 (10%) 4608 (16%) N/A 5184 (20%) 23616 (21%) 86464 (28%)
Faroe Islands N/A N/A 0 (0%) 0 (0%) 0 (0%) 256 (13%) N/A 256 (18%)
France 49984 (15%) N/A 4032 (2%) 192 (3%) 64 (1%) 7040 (26%) 2688 (1%) 64000 (12%)
Gambia, The 192 (5%) 128 (16%) 192 (10%) 0 (0%) 64 (4%) N/A N/A 576 (6%)
Gabon N/A 2560 (18%) 59776 (27%) 128 (11%) 4032 (30%) 3776 (69%) N/A 70272 (27%)
Georgia 5504 (20%) 1856 (15%) 1664 (4%) 448 (16%) 320 (8%) 3072 (52%) 256 (50%) 13120 (19%)
Ghana 384 (3%) 4928 (9%) 7424 (9%) 256 (2%) 7296 (11%) 64 (20%) N/A 20352 (9%)
Grenada 0 (0%) N/A 128 (50%) N/A N/A N/A N/A 128 (38%)
Greenland N/A N/A N/A 0 (0%) 64 (0%) 320 (1%) 0 (0%) 384 (0%)
Germany 15680 (9%) N/A 6592 (3%) 512 (5%) 192 (2%) 10752 (26%) 1856 (2%) 35584 (10%)
Guadeloupe N/A 0 (0%) 256 (33%) N/A N/A N/A 0 (0%) 256 (15%)
Greece 5312 (10%) 0 (0%) 1344 (3%) 128 (10%) 1152 (6%) 0 (0%) 1920 (4%) 9856 (8%)
Guatemala 576 (10%) 384 (6%) 15808 (23%) 3776 (25%) N/A 5952 (46%) N/A 26496 (25%)
Guinea 192 (2%) 2048 (6%) 16512 (14%) 384 (4%) 8192 (10%) N/A 0 (0%) 27328 (11%)
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Area of NDVI decline in km? and in percentages for the corresponding land cover

Mosaic . Forested Mosaic Sparse
Country Cropland vegetation- forest- Shrub land Grassland . Total
crop land shrub/grass vegetation

Guyana 320 (7%) 64 (4%) 16640 (9%) 384 (29%) 1024 (11%) 448 (23%) N/A 18880 (10%)
Gaza Strip 64 (0%) 0 (0%) N/A N/A N/A N/A 192 (75%) 256 (71%)
Haiti 1728 (13%) 1216 (11%) 512 (33%) 0 (0%) N/A 576 (56%) 64 (33%) 4096 (15%)
Honduras 2368 (16%) 2560 (11%) 16896 (28%) 832 (12%) 64 (100%) 2240 (41%) N/A 24960 (22%)
Croatia 3456 (12%) 256 (2%) 320 (1%) 64 (3%) 0 (0%) 896 (30%) 0 (0%) 4992 (9%)
Hungary 12992 (15%) N/A 832 (3%) 256 (9%) N/A 128 (7%) 640 (4%) 14848 (16%)
Iceland N/A N/A N/A 1408 (3%) 0 (0%) 11968 (31%) 2368 (3%) 15744 (16%)
Indonesia 129984 (18%) 8320 (9%) 220992 (23%) 64 (0%) 13952 (35%) 64 (100%) N/A 373376 (21%)
India 289024 (13%) 25344 (11%) 115392 (31%) 448 (22%) 25344 (19%) 17664 (11%) 0 (0%) 473216 (16%)
Iran 52928 (45%) 76224 (55%) 576 (2%) 24832 (46%) 8192 (39%) 1152 (4%) 83392 (29%) 247296 (15%)
Israel 3200 (76%) 2624 (63%) 0 (0%) 64 (33%) 256 (100%) N/A 256 (20%) 6400 (30%)
Italy 25088 (14%) N/A 3712 (3%) 128 (11%) 1216 (10%) 704 (37%) 3328 (5%) 34176 (12%)
Ivory Coast 704 (7%) 5568 (6%) 17088 (12%) 512 (6%) 7936 (14%) 0 (0%) N/A 31808 (10%)
Iraq 9728 (39%) 11520 (37%) 128 (40%) 3072 (24%) 960 (36%) N/A 17088 (21%) 42496 (10%)
Japan 49472 (41%) 320 (10%) 36800 (12%) 384 (23%) 384 (12%) 1728 (54%) 64 (10%) 89152 (24%)
Jamaica 192 (12%) 384 (13%) 1664 (28%) 0 (0%) N/A 0 (0%) N/A 2240 (21%)
Jordan 2240 (83%) 1152 (86%) N/A 0 (0%) N/A N/A 2048 (24%) 5504 (6%)
Kenya 15808 (31%) 40512 (42%) 21568 (46%) 9664 (10%) 21952 (42%) 15232 (18%) 2688 (4%) 127424 (22%)
Kyrgyzstan 8192 (21%) 4736 (18%) 768 (13%) 384 (10%) N/A 22784 (38%) 3072 (11%) 39936 (21%)
North Korea 1024 (55%) N/A 32896 (39%) 11008 (37%) 320 (4%) 640 (77%) 8448 (40%) 54336 (45%)
South Korea 4544 (41%) N/A 15616 (23%) 5888 (27%) 448 (6%) 192 (50%) 2944 (40%) 29632 (31%)
Kazakhstan 341696 (57%) 377920 (67%) 9088 (21%) 5760 (34%) 0 (0%) 38016 (38%) 847104 (66%) 1619584 (60%)
Laos 15104 (55%) 4736 (25%) 26048 (25%) 64 (14%) 28480 (33%) 128 (100%) N/A 74560 (32%)
Lebanon 1728 (37%) 960 (22%) 0 (0%) 0 (0%) 128 (37%) N/A 960 (52%) 3776 (37%)
Latvia 3328 (15%) N/A 3328 (5%) 0 (4%) 0 (0%) 512 (11%) 192 (2%) 7360 (12%)
Lithuania 3200 (7%) N/A 512 (1%) 64 (0%) 0 (0%) 1600 (28%) 128 (1%) 5504 (9%)
Liberia N/A 2304 (7%) 11968 (20%) 0 (0%) 0 (0%) N/A N/A 14272 (15%)
Slovakia 3136 (14%) N/A 704 (3%) 0 (0%) 0 (0%) 384 (18%) 448 (5%) 4672 (10%)
Liechtenstein 0 (0%) N/A 64 (0%) N/A N/A N/A N/A 64 (40%)
Lesotho N/A 2496 (33%) 1856 (42%) 2304 (42%) 2624 (64%) 7296 (55%) N/A 16576 (55%)
Luxembourg 0 (0%) N/A 0 (0%) 0 (0%) N/A 0 (0%) 0 (0%) 0 (0%)
Libya 896 (39%) 3008 (70%) N/A 448 (21%) 2112 (63%) N/A 3776 (31%) 10240 (1%)
Madagascar N/A 2560 (4%) 18304 (15%) 7936 (51%) 87744 (40%) 131776 (73%) N/A 248320 (43%)
Martinique 0 (0%) 0 (0%) 448 (50%) N/A N/A N/A N/A 448 (42%)
Moldova 1984 (7%) 64 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2048 (6%)
Mayotte N/A 0 (0%) 0 (0%) N/A N/A N/A N/A 0 (0%)
Mongolia 45312 (23%) 49984 (16%) 11456 (18%) 1728 (16%) 704 (29%) 15296 (17%) 29120 (8%) 153600 (10%)
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Mosaic . Forested Mosaic Sparse
Country Cropland vegetation- forest- Shrub land Grassland . Total
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Malawi 576 (50%) 6720 (31%) 11072 (34%) 1088 (57%) 17984 (51%) 1472 (56%) N/A 38912 (41%)
Macedonia 704 (8%) 320 (4%) 256 (2%) 0 (0%) 128 (7%) 0 (0%) N/A 1408 (6%)
Mali 5824 (5%) 9152 (12%) 192 (2%) 8832 (19%) 3648 (4%) 48192 (34%) 7872 (22%) 83712 (7%)
Morocco 42368 (53%) 26496 (53%) 640 (48%) 6336 (38%) 8576 (55%) N/A 15296 (19%) 99712 (22%)
Mauritius N/A 0 (0%) 192 (27%) N/A 0 (0%) N/A N/A 192 (9%)
Mauritania 768 (13%) 7872 (39%) N/A 11648 (46%) 0 (0%) 56960 (52%) 8832 (32%) 86080 (8%)
Oman 0 (0%) 0 (0%) 0 (0%) N/A 0 (0%) N/A 128 (4%) 128 (0%)
Montenegro 2240 (49%) 768 (19%) 832 (15%) 128 (18%) 64 (7%) 1472 (74%) N/A 5504 (41%)
Mexico 25472 (34%) 61120 (31%) 112448 (22%) 91328 (36%) 314752 (37%) 82560 (40%) 0 (0%) 687680 (35%)
Malaysia 17280 (15%) 704 (6%) 32000 (17%) N/A 704 (15%) N/A N/A 50688 (15%)
Mozambique 2048 (24%) 41920 (33%) 151872 (32%) 4544 (59%) 79040 (47%) 3968 (51%) N/A 283392 (36%)
New Caledonia 384 (6%) 0 (0%) 2240 (23%) 0 (0%) 384 (20%) N/A N/A 3008 (16%)
Niger 3328 (21%) 12800 (49%) 64 (100%) 8000 (49%) 0 (0%) 138176 (55%) 4992 (17%) 167360 (13%)
Vanuatu 192 (5%) 64 (3%) 448 (9%) N/A N/A N/A N/A 704 (6%)
Nigeria 12160 (4%) 14784 (10%) 20736 (11%) 1728 (7%) 9984 (5%) 9216 (18%) 640 (21%) 69248 (8%)
Netherlands 2688 (18%) N/A 128 (2%) 128 (4%) 0 (0%) 3008 (23%) 256 (3%) 6208 (18%)
Norway 0 (0%) N/A 32256 (14%) 4608 (17%) N/A 3392 (17%) 59776 (17%) 100032 (33%)
Nepal 16064 (30%) 3072 (15%) 8576 (19%) 768 (29%) 3264 (30%) 2944 (17%) N/A 34688 (24%)
Suriname 0 (0%) 0 (0%) 2304 (2%) 0 (0%) 0 (0%) 192 (12%) N/A 2496 (2%)
Nicaragua 4608 (17%) 2560 (8%) 9280 (17%) 320 (14%) 64 (20%) 1792 (35%) 0 (0%) 18624 (15%)
New Zealand 32832 (28%) 256 (3%) 9088 (11%) 2176 (10%) 4096 (9%) 38080 (66%) N/A 86528 (33%)
Paraguay 8448 (12%) 3776 (10%) 29056 (13%) 0 (0%) 9664 (14%) 1536 (8%) 0 (0%) 52480 (13%)
Peru 8512 (17%) 1472 (13%) 30080 (4%) 2240 (10%) 41600 (20%) 16512 (27%) 5312 (9%) 105728 (8%)
Pakistan 57472 (21%) 11008 (15%) 2176 (33%) 128 (20%) 1984 (6%) 13376 (10%) 1152 (7%) 87296 (11%)
Poland 36672 (16%) N/A 2816 (2%) 128 (3%) 0 (0%) 1152 (12%) 2624 (3%) 43392 (14%)
Panama 512 (5%) 64 (1%) 3712 (8%) 0 (0%) 64 (4%) 704 (30%) N/A 5056 (7%)
Portugal 8768 (28%) 0 (0%) 320 (2%) 384 (12%) 6208 (23%) 0 (0%) 4480 (15%) 20160 (22%)
Papua New Guinea 16576 (12%) 2368 (9%) 55488 (21%) 64 (14%) 5248 (53%) N/A N/A 79744 (18%)
Pacific Islands (Palau) 128 (67%) N/A 0 (0%) N/A N/A N/A N/A 128 (28%)
Guinea-Bissau 64 (7%) 384 (4%) 2368 (14%) 0 (0%) 1024 (20%) N/A N/A 3840 (14%)
Reunion N/A 128 (12%) 384 (30%) N/A 0 (0%) 0 (0%) N/A 512 (20%)
Romania 6912 (5%) 0 (0%) 1664 (2%) 64 (1%) 0 (0%) 960 (8%) 384 (1%) 9984 (4%)
Philippines 39040 (22%) 1664 (14%) 19200 (24%) 64 (3%) 2048 (29%) N/A N/A 62016 (21%)
Puerto Rico 0 (0%) 0 (0%) 256 (5%) 0 (0%) N/A 64 (20%) N/A 320 (4%)
Russia 562048 (27%) 183296 (27%) 407(3‘11;6) 482944 (22%) 116416 (6%) 162176 (17%) 1401792 (19%) 6982848 (43%)
Rwanda 960 (88%) 9216 (80%) 5504 (62%) 0 (0%) 1728 (93%) 128 (100%) N/A 17536 (71%)
Saudi Arabia 448 (7%) 0 (0%) 0 (0%) N/A 512 (14%) N/A 1920 (8%) 2880 (0%)
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South Africa 2944 (26%) 97088 (39%) 68992 (35%) 28672 (39%) 47552 (42%) 251328 (43%) 47552 (46%) 544128 (45%)
Senegal 9280 (13%) 9216 (20%) 1920 (8%) 1088 (12%) 1344 (3%) 2112 (20%) 1408 (36%) 26368 (14%)
Slovenia 640 (16%) N/A 640 (3%) 0 (0%) 0 (0%) 384 (30%) 0 (0%) 1664 (8%)
Sierra Leone 0 (0%) 3328 (8%) 6144 (19%) 0 (0%) 128 (4%) N/A N/A 9600 (13%)
San Marino 0 (0%) N/A N/A N/A N/A N/A N/A 64 (100%)
Singapore 128 (17%) N/A N/A N/A N/A N/A N/A 128 (18%)
Somalia 22912 (30%) 22016 (28%) 2752 (32%) 58304 (46%) 11072 (22%) 85952 (60%) 32832 (41%) 235840 (38%)
Spain 61632 (29%) 64 (5%) 5376 (4%) 5824 (24%) 20608 (23%) 0 (0%) 34560 (20%) 128064 (26%)
Serbia 3904 (7%) 128 (1%) 128 (0%) 64 (3%) 0 (0%) 64 (6%) N/A 4288 (5%)
St. Lucia 0 (0%) N/A 64 (17%) 0 (0%) N/A N/A N/A 64 (10%)
Sudan 26624 (17%) 41472 (26%) 5696 (4%) 49664 (16%) 17344 (6%) 108608 (43%) 25408 (23%) 274816 (12%)
Svalbard N/A N/A N/A 0 (0%) 0 (0%) 0 (0%) 256 (1%) 256 (0%)
Sweden 256 (3%) N/A 75648 (12%) 2496 (9%) 0 (0%) 5184 (20%) 24576 (16%) 108160 (26%)
Syria 9408 (30%) 4160 (24%) 0 (0%) 2048 (38%) 1152 (33%) N/A 6592 (17%) 23360 (13%)
Switzerland 1856 (17%) N/A 1472 (6%) 128 (5%) 64 (2%) 1536 (38%) 0 (0%) 5056 (13%)
Trinidad and Tobago 0 (0%) 64 (9%) 192 (5%) N/A N/A 0 (0%) N/A 256 (5%)
Thailand 212096 (65%) 15808 (48%) 39424 (46%) 0 (0%) 36160 (56%) 4736 (82%) N/A 308224 (60%)
Tajikistan 7360 (23%) 1344 (16%) 0 (0%) 0 (0%) 0 (0%) 8704 (15%) 64 (3%) 17472 (12%)
Togo 192 (4%) 768 (15%) 1216 (8%) 64 (2%) 3392 (12%) N/A N/A 5632 (10%)
ifl‘:] Ii‘;re“e and N/A 0 (0%) 64 (9%) N/A N/A N/A N/A 64 (7%)
Tunisia 7040 (30%) 2560 (19%) 384 (35%) 576 (22%) 256 (33%) N/A 6016 (17%) 16832 (11%)
Turkey 42752 (16%) 43584 (13%) 5376 (4%) 5120 (14%) 16192 (13%) N/A 7616 (13%) 120640 (16%)
Taiwan 1728 (15%) 0 (0%) 4928 (23%) N/A 1024 (34%) N/A N/A 7680 (24%)
Turkmenistan 22592 (32%) 10624 (27%) N/A 0 (0%) 0 (0%) 2304 (23%) 1216 (10%) 36736 (8%)
Tanzania 12608 (32%) 112768 (62%) 139968 (36%) 18688 (76%) 93504 (70%) 75712 (76%) 640 (30%) 453888 (51%)
Uganda 8576 (20%) 15616 (24%) 9984 (30%) 1792 (12%) 6592 (14%) 0 (0%) 0 (0%) 42560 (21%)
United Kingdom 3712 (5%) N/A 640 (3%) 5568 (4%) 0 (0%) 18880 (13%) 192 (1%) 28992 (12%)
Ukraine 70592 (13%) 8128 (6%) 3776 (3%) 768 (4%) 0 (0%) 896 (14%) 2112 (9%) 86272 (15%)
United States 173120 (25%) 207424 (18%) 912448 (23%) 609920 (37%) 840896 (32%) 707584 (37%) 236672 (30%) 3688064 (40%)
Burkina Faso 7104 (6%) 4544 (7%) 128 (5%) 2176 (11%) 2496 (6%) 3200 (19%) 1216 (13%) 20864 (8%)
Uruguay 6720 (19%) 17920 (15%) 1536 (23%) 0 (0%) 11200 (30%) 128 (4%) N/A 37504 (21%)
Uzbekistan 25728 (26%) 960 (11%) N/A N/A 0 (0%) 4032 (17%) 4416 (16%) 35136 (8%)
Venezuela 2880 (5%) 4608 (4%) 40256 (8%) 2240 (4%) 2368 (23%) 23744 (20%) 128 (5%) 76224 (9%)
Vietnam 38720(33%) 11200 (18%) 19456 (26%) 192 (50%) 19520 (28%) 960 (26%) 0 (0%) 90048 (29%)
Namibia N/A 14080 (30%) 1088 (45%) 5952 (40%) 5504 (40%) 178496 (33%) 44928 (31%) 250048 (30%)
West Bank 2304 (93%) 1280 (95%) N/A N/A N/A N/A 512 (32%) 4096 (73%)
Swaziland 256 (67%) 2304 (61%) 6208 (63%) 448 (53%) 1792 (61%) 64 (20%) N/A 11072 (64%)
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Yemen 2496 (21%) 128 (13%) 128 (29%) 64 (17%) 2240 (16%) 320 (38%) 3008 (13%) 8384 (2%)
Zambia 64 (33%) 35648 (43%) 136576 (42%) 18176 (48%) 115904 (50%) 29632 (45%) 64 (33%) 336064 (45%)
Zimbabwe 640 (100%) 70144 (52%) 24128 (57%) 10560 (53%) 58048 (50%) 39872 (46%) 0 (0%) 203392 (53%)

Note: (1) Land cover data extracted from Globcover data in 2005-2006 with the original resolution at 300 m, (2) results in grey
text should be treated with special cautions (refer to section 4.9 for explanations), (3) The total area in the table is retrieved
from the World Bank Development indicators for 2010/2012, (4) This listing of countries and territories does not necessarily
reflect the opinion or official position of the authors, their affiliated institutions and of the funding agency on their legal status

and are presented here in purely geographic sense.
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Annex 3. The population residing in the areas with long-term (1982-2006) NDVI decline,

including the areas with correction of RF and AF effects, and potential masking by chemical

fertilization.

Population residing in the
areas with NDVI decline

Including the share in the areas with,

Country/Territory NDVI decline NDVI decline . NDVI decline
Total Share of total detected from the likely masked by likely mas.ked by
remotely sensed chemical
CO, effects .
data fertilization
Afghanistan 16 852 408 53.7 13% 41% 0%
Albania 290 448 8.7 1% 7% 0%
Algeria 15 106 155 42.4 15% 27% 0%
Angola 4037 106 22.7 10% 13% 0%
Argentina 18 802 484 45.3 16% 27% 2%
Armenia 1884 852 49.8 7% 32% 11%
Australia 1748 056 8.4 3% 4% 2%
Austria 2383705 29.9 2% 6% 22%
Azerbaijan 4041 966 47.7 15% 30% 3%
Bangladesh 136 758 832 81.8 17% 20% 44%
Belarus 1447 586 14.8 0% 2% 13%
Belgium 6189 343 59.9 1% 15% 43%
Benin 516 278 6.2 2% 5% 0%
Bhutan 240 035 8.7 3% 1% 1%
Bolivia 2942 555 28.8 9% 20% 0%
Bosnia-Herzegovina 644 980 15.2 2% 9% 4%
Botswana 251710 15.5 8% 7% 0%
Brazil 61522 576 32.2 6% 16% 10%
Brunei Darussalam 4857 1.3 0% 1% 0%
Bulgaria 280779 3.9 1% 2% 1%
Burkina Faso 2 308 837 14.7 3% 12% 0%
Burundi 2 035 828 23.6 16% 7% 0%
Cambodia 9869171 59.2 16% 40% 2%
Cameroon 249 638 1.4 0% 1% 0%
Canada 9328043 28.0 5% 12% 11%
Central African Republic 8973 0.2 0% 0% 0%
Chad 1065 378 10.0 2% 8% 0%
Chile 7 856 254 46.3 18% 22% 6%
China 913 036 224 68.0 13% 24% 31%
Colombia 8522501 17.4 6% 8% 3%
Congo 1238547 29.3 11% 18% 0%
Congo, Democratic Republic 10598 746 14.9 3% 12% 0%
Costa Rica 551072 11.3 1% 3% 8%
Croatia 1012785 22.7 0% 6% 17%
Cuba 2762277 24.0 4% 20% 0%
Czech Republic 2729091 26.9 3% 5% 19%
Denmark 885 588 16.5 0% 1% 15%
Djibouti 432793 63.8 1% 60% 0%
Dominican Republic 2572894 26.7 1% 6% 20%
East Timor 201 452 30.1 2% 28% 0%
Ecuador 1343570 9.0 0% 7% 1%
Egypt 72 750 080 91.7 12% 70% 10%
El Salvador 4723999 63.7 0% 11% 52%
Equatorial Guinea 3344 0.6 0% 0% 0%
Eritrea 1371472 26.9 7% 20% 0%
Estonia 181 745 14.5 0% 14% 0%

54



Population residing in the

areas with NDVI decline Including the share in the areas with,

Country/Territory NDVI decline NDVI decline . NDVI decline
Total Share of total detected from the likely masked by likely mas.ked by
remotely sensed €O, effects chemical
data 2 fertilization

Ethiopia 16 958 654 21.2 7% 14% 0%
Finland 398 249 7.7 1% 0% 7%
France 27 162 878 44.4 1% 9% 34%
Gabon 23422 1.5 0% 1% 0%
Gambia 436 293 27.2 2% 26% 0%
Georgia 665 321 13.4 6% 7% 1%
Germany 30649 678 37.7 0% 5% 32%
Ghana 3547032 14.8 7% 8% 0%
Greece 2537755 24.0 2% 5% 18%
Guatemala 6617 244 45.3 3% 13% 30%
Guinea 578 639 5.8 1% 5% 0%
Guinea-Bissau 121 546 7.9 1% 7% 0%
Haiti 3682707 38.9 1% 33% 1%
Honduras 2 602 086 32.6 1% 7% 24%
Hungary 5580 699 58.8 2% 7% 50%
Iceland 15561 5.3 1% 4% 0%
India 510352352 43.8 1% 10% 29%
Indonesia 154 041 488 64.8 13% 22% 29%
Iran 53001 920 65.7 13% 46% 6%
Iraq 15 049 909 50.3 13% 26% 12%
Ireland 2 874 809 68.3 0% 29% 39%
Israel 7100017 96.3 55% 36% 5%
Italy 24732 976 43.9 1% 10% 30%
Ivory Coast 2701444 13.8 7% 7% 0%
Japan 68 692 752 53.6 15% 33% 6%
Jordan 5896 104 92.0 72% 20% 0%
Kazakhstan 6 660 106 42.2 8% 32% 2%
Kenya 12 296 859 333 18% 14% 1%
Korea 23573014 47.5 26% 12% 10%
Korea, Dem. People's Rep. of 9088 182 38.4 15% 14% 9%
Kyrgyz Republic 1963 812 35.0 6% 24% 4%
Lao People's Democratic

Republic 2 490 899 37.8 7% 24% 6%
Latvia 171627 7.5 1% 4% 2%
Lebanon 3025428 75.6 6% 34% 36%
Lesotho 816 929 38.9 10% 29% 0%
Liberia 223261 4.7 3% 1% 0%
Libyan Arab Jamabhiriya 4566 207 70.2 31% 39% 0%
Lithuania 402 310 11.2 0% 4% 7%
Luxembourg 115 668 23.6 0% 0% 24%
Macedonia 493 688 23.8 0% 11% 13%
Madagascar 6005 133 28.5 10% 19% 0%
Malawi 5554284 39.8 12% 28% 0%
Malaysia 14 221 548 54.1 18% 25% 12%
Mali 2422 850 15.9 1% 12% 0%
Mauritania 1258 260 355 2% 33% 0%
Mexico 61 046 856 54.1 14% 22% 18%
Mongolia 279 907 9.9 2% 8% 0%
Morocco 24703 114 69.9 30% 32% 8%
Mozambique 5025 059 23.1 6% 17% 0%
Myanmar 29972 088 56.5 21% 26% 10%
Namibia 473 154 23.0 5% 18% 0%
Nepal 11426 022 39.4 5% 17% 17%
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Population residing in the
areas with NDVI decline

Including the share in the areas with,

Country/Territory NDVI decline NDVI decline . NDVI decline
Total Share of total detected from the likely masked by likely mas.ked by
remotely sensed €O, effects chemical
data 2 fertilization

Netherlands 9423244 57.8 1% 18% 36%
New Zealand 2504 042 62.1 5% 48% 9%
Nicaragua 790978 12.2 3% 9% 0%
Niger 9404 559 60.6 6% 54% 0%
Nigeria 9253 668 6.3 1% 5% 0%
Norway 664 127 14.5 2% 5% 7%
Occupied Palestinian

Territory 4285492 99.1 71% 27% 1%
Oman 2 649 909 75.3 18% 57% 0%
Pakistan 96 775 024 53.5 8% 21% 25%
Panama 44 240 14 0% 1% 0%
Papua New Guinea 1132827 19.0 15% 4% 0%
Paraguay 268 279 3.9 1% 3% 0%
Peru 10228 202 34.3 1% 30% 0%
Philippines 52 496 340 58.4 16% 27% 16%
Poland 14 692 077 38.4 1% 10% 28%
Portugal 1805714 17.9 1% 4% 13%
Republic of Moldova 254 014 6.1 0% 2% 4%
Romania 4 467 999 20.5 0% 4% 17%
Russia 15 750 863 11.6 1% 10% 0%
Rwanda 4825313 51.2 39% 12% 0%
Saudi Arabia 22 005 500 79.8 1% 70% 7%
Senegal 2678271 22.2 1% 21% 0%
Serbia and Montenegro 2916 383 27.2 1% 4% 23%
Sierra Leone 280 567 4.5 2% 3% 0%
Singapore 4093 366 91.1 37% 54% 0%
Slovakia 1507 739 27.8 0% 6% 21%
Slovenia 239 323 10.9 0% 1% 7%
Somalia 5186 667 39.8 15% 25% 0%
South Africa 16 785 520 37.2 8% 22% 7%
Spain 24 971 382 63.2 9% 21% 33%
Sri Lanka 1895 356 9.2 1% 1% 7%
Sudan 14 285 319 37.0 9% 28% 0%
Suriname 1191 0.3 0% 0% 0%
Swaziland 301 288 30.6 7% 24% 0%
Sweden 725 389 8.4 0% 2% 6%
Switzerland 2317 627 32.9 1% 7% 24%
Syrian Arab Republic 14 839 891 71.5 15% 33% 23%
Taiwan 11721754 50.6 12% 21% 18%
Tajikistan 2789959 42.2 5% 36% 1%
Thailand 54 005 696 77.6 28% 36% 13%
Togo 1433277 24.7 1% 23% 0%
Trinidad and Tobago 482 418 35.5 0% 5% 31%
Tunisia 7301244 68.7 13% 32% 23%
Turkey 21819 756 29.0 3% 8% 17%
Turkmenistan 2 848 499 49.9 1% 49% 0%
Uganda 9262 307 28.4 12% 17% 0%
Ukraine 5452 628 12.1 1% 10% 0%
United Kingdom 21 895 624 36.3 1% 6% 29%
United Rep. of Tanzania 19 154 264 43.5 28% 16% 0%
United States of America 92 077 584 29.9 6% 16% 8%
Uruguay 426312 12.0 2% 9% 1%
Uzbekistan 16 163 704 57.1 2% 24% 31%
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Population residing in the
areas with NDVI decline

Including the share in the areas with,

Country/Territory NDVI decline NDVI decline . NDVI decline
detected from the . likely masked by
Total Share of total likely masked by .
remotely sensed €O, effects chemical
data 2 fertilization
Venezuela 2 255999 7.9 1% 5% 2%
Viet Nam 53190 264 60.0 10% 19% 31%
Yemen 16 960 750 62.0 9% 53% 0%
Zambia 4302 948 33.2 12% 21% 0%
Zimbabwe 7 386 360 49.2 20% 29% 0%
World 3215563 850 47% 9% 19% 19%

Note: This listing of countries and territories does not necessarily reflect the opinion or official position of the authors, their
affiliated institutions and of the funding agency on their legal status and are presented here in purely geographic sense.
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