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Abstract 

The identification of local soil variability caused by within-field differences of macronutrients and ecological features is 
of paramount importance for the effectiveness of precision agriculture. We present several spatial statistical and econometric 
techniques to capture local differences in soil variation, ecological characteristics, and yield more effectively than the analytical 
techniques traditionally used in agronomy. The application of these techniques is illustrated in a case study dealing with 
precision agriculture in the West African Sahel. The production of millet on acid sandy soils constitutes a typical example 
of low soil fertility areas exhibiting small absolute but large relative differences in crop production conditions over short 
distances. 
© 2002 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Fertiliser recommendations, specifying the appro­
priate mix and dose, are often made for large regions 
(Bullock et al., this issue). In the case of developing 
countries, they may even pertain to entire countries. 
Soils are however heterogeneous over space, even 
over short distances (Eswaran et al., 1992). Uniform 
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recommendations are therefore likely to be inefficient 
(Bouma, 1997; Clay et al., 1999) and can eventually 
even cause local yield reductions. 

Precision agriculture constitutes the modern man­
agement strategy to cope with soil heterogeneity. In 
a high-tech fashion, precision agriculture is based on 
four essential ingredients: a spatial representation and 
analysis of soil and yield variability, a soil-type and 
hence location-specific optimum fertiliser prescrip­
tion, a global positioning system (GPS), and farm ma­
chinery capable of variable rate applications (Bullock 
et al., this issue). In theory, the linkage of these four 
ingredients carries a large potential for improving 
the efficiency of soil resource use. In less-developed 
countries, however, fields are often small and the 
technology of GPS and farm machinery is mostly 
not available. Differences in crop performance are 
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nevertheless important, and their relevance is ampli­
fied by cash constraints, as is the case for instance for 
millet production on Sahelian coversands in Africa, 
covered in our case study. 

Precision agriculture is an appealing concept and 
its principles quite naturally lead to the expectation 
that farming inputs can be used more effectively, with 
subsequent improvements in profits and environmen­
tally less burdensome production. Especially in the 
case of small farmers in developing countries, preci­
sion agriculture holds the promise of substantial yield 
improvement with minimal external input use. How­
ever, most research on precision farming is conducted 
in developing countries, and reveals that increased in­
put efficiencies result in rather modest profitability in­
creases (Kilian, 2000). This may be the main reason 
for adoption rates being rather low (Cook et al., 2000). 
The main obstacle is most likely the absence of fer­
tiliser application prescriptions that adequately match 
individual site characteristics (Stewart and McBratney, 
2000; Bullock et al., this issue). 

Soil variability and appropriate fertiliser doses in 
precision farming can be investigated using soil and 
crop yield maps. Soil units can be entered as grids into 
a geographic information system (GIS). However, soil 
unit boundaries are usually arbitrarily determined and 
the soil-mapping units allow a good deal of variation 
of soil properties. This problem can be overcome by 
interpolation of chemical soil properties, sampled in a 
spatial point pattern, to the regular grid structure. The 
visual interpretation of multiple layers of soil attributes 
is then, however, rather cumbersome, even if comple­
mented by exploratory data analysis in a GIS environ­
ment. In addition, the application of different methods 
of spatial interpolation (inverted distance weighting, 
spline functions, spatial polynomials, kriging) usually 
has a considerable impact on the obtained results, and 
univariate interpolations may very well be inappropri­
ate because crop yield responses evidently depend on 
systematic variation in other variables (Nielsen et al., 
1999). 

Input prescriptions can also be derived from regres­
sion analyses using crop yield as the dependent vari­
able and inputs, soil and climate variables or soil types 
as the explanatory variables. However, the method of 
regression analysis gives rise to complications of its 
own. Some of these complications are inherent to any 
econometric analysis. Variable selection and specifi-

cation of functional form are difficult, also because 
agronomy and soil science do not always provide ade­
quate theoretical guidance. For instance, the literature 
typically focuses on the effect of applied macronu­
trients nitrogen (N), phosphorus (P), and potassium 
(K), although it is well known that a multitude of in­
teracting soil and climatic factors affect crop yields 
and input efficiencies (FAO, 1983). Regression models 
are often specified as simple linear or quadratic rela­
tionships although nutrient interaction models allow­
ing for plateau growth have been derived (so-called 
Mitscherlich and Mitscherlich-Baule specifications). 
These are, however, much more difficult to estimate. 

The above may be an important cause for the rather 
modest performance of regression models. Applica­
tions of regression analysis have usually not been 
capable of explaining more than 30% of crop yield 
variation at the field level (Nielsen et al., 1997, 1999; 
Wendroth et al., 1999). However, another important 
reason for a relatively poor fit is likely to be the preva­
lent soil heterogeneity, causing crop yield response to 
a single variable to vary depending on the varying total 
soil constellation in combination with differences in 
external input treatments. Moreover, the inherent spa­
tial nature of soil and crop data should not be ignored. 

The inherent spatial feature of the analysis implies 
that agricultural data exhibit differences depending 
on the exact location in the field, and spatial patterns 
or clustering is likely to occur. The commonly used 
ordinary least squares (OLS) regressions are inappro­
priate for this purpose and lead to misleading results. 
Although appropriate techniques are available in spa­
tial statistics and spatial econometrics, they have to 
date not been used extensively in agronomic research. 
There are a few exceptions. Long et al. (1992) demon­
strate inconsistencies between spatial models and 
classical OLS because of the erroneous assumption of 
independence. Kessler and Lowenberg-DeBoer (1999) 
conclude that spatial regression techniques are more 
appropriate. Bongiovanni and Lowenberg-DeBoer 
(2000, 2001) use spatial techniques and show that for 
their particular example, the spatial autoregressive 
models consistently point to the profitability of N 
application, whereas the OLS model does not. 

This paper extends this spatial line of research. 
We review several exploratory as well as explanatory 
techniques from spatial statistics and spatial econo­
metrics, and empirically illustrate their relevance and 
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impact by means of a case study pertaining to millet 
yield production on the acid sandy soils of the Sa­
helian coversands. Specifically, Section 2 describes 
precision agriculture requirements in the low-tech set­
ting of smallholders in the Sahel, and summarises the 
state-of-the-art knowledge regarding crop yield varia­
tion in agronomic research. In Section 3, the prevalent 
environmental conditions in the Sahel are spelled out, 
and we introduce the data for the case study. Section 4 
describes spatial data analysis techniques, and the 
use of these techniques is illustrated in Section 5. 
Section 6 provides a summary and conclusions. 

2. Precision farming and agronomic knowledge 
about yields 

Although high-tech and low-tech precision farming 
are vastly different, the basic goals behind the two are 
identical and aimed at optimisation of resource use. 
High-tech precision agriculture is capital-intensive. It 
is pervasively dominated by technological hardware: 
GPS, variable-rate application machinery, and GIS. 
Low-tech precision agriculture is much more depen­
dent on visual observation of topography, topsoil char­
acteristics, local vegetation (arable weeds) and crop 
performance, and on labour as opposed to capital as 
a main production input. However, in both variants 
of precision agriculture the focus is on identification 
and use of location-specific resource applications, for 
instance fertiliser or manure and herbicide or weed­
ing labour, that contribute to yield optimisation and 
in turn, depending on market circumstances, to profit 
optimisation. 

The case study in this article represents a low-tech 
situation, in which precision farming is a traditional 
phenomenon that can be developed further. In south­
west Niger, peasant farmers grow millet as their staple 
food on acid and sandy Aeolian deposits (coversands). 
They cultivate mainly with hand-tools and external 
input levels are currently low or non-existent. The 
capital-extensive production mode is not necessarily 
a negative impediment for a profitable application 
of precision agriculture, although critical presupposi­
tions such as an adequate financing system to be able 
to buy sufficient amounts of fertiliser are not yet satis­
fied in many instances. As the local farmers know very 
well, precision agriculture is equally relevant to the 

application of scarce local resources and of external 
inputs. For both types of resources, the crucial issue 
is for instance which fertiliser to apply where in order 
to achieve optimal fertiliser efficiency and optimal 
returns to labour and cash investment. Consequently, 
the development of analytical techniques determining 
efficient and effective external fertiliser use are crucial 
for both high-tech and low-tech precision agriculture. 

Spatial dimensions of agricultural production are 
particularly relevant on Sahelian coversands, because 
yield variation is substantial within short distances 
(Scott-Wendt et al., 1988a,b; Geiger and Manu, 1993; 
Hermann et al., 1994; Lamers and Feil, 1995; Manu 
et al., 1996; Brouwer and Bouma, 1997; Rockstrom 
and De Rouw, 1997; Krogh, 1999; Rockstrom et al., 
1999). The causes for the extreme and very localised 
variation in yield are still poorly understood (Buerkert, 
1995), but they can likely be derived from equally vari­
able soil and hydrological conditions (Brouwer and 
Powell, 1998). Prevailing surface soils are the result 
of various episodes of Aeolian deposition and erosion. 
As a result, they vary in origin (parent material) and 
age, both of which affect soil chemistry. Moreover, 
the coversands vary in grain-size distribution, which 
influences the susceptibility to crust formation on the 
soil surface, and consequent moisture infiltration and 
seedling emergence (Sombroek and Zonneveld, 1971; 
Zonneveld et al., 1971; Voortman et al., 2002). Un­
der unfertilised conditions, the spatial distribution of 
these soil differences leads to rather abrupt crop yield 
changes within a few meters. Within a 1 ha field, yields 
measured on a 5 m x 5 m regular grid, varied between 
0 and 2885 kgha- 1 (Brouwer and Bouma, 1997). This 
suggests that efficient and effective fertiliser treatment 
should be and can be spatially differentiated. 

In their attempt to develop appropriate fertiliser 
technologies, agronomists have struggled with the 
problem of localised millet yield variation (Moorman 
and Kang, 1978; Scott-Wendt et al., 1988b; Wendt 
et al., 1993; Hermann et al., 1994; Buerkert, 1995; 
Manu et al., 1996). The analysis of variance (ANOVA) 
of results of conventional block experiments accounts 
for differences between blocks, but highly localised 
soil variability violates the requirement that soil 
conditions within individual blocks should be homo­
geneous. Lack of data for different levels of spatial 
aggregation limits the possibilities of choosing an 
appropriate spatial scale for the analysis of crop yield 
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variation. Traditional experimental research suggests 
that the macronutrients, N, P and K, limit millet yield, 
although not uniformly (for an overview, see Buerkert 
and Hiernaux, 1998; Voortman and Brouwer, 2002). 

As an alternative to multi-factorial experimental 
treatment with repetitions, a nexus of regression anal­
ysis methods has been applied to empirically observed 
yield patterns. Scott-Wendt et al. (1988a,b) investigate 
a transect of poorly to well growing millet, and ob­
serve low yields to be correlated with high aluminum 
(AI) saturation levels and lower cation levels (calcium 
(Ca), magnesium (Mg), and K). Manu et al. (1996) 
perform a pair-wise comparison of good and poor 
spots in terms of growth, and identify AI saturation 
to be higher in poor spots, while at the same time the 
pH value of the soil is lower. Stein et al. (1997) and 
Gandah et al. (1998) use linear regression models to 
investigate soil chemistry in relation to millet yields. 
The explanatory power of such a model is, however, 
rather low. Rockstrom et al. (1999) also use a linear 
regression model and report a slightly better statistical 
fit. However, in their case a large part of the varia­
tion is explained by manure or fertiliser treatment, 
and in two out of three years, native soil chemistry 
does not seem to play a significant role. In the re­
maining year, organic carbon and base saturation are 
significant, but these compound variables are difficult 
to interpret with respect to fertiliser requirements. 
Voortman and Brouwer (2002), and Voortman et al. 
(2002) use non-parametric kernel density regression 
(Keyzer and Sonneveld, 1997) to identify explanatory 
variables and functional forms, and subsequently ap­
ply parametric regression techniques. They observe 
very modest yield impacts of the macronutrients N, P 
and K, but significant contributions of cation ratios, 
aluminum saturation, total exchangeable bases (TEB), 
the soil pH value and manure levels, in addition to 
the abovementioned relevance of crusting and local 
topography and local hydrology. 

The overview of the West African literature shows 
that persistent problems exist. The issue of spatial 
scale is difficult to solve due to limited data availability 
for smaller grid sizes. The choice of explanatory vari­
ables is complicated because of a lack of theoretical 
guidance from agronomy and soil science. Functional 
forms range from simple additive linear relations 
to Cobb-Douglas, and more complicated non-linear 
specifications allowing for factor substitution and 

plateau growth. Almost without exception, however, 
the spatial dimension of the data is largely ignored. 

In order to improve this situation, we concentrate on 
incorporating the inherent spatial structure and vari­
ation in a regression framework. Because of the fo­
cus on spatial effects, we use a simple Cobb-Douglas 
specification, but the principles and most of the tech­
niques can be applied with a more complex function as 
well. The selection of explanatory variables is based on 
the above literature review, and includes the macronu­
trients commonly applied as external inputs, manure 
levels and geo-physical characteristics of the plot, and 
chemical interactions. 

3. Data and variable definition 

The empirical example is concerned with 1992 data, 
sampled from a 1 ha field cultivated by a local African 
farmer. The field is located just outside the village 
of Bellare, near the ICRISAT Sahelian Centre, 40 km 
southeast of Niamey, Niger. The altitude of the loca­
tion is approximately 240m above mean sea level, the 
average annual temperature is 29 °C, and the average 
rainfall is 545 mm in a well-defined rainy season, last­
ing from May to September. 

The crop of pearl millet (Pennisetum glaucum (L.) 
R. Br., labelled Millet) was planted in two batches: 
80% of the field after the first sizeable rains on May 
16, and the remainder after follow-up rains on May 26, 
1992. At harvest (September 15-16), yields were mea­
sured for 5 m x 5 m regularly spaced plots of the 1 ha 
field. These measurements are rescaled to the 10 x 10 
grid level (through averaging), because soil chemistry 
data are only available at this level of aggregation. The 
average standardised millet yield per grid cell equals 
649 kg ha -I, with a coefficient of variation of 0.49. 

Climatological conditions hardly vary within a 1 ha 
field, but details of the climate during the growth 
season provide important background information. 
The rainy season of 1992 was generally considered 
"good," and no intra-season drought periods were 
observed. An earlier analysis indeed confirmed that, 
at the field level, yield reductions due to moisture 
stress are unlikely in 1992 (Voortman and Brouwer, 
2002). Potential effects of moisture availability on 
crop yield must therefore be attributable to local dif­
ferences in infiltration and/or overland flow, caused 
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by localised variation m topography and surface 
crusting. 

Surface crusting (labelled Crust) was recorded di­
rectly in the field on a discrete five-point scale. Topo­
graphic variation (Topovariation) was quantified using 
altitude relative to neighbouring plots, derived from a 
topographic survey. It provides a measure of the cur­
vature of the terrain and can be considered as a proxy 
for overland flow processes (for details see Voortman 
and Brouwer, 2002). Both variables are again rescaled 
to the 10 x 10 grid level by means of averaging. Soil 
samples were taken from the centroids of the 5 x 5 
grids, at 0-0.2, 0.2-0.4, and 0.7-0.9 m depth. For the 
chemical analysis, the original samples of four adja­
cent plots were combined for each sampling depth, so 
the chemical characteristics represent average values 
at the 10 x 10 level. 3 To facilitate the empirical analy­
sis, and imitate what many soil fertility specialists do, 
only the topsoil data (0-0.2 m) are used in this article. 

Farmers and agronomist are traditionally concerned 
with the three macronutrients (N, P and K) affecting 
biomass production. From the various soil nitrogen 
measures available, N-total (Kjeldahl; simply labelled 
N) is used, because this is commonly analysed and 
hence increases comparability with other studies. For 
phosphorus, levels of P-Bray, P-total and P-HzO are 
available because of the crucial role of phosphorus in 
this region (Pieri, 1985; Bationo et al., 1990, 1991; 
Klaij et al., 1994). In the empirical example we use 
P-Bray (labelled P for simplicity), since it explains 
millet yield best (Bationo et al., 1991). For K, the 
only available measurement is exchangeable K in 
cmol kg- 1. The values for K are converted to parts 
per million (ppm) to allow for comparison with N and 
P, and are labelled K from here on. The N, P and K 
variables refer to native soil chemistry as no artificial 
inputs were used. 

Finally, manure levels of cattle and small rumi­
nants, originating from animals resting in, or passing 
through, the field during the dry season, are taken 
into account. The spatial distribution is haphazard 
and uneven, because it is determined by animal be­
haviour. Manure of cattle (Cattle manure) and small 
ruminants (Sheep manure) were measured in kg ha - 1 

3 The aggregation was not ideal, because it results in a loss of 
information about spatial variation, but it was unavoidable because 
of lack of financial resources for the analysis of all soil samples. 

at the beginning of the growing period, at surface 
level. 

4. An introduction to techniques for spatial 
data analysis 

In this section, we cover various areas of spatial 
statistics and spatial econometrics relevant for the 
analysis of our spatial yield data. Section 4.1 intro­
duces the notion of spatial effects. In Section 4.2, we 
review exploratory spatial data analysis techniques 
facilitating the detection of spatial yield clusters. 
Section 4.3 deals with modelling spatial dimensions, 
in particular, specification testing and estimation in 
spatial econometric models, providing the background 
for the millet yield models in Section 5. 

4.1. Spatial processes, data, and effects 

Cressie (1993) concisely defines the notion of a spa­
tial process as the realisation of a random variable at 
a particular location, and distinguishes three different 
situations depending on the type of spatial data avail­
able. First, in the case of spatial points, one can de­
fine a spatial point pattern, such as a crop disease. 
Ceo-statistical data are needed to describe an attribute 
that varies continuously over space, such as the chem­
ical properties of soils. Third, lattice data provide a 
fixed collection of a finite, countable number of grids 
for which, for instance, the total yield is observed (see 
Anselin, this issue, for more details). 

Regardless of the type of data at hand, two differ­
ent types of spatial effects are relevant: spatial hetero­
geneity and spatial dependence. Spatial heterogeneity 
concerns the uniqueness of attribute values at specific 
locations. If, for instance, yields are not randomly dis­
tributed over space, clusters of high or low values can 
be observed that coincide with specific locations close 
to each other on the surface. The typical feature of 
spatial dependence or spatial autocorrelation4 is that 

4 A formal definition of spatial autocorrelation is Cov(y;, y J) = 
E (y; y J) - E (y;) E (y J) =/= 0, fori =/= j, pointing to the coincidence 
of attribute similarity expressed in y and location similarity for 
locations i and j. Spatial dependence or spatial autocorrelation 
are used interchangeably from here on, although strictly speak­
ing spatial autocorrelation is a stronger assumption than spatial 
dependence (Anselin, 2001). 
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it is two-dimensional and multidirectional. An obser­
vation of an attribute at one location is correlated with 
the value of the same attribute at a different location, 
and vice versa, and this correlation can extend in dif­
ferent directions. 

Although spatial heterogeneity does not have severe 
implications for the information that can be obtained 
from a spatial data sample, spatial autocorrelation 
does because an observation is partly predictable from 
neighbouring observations. Spatial heterogeneity and 
spatial dependence usually concur as meaningful in­
terpretations of a spatial process because the unique­
ness or heterogeneity of an attribute observed for a 
subset of the data can coincide with spatial proximity 
and hence autocorrelation for that attribute among the 
same observations (see also Anselin, this issue). 

4.2. Exploratory spatial data analysis 

The seminal work of Cliff and Ord (1981) has in­
duced substantial research on the statistical properties 
of spatial data. Much attention has been given to as­
sessing the degree to which data are spatially autocor­
related or clustered. For ordinal or interval data the 
univariate Moran's I statistic is frequently used. It is 
given by: 

n x'Wx 
I=---, 

So x'x 
(1) 

where x is a (n x 1) vector of observations defined 
in deviations from the mean, W a spatial weight 
matrix with (n x n) elements Wij representing the 
topology of the spatial system, and So is the sum 
of the elements of the spatial weights matrix. The 
weight matrix can be defined on the basis of contigu­
ity, distance, or complex general weights (Cliff and 
Ord, 1981, pp. 17-18; see also Anselin, this issue). 
Statistical inference can be based on the standard­
ised value [I- E(I)]jS.D.(I), but crucially depends 
on the stochastic assumptions. The moments can 
be derived analytically assuming that the x follow 
a normal distribution, or that the distribution is un­
known but can be approximated in a nonparametric 
framework using a randomisation approach (Cliff and 
Ord, 1981, pp. 42-46). 

Although Moran's I gives rise to a test on spatial 
dependence it can also be used to detect spatial het­
erogeneity. Anselin (1996) denotes that Eq. (1) can be 

rearranged as: 

I= x'(x'x)- 1Wx, (2) 

omitting the standardisation term. This shows that 
Moran's I is formally equivalent to the estimated pa­
rameter of a regression of W x on x. This result can 
be visualised in a Moran scatterplot. The scatterplot 
can be used to visually identify spatial clusters, out­
liers and local non-stationarity. The latter can also be 
assessed statistically by means of local indicators of 
spatial association (see Anselin, 1995). 

It is common practice to interpret Moran's I as a 
correlation coefficient, although its value is strictly 
speaking not restricted to the [ -1, + 1] interval. High 
positive values signal the occurrence of similar at­
tribute values over space (either high or low values), 
and hence spatial clustering. Negative values indicate 
the joint occurrence of high and low attribute values 
in nearby locations. A value close to zero (more pre­
cisely, -1/(n -1), the expected value of Moran's lin 
the absence of spatial correlation) can be taken as ev­
idence of a random allocation of attribute values over 
space. 

4.3. Modelling spatial dimensions 

The development of spatial econometrics goes back 
to the late 1970s. It centres on the explicit consid­
eration of spatial dimensions in statistical modelling. 
Based on early work in regional economics and in ge­
ography, a considerable body of diagnostic tests, spec­
ification strategies, and estimation techniques has been 
developed (for an overview, see Anselin and Bera, 
1998; Anselin, 2001). 

The issues of spatial heterogeneity and spatial de­
pendence have received considerable attention in a re­
gression framework. Spatial heterogeneity and spatial 
dependence are not easily distinguished in an observa­
tional sense (Anselin, 2001). Spatial clusters of simi­
lar observations may, at the same time, be indicative 
of spatial heterogeneity and of spatial autocorrelation. 
In addition, it is obvious that one of the most common 
specifications, the so-called spatial autoregressive 
error model, induces a spatial form of heteroske­
dasticity. The spatial (autoregressive) error model 
reads as: 

(3) 
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where y is the (n x 1) vector with observations on the 
dependent variable, X the (n x k) design matrix con­
taining the explanatory variables, {3 the (k x 1) vector 
with parameters, e a (n x 1) vector of iid errors, and A 
the spatial autoregressive parameter. The error covari­
ance matrix is given by u 2 [(I - A W)' (I - A W) r 1, 

showing that heteroskedasticity is present even if the 
error terms are homoskedastic. 

This applies likewise to the spatial lag model, 

y=pWy+Xf3+e, (4) 

where p is the spatial autoregressive lag parameter, 
and for which the error covariance is the same as in 
the autoregressive error model assuming otherwise ho­
moskedastic errors. 

The standard spatial process models introduced 
above illustrate two quite different interpretations 
of spatial dependence. Dependence can either be 
modelled as a substantive process or as a nuisance 
(Anselin and Rey, 1991; Anselin and Florax, 1995). 
In the spatial lag model, a substantive theoretical in­
terpretation can be given to the spatial interaction. In 
the spatial error model, spatial dependence is caused 
either by (erroneously) omitted spatially correlated 
variables, and is hence reflected in the error term, or 
it is caused by boundaries of regions that do not co­
incide with actual behavioural units (see also Anselin 
and Bera, 1998). The different specifications of spatial 
dependence have divergent implications for estima­
tion and statistical inference. The spatial error model 
is an example of the more general class of models 
with a non-spherical variance-covariance matrix, al­
though due to the multidirectional nature of spatial 
dependence the estimation is more difficult than for 
time series (in particular, estimated generalised least 
squares estimators are inconsistent). The spatial lag 
model exhibits endogeneity that can be taken into ac­
count by instrumental variable or general methods of 
moments techniques, but should preferably be solved 
using an appropriate maximum likelihood estimator 
(see Anselin, 1988, for details).5 In contrast to the 
time series case, where OLS remains consistent if the 
errors are not serially correlated and its use is asymp­
totically warranted, OLS estimators for the spatial lag 
model are biased and inconsistent, irrespective of the 

5 If the spatially lagged variables are exogenous (a model that 
is not shown here) OLS retains its desirable properties. 

properties of the error term. Nuisance dependence in 
the error term is less serious because OLS remains 
unbiased, but it is inefficient. 

Rearranging Eq. (4) shows that the spatial error 
model is equivalent to an extended spatial lag model 
comprising both the spatially lagged dependent and 
spatially lagged exogenous variables: 

y = AWy+X/3- WXy +e, (5) 

where X is the original design matrix X except for the 
constant. The formal equivalence only holds if (k- 1) 
nonlinear constraints are satisfied, specifically A/3 = 
-y. This model is generally referred to as the "spa­
tial Durbin" or "common factor" model. The equiva­
lence of the spatial error and the common factor model 
shows that tests with either the spatial error or the spa­
tial lag model as the alternative hypothesis are likely 
to have power against the other alternative as well 
(Anselin et al., 1996; Anselin, 2001). 

Apart from focused tests with an informative alter­
native hypothesis various diffuse tests merely reflect­
ing whether the residuals are spatially correlated have 
been developed. The oldest and best known is Moran's 
I for regression residuals, given by: 

n e'We 
1=---, 

So e'e 
(6) 

where e is the (n x 1) vector of OLS residuals. As 
with the univariate Moran's /, statistical inference can 
be based on the assumption of asymptotic normality, 
or alternatively, assuming that the distribution is un­
known, on a theoretical randomisation or empirical 
permutation approach. Moments and estimation de­
tails are given in Cliff and Ord (1981), and Anselin 
(1988). 

Focused tests have a clear alternative hypothesis and 
have been developed in a maximum likelihood frame­
work. In particular, the Lagrange Multiplier tests LM). 
and LMp explicitly have the spatial error or the spa­
tial lag model as their respective alternative hypothe­
sis. The LM-error test (Burridge, 1980) is identical to 
a scaled squared Moran coefficient, and reads as: 

1 (e'We) 2 
LMA = T ~ , (7) 

where s2 is the maximum likelihood variance e' e/n, 
and T = tr(W'W + W 2) where tr is the matrix trace 
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operator. The test asymptotically follows a x2 distri­
bution with one degree of freedom. The LM-lag test 
has the same asymptotic distribution, and looks simi­
lar: 

1 (e'Wy) 2 
LMp = -1- - 2- , 

n p·f3 s 
(8) 

where lp·/3 = [(WXb)'M(WXb) +Ts2 ]/ns2 is apart 
of the estimated information matrix, b the OLS esti­
mated parameter vector, and M the projection matrix 
(I- X(X'X)-1 X'). 

The finite sample performance of the abovemen­
tioned tests is very well documented in the literature 
(see Florax and De Graaff, 2003, for an overview). 
The power of the Lagrange Multiplier spatial error 
(lag) test against a spatial lag (error) model seriously 
complicates finding a statistically rigorous specifica­
tion strategy that identifies the correct underlying (but 
unknown) data generating process. The derivation of 
specification tests with locally misspecified alterna­
tives resulted in robust spatial tests (Anselin et al., 
1996), which can be used to distinguish a helpful spec­
ification strategy (Florax et al., 2003). The test for a 
spatial error process robust to the local presence of a 
spatial lag is: 

1 
LM* - ---=-----,­

A.- T- T 2(nlp·f3)- 1 

(e'We _1 e'Wy) 2 

x ------;z-- T(nlp.f3) ~ (9) 

This clearly shows the subtraction of a correction fac­
tor that accounts for the local misspecification of a 
spatial lag process. The test for a spatial lag process 
robust to the local presence of a spatial error is given 
by: 

LM* = 1 (e'Wy _ e'We) 2 (lO) 
P nlp·/3 - T s2 s 2 

The robust tests are asymptotically distributed follow­
ing a x2 distribution with one degree offreedom. With 
these tests performing well in a finite sample setting, it 
is easy to see that the following specification rule can 
be fruitfully applied: if both the spatial error and the 
spatial lag test are significant and only one of the ro­
bust variants, then the significant robust test points the 
correct alternative (Anselin et al., 1996; Florax et al., 
2003). 

The simplest form of heterogeneity is a non-constant 
variance of the errors or heteroskedasticity, which 
may be either spatially induced (as above) or a-spatial. 
Both forms are easily tested by means of, for instance, 
the Breusch-Pagan test, which reads as: 

BP = !f'Z(Z'Z)-1 Z' f, (11) 

where the elements off are defined by fi = (ei/ s )2 -

1, and Z is a (n x k) matrix containing the variables 
thought to influence the heteroskedasticity. The BP 
test is asymptotically distributed as x 2 with k degrees 
of freedom. 6 

A combination of misspecifications, in particular 
spatial dependence and heteroskedasticity, affects the 
power of both spatial dependence and heteroskedas­
ticity tests. Specifically, spatial dependence tests seem 
to over-reject the null hypothesis of no spatial depen­
dence when heteroskedasticity is present. The power 
of heteroskedasticity tests, on the contrary, is substan­
tially lower when (particularly positive) spatial au­
tocorrelation is present (Anselin and Griffith, 1988; 
Anselin and Rey, 1991). 

Increasingly complex forms of spatial heterogeneity 
occur in the case of discrete or continuous spatial vari­
ation. In the discrete case, the spatial observations can 
be grouped in such a way that the variation pertains to 
different spatial subsamples, where each group can be 
treated as homogeneous. This can be easily modelled 
by means of spatial regimes. In the continuous case, 
substantially more complex specifications are needed 
(Anselin, 1988). 

In most real-world applications, an appropriate 
specification of spatial dependence and spatial het­
erogeneity is needed simultaneously (De Graaff et al., 
2001). This is also apparent from the millet yield 
application discussed in the next section. 

5. Spatial analysis of millet yield in 
South West Niger 

The millet yields are measured in kgha- 1 per 
hectare for 10 x 10 regular grids of the 1 ha field. 

6 The Breusch-Pagan test is sensitive to non-normality, in which 
case studentized versions are appropriate. The functional form used 
for the tests implies additive heteroskedasticity under the random 
coefficient specification (see Anselin, 1992, for details). 
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Fig. I. Mapping of spatial ly interpolated values and a histogram of millet yield . 

Fig. 1 shows the spatial distribution of millet yield 
on an interpolated grid taking the yield data as point 
data referring to the centroid of each grid cell. We use 
multivariate non-parametric kernel density regression 
methods for the interpolation (Keyzer and Sonneveld, 
1997), which are Jess restrictive than parametric tech­
niques, such as kriging, because the latter impose 
an exogenously defined spatial structure. The inter­
polation techniques are merely used for the visual 
presentations. The numerical analyses are strictly 
based on grid cell data. Visual inspection of the map 
shows that there is an obvious clustering of similar 
attribute values: relatively high yields are clustered 
in the bottom-center and middle right-hand side of 
the map, and there is clustering of very low yields in 
the top part and relatively low yields in both bottom 
corners as well. 

The significance of the spatial clustering pattern 
can be assessed statistically by means of Moran 's 

I. In order to do so, the spatial structure has to be 
exogenously defined. We use a contiguity matrix ac­
counting for direct neighbours according to the queen 
concept, implying that cells are neighbours if they 
have a common border in the horizontal, the vertical, 
or the diagonal direction.7 This so-called first-order 
queen concept is appropriate because spatial interde­
pendencies are likely to be of relevance only at short 
distances, and the small sample performance of this 
interaction pattern has been shown to perform well 
(Anselin and Florax, 1995). 

Table 1 presents several descriptive stati stics, a Wald 
test on normality, and the results of Moran's I test un­
der the normality and the randomisation assumption. 
The Wald test on normality is important to assess the 

7 The weights matrix is standardized, implying that all row sums 
are scaled to unity. As a result, a spatially lagged variab le, Wx , 
contains the average value in neighboring locations. 
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Table 1 
Descriptive statistics, Wald normality test, and Moran's I test for selected variablesa 

Descriptive statistics Wald test on normality Moran's I 

Mean S.D. Test statistics Pro b. Test statistics Normality assumption Randomisation assumption 

z-valueb S.D. z-valueb S.D. 

Millet 649.13 320.25 12.04 0.00 0.48 10.32*** 0.053 
N 112.59 17.72 2.94 0.22 0.25 3.97*** 0.053 
p 2.62 1.29 4345.19 0.00 0.09 2.45** 0.044 
K 44.89 14.38 388.13 0.00 0.32 5.67*** 0.051 
Crust 3.23 0.55 0.95 0.62 0.29 5.91 *** 0.053 
Topovariation 30.00 7.03 26.68 0.00 O.D3 0.14 0.053 
Cattle manure 310.42 323.77 38.37 0.00 0.63 12.14*** 0.053 
Sheep manure 27.66 23.52 36.62 0.00 0.56 9.76*** 0.053 

a The definition and measurement units of the variables are: millet: millet yield in kgha-1; N: total nitrogen (Kjeldahl) in parts per 
million (ppm); P: phosphorus (Bray) in ppm; K: exchangeable potassium, originally measured in cmolkg-1 but transformed to ppm 
for reasons of comparability; Crust: a semi-quantitative field measurement of crust resistance on a scale of 1-5, where 1 is strong 
resistance/severe crusting and 5 low resistance/no crusting; Topovariation: the sum of the differences between the altitude of a grid cell 
and all neighbours defined using the queen criterion of adjacency, expressed in decimeters and rescaled to positive values; a high value 
refers to concave low-lying locations and a low value to convex high locations; Cattle manure: manure of cattle in kgha- 1 ; Sheep manure: 
manure of small ruminants in kgha- 1. The number of observations is 100. 

b Significance is indicated with ***, ** and * for the I, 5 and 10% level, respectively. 

validity of using the asymptotic normal distribution for 
Moran's /.8 Table 1 shows that for all variables, except 
for N and Crust, the null hypothesis of normally dis­
tributed observations is rejected. We, therefore, use the 
randomisation assumption to assess the degree of spa­
tial autocorrelation for those variables. Table 1 shows 
that, except for Topovariation, the spatial distribution 
of attribute values is spatially autocorrelated. As the 
sign of the test statistic is positive, high (low) val­
ues are surrounded by high (low) values in neighbour­
ing grids. The spatial clustering is strongest for millet 
yield (already visually presented above), and for the 
two types of manure. Manure is mainly restricted to 
the bottom half of the field, due to the presence of a 
deep well used for watering livestock just outside the 
field on that side. 

For the modelling analysis, we use a traditional 
agro-economic yield function, the Cobb-Douglas 
specification: 

y=a+Cy+e, (12) 

where y is the (n x 1) vector with logarithmic values of 
the quantity of output, C the (n x k) matrix containing 

8 The SpaceStat software is used throughout the analysis (see 
Anselin, 1992, and http://www.spacestat.com). 

the logarithmic values of the geophysical attributes, y 
the (k x 1) vector with coefficient parameters, and e 
a (n x 1) vector of iid errors. Specifications that are 
more appropriate from an economic and/or agronomic 
perspective, such as quadratic or flexible functional 
form specifications or plateau models, can be used as 
well, but we concentrate the analysis on demonstrating 
the relevance of accounting for spatial effects. 

The first column of Table 2 refers to straightforward 
OLS estimation of a linearised (doublelog) version of 
the yield function, and the diagnostic tests show that 
there is ample evidence for heteroskedasticity in this 
specification. The combination of Lagrange Multi­
plier tests indicates that a spatial lag model is likely to 
be the correct specification, because the LMERR and 
LMLAG tests are both significant but the significance 
of the robust LMERR test is notably smaller whereas 
the robust LMLAG test remains significantly differ­
ent from zero. These test results should be interpreted 
with caution because the asymptotic properties of 
tests for spatial dependence are crucially dependent 
on the assumption of normally distributed error terms, 
an assumption that is rejected (see the Jarque-Bera 
test in Table 2). Caution regarding the accuracy of 
the parameter estimates is also needed because of 
the relatively high degree of multicollinearity (see 
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Table 2 
Estimation results for the loglinear Cobb-Douglas yield function 
using the OLS estimator, the maximum likelihood spatial lag es-
timator (MLLAG), and the maximum likelihood spatial lag esti-
mator with groupwise heteroskedasticity (MLLAG + GHET)" 

OLS MLLAG MLLAG +GHET 

Constant -6.431 *** -6.422*** -3.036** 
(-3.643) (-4.703) ( -2.452) 

N 1.936*** 1.380*** 0.752*** 
(4.581) (4.141) (2.866) 

p 0.256* 0.121 0.024 
(1.776) (1.084) (0.317) 

K 0.896*** 0.476** 0.323** 
(3.671) (2.476) (2.226) 

W·MILLET 0.684*** 0.723*** 
(8.405) (9.301) 

R2-adjusted 0.40 0.55 .39 
F 23.209*** 
Likelihood -87.978 -69.107 -57.014 
n 100 100 100 
CN 85 
JB 68.794*** 
(Spatial) BP/KB 20.721*** 58.038*** 24.186***b 
Moran's I 5.030*** 
LMERR 19.921 *** 1.107 
Robust LMERR 3.067* 
LMLAG 43.132*** 
Robust LMLAG 26.279*** 

• In parentheses t-values for OLS, and z-values for the ML 
estimators are presented. Significance is indicated with ***, ** 
and * for the 1, 5 and 10% level, respectively. The meaning of 
the abbreviations for the misspecification diagnostics is: CN is 
the condition number providing an indication for multicollinear­
ity, JB a test on normality of the errors, (Spatial) BP/KB the 
regular (or alternatively spatial) variant of the Breusch-Pagan 
or Koenker-Bassett tests for heteroskedasticity, and Moran's I, 
LMERR, Robust LMERR, LMLAG, and Robust LMLAG are de­
fined in Eqs. (7)-(11), respectively (see Anselin, 1992, for details). 

b Likelihood Ratio test on groupwise heteroskedasticity. 

the condition number, CN), although this is a factor 
endemic to these kinds of traditional specifications. 

The magnitude and significance of the estimated pa­
rameter value for W ·MILLET reveals that there is sub­
stantial positive correlation among yield values (see 
the second column of Table 2). There is no remaining 
spatial error correlation, but heteroskedasticity is still 
apparent. The positive and significant coefficient of 
the spatially lagged dependent variable (W·MILLET) 
indicates that millet yield observations for different 
grid cells cannot be considered in isolation. Exoge­
nous changes in one grid cell are intrinsically linked 
to millet yield changes in neighbouring grid cells. 

Subsequently, we use Moran scatterplots of millet 
yield to investigate whether a relevant spatial "cause" 
can be found for this heterogeneity. Fig. 2 (top) shows 
that most millet yield observations are within two 
standard deviations of the mean. Taking logarithms 
of yields suggest a bipartition, because grid cells with 
below average yield neighbours show a much higher 
dispersion than those with above average yield neigh­
bours (Fig. 2 bottom). The last column of Table 2 
therefore shows the results for a spatial lag model 
with groupwise heteroskedasticity, with two groups 
distinguished according to yield clusters defined by 
quadrant I and II, and quadrant III and IV in the 
Moran scatterplot, respectively. The Likelihood Ratio 
test on groupwise heteroskedasticity shows that the 
distinction in variance between the two groups is sig­
nificantly different from zero. The results of the spatial 
lag model and the spatial lag model with groupwise 
heteroskedasticity are (except for N) very similar in 
terms of magnitude of the estimated coefficients, but 
the estimated standard errors are greater in the latter 
(resulting in lower z-values, which conforms to expec­
tations). 

The dramatic shift in coefficients when switching 
from an a-spatial or traditional to a spatial model and 
the high significance of almost all test statistics in 
Table 2 illustrates the resulting bias if one relies on 
a simple a-spatial OLS model instead of a spatial lag 
model (eventually with a correction for heteroskedas­
ticity). It should be noted though, that the coefficients 
of the spatial lag model do no longer represent total 
marginal elasticities, as a change in one of the exoge­
nous variables will "filter through" the whole spatial 
system given the dependence of local yields on yields 
of the neighbours. This is obvious from the reduced 
form of the spatial lag model y = p W y + f3x + e 
that reads as y = (I- pW)-1({3x +e). The first 
derivative with respect to the input equals a y 1 ax = 
[(I- p w)-1 ]' f3 = [(I- p w)']- 1 {3, which is a matrix 
of elasticities containing the direct production elastic­
ity on the diagonal and indirect elasticities generated 
through the linkages within the spatial system in the 
off-diagonal positions. In the spatial lag model, the 
elasticities are therefore cell-specific, and equal to the 
estimated f3 weighted by the column sum of the spa­
tial transformation matrix (I - p W) - 1 . 

The extremely poor soil chemistry of the field­
witness the relatively low levels of N, P and K in 
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Fig. 2. Moran scatterplots with standardised grid yield on the horizontal axis and standardised grid yield of queen-based neighbours on 
the vertical axis (top; bottom for logarithmic yield). 

Table 1-leads one to expect that the elasticity lev­
els may be relatively high, and eventually exhibiting 
decreasing returns. Table 2 shows that the direct elas­
ticities for the macronutrients are substantially lower 
for the spatial models. However, the average of the 
total elasticities, including the spatial spill-over ef­
fects of the neighbours,9 show increasing returns for 
nitrogen and potassium (the average spatial elastici­
ties are 2.715 for N, 0.087 for P, and 1.166 forK, for 
the spatial lag model with groupwise heteroskedas­
ticity). Increasing returns may seem counterintuitive, 
but they are reasonable for this specific application 
since in particular for N and K the current levels of 
macronutrients are extremely low (see also Table 1). 

9 The above derivation for the total elasticity contains an inverse 
term that causes the elasticity for each grid cell to depend on all 
grid cells within the spatial system (see Anselin and Florax, 1995). 

So far, the specification of the model has been driven 
by a rather mechanic approach, without taking into 
account substantive factors that may explain the spatial 
variation. Table 3, therefore, presents a model with a 
more extensive representation of spatial differences. In 
addition toN, P and K we include variables related to 
crusting, local topography, and manure levels. Column 
1 of Table 3 shows that these spatially varying factors 
are very relevant, but they do not entirely remove the 
heteroskedasticity and the spatial autocorrelation. We, 
therefore, proceed by estimating a spatial lag model 
because the combination of Lagrange Multiplier tests 
points in that direction (see Column 2). The spatial 
lag model, however, still exhibits heteroskedasticity. 

A more extensive exploratory spatial data analysis 
provides additional insight into the nature of het­
erogeneity and dependence. Based on stratigraphical 
evidence, the proportions of cations at the exchange 
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Table 3 
Estimation results for a loglinear Cobb-Douglas specification using the OLS, the maximum likelihood spatial lag estimator (MLLAG), the 
maximum likelihood spatial lag estimator with groupwise heteroskedasticity (MLLAG + GHET), and the maximum likelihood spatial lag 
estimator with two regimes and groupwise heteroskedasticity (MLLAG +REG)" 

OLS MLLAG MLLAG +GHET MLLAG +REGb 

Soil type A Soil type B Chow 

Constant -6.150*** -6.243*** -3.868*** -7.803*** -1.216 6.490** 
( -4.371) ( -5.237) ( -3.405) ( -3.752) ( -0.830) 

N 1.336*** 1.066*** 0.722*** 1.070* 0.513* 0.709 
(3.929) (3.666) (3.151) (1.758) (2.007) 

p 0.234* 0.152 0.049 0.875 0.023 2.003 
(1.975) (1.507) (.779) (1.461) (0.351) 

K 0.408** 0.219 0.078 0.630 0.065 1.530 
(2.024) (1.247) (.636) (1.427) (0.512) 

Crust 1.880*** 1.562*** 1.457*** 1.000* 1.343*** 0.354 
(6.332) (6.020) (7.366) (1.852) (6.262) 

Topovariation 0.316** 0.259** 0.101 0.252 -0.072 1.917 
(2.302) (2.225) (.902) (1.334) ( -0.520) 

Cattle manure O.ll4** 0.049 0.063** -0.026 0.066* l.l10 
(2.415) (l.l99) (1.972) ( -0.321) (1.882) 

Sheep manure 0.197*** O.IIO* 0.045 0.337* 0.046 2.262 
(2.699) (1.721) (0.984) (1.795) (0.933) 

W·MILLET 0.524*** 0.629*** 0.495*** 
(5.746) (8.062) (5.233) 

R2-adjusted 0.64 0.71 0.57 0.79 
Likelihood -60.830 -50.902 -34.402 -26.299 
F 25.883*** 
n 100 100 100 100 
CN 123 
JB 232.487*** 
(Spatial) BP/KB 12.073* 66.665*** 33.001 ***e 26.716***e 
Moran's I 2.220** 
LMERR 2.313 l.912c 
Robust LMERR 3.521 * 
LMLAG 17.366*** l9.856***d 
Robust LMLAG 18.574** 
Chow 17.470** 

a In parentheses t-values are reported for OLS, and z-values for the maximum likelihood estimators. Significance is indicated with ***, 
** and * for the I, 5 and 10% level, respectively. See footnote b to Table 2 for the meaning of the misspecification diagnostics. 

b The coefficient for W·MILLET and the regression diagnostics refer to the whole sample (i.e., both soil types). 
c Likelihood Ratio test on spatial error process. 
d Likelihood Ratio test on spatial lag process. 
e Likelihood Ratio test on groupwise heteroskedasticity. 

complex and the related Al saturation profile, we 
distinguish three different soil types that derive from 
shallow layers of different coversand types (see also 
Voortman et al., 2002). Fig. 3 shows the spatial distri­
bution of the different soil types. In the econometric 
analyses, we aggregate the different soil types to two 
categories, because Type C only contains two grid­
cells. The spatial lag model is subsequently estimated 

with differing variances for those two groups. The 
estimation results are shown in Column 3 of Table 3. 

In addition, we explore whether the heterogeneity 
can be given a substantive interpretation in the sense 
that two different spatial regimes apply for the differ­
ent soil types. The last three columns of Table 3 show 
the results for this specification. The overall Chow 
test rejects the null hypothesis that the coefficients of 
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Fig. 3. Three-coloured choropleth map with three different types of parent material (coversands) in light gray (Type A), dark gray (Type 
B), and black (Type C). 

the two regimes are the same, although Chow tests on 
the individual coefficients are not significantly differ­
ent from zero. It is also striking that the estimated di­
rect elasticities for N, P and K are substantially higher 
for Type A soils, where yields are very low, as com­
pared to Type B soils. The effect of crusting is higher 
for Type B soils. Overall, there is evidence for sig­
nificant spatial heterogeneity and dependence, and the 
spatial lag specification accounting for soil differences 
achieves the best fit in terms of the value of the Like­
lihood, although the greatest improvement in fit re­
lates to the change from the a-spatial to the spatial lag 
model. The dependence is rather strong, and indicates 
significant spatial clustering of similar values. Clearly, 
the explanatory power of this specification is substan­
tially better than the abovementioned 30% that is usu­
ally obtained in traditional (a-spatial) regressions. 

Fig. 4 concisely shows the impact of taking into 
account spatial effects. The figure presents both the 
OLS and "spatial" elasticity for N. The OLS elastic­
ity is given in Column 1 of Table 3, and the spatial 

elasticity is calculated for the spatial lag model with 
regimes and groupwise heteroskedasticity (the last 
three columns of Table 3). The irregularities at each 
10-grid-cell-interval for the spatial elasticity show the 
impact of so-called edge effects. It is evident that the 
OLS elasticities are biased: they are overestimated 
for one part of the field, and underestimated for the 
other. This is also apparent from a comparison of the 
OLS-based elasticities reported in Table 3 and the 
averages of the spatial elasticities, which are 1.424, 
0.670 and 0.543 for N, P and K, respectively. Fig. 4 
further shows that although the OLS-based elasticity 
is constant, the implied yield changes of applying 
one more unit N vary spatially. However, there is a 
clear distinction to the yield changes implied by the 
spatial model, both in terms of heterogeneity (one can 
clearly see the two spatial regimes) and in terms of 
size (OLS overestimates the yield change in one part 
of the field and underestimates it in the other part). 

The elasticities do not provide a usable treatment ad­
vice for the farmer. Because the inherent soil chemistry 
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Fig. 4. Output elasticities and yield changes for N, based on OLS and the spatial lag model with two regimes and groupwise heteroskedasticity, 
on a log scaled vertical axis. 

shows differing average levels of N, P and K (for in­
stance, approximately 112 ppm for N, 3 for P, and 45 
for K) vastly different amounts of fertiliser have to 
be applied to attain similar yield changes, even if the 
elasticities are the same. Taking into account the tight 
cash-constraints of local farmers, the relevant issue is 
to identify the area that is most effective in producing 
extra yield resulting from fertiliser use. We, therefore, 
choose to plot in Fig. 5 the yield changes associated 
with a one-unit increase in the macronutrients for the 
spatial regimes specification in Table 3 (i.e. the spec­
ification that allows for parameter variation between 
different soil types). Fig. 5 shows that N is generally 
least effective since its level expressed in ppm is the 
highest of the three macronutrients. Its use should be 
avoided in the core area of field part A, which in­
cludes a highly sealed remnant of a termite mound. In 
general, adding N will be most effective on grid cells 
in part B and C where currently very high yields are 
obtained (see also Fig. 1). The response toP is gener­
ally much higher than to N and K, but in part A even 
more so than in part B. However, the high effects of 

P are critically dependent on the assumption that ap­
plied P behaves asP-Bray in the soil. This may not be 
entirely the case, since the Bray method of analysis 
measures relatively easily available P. The response to 
K is greatest in part A (again with the exception of its 
core area) and the transition zone towards part B. In 
all three cases, the application of fertiliser to the core 
area of part A and the lower corners in part B prove 
to be wasteful if cash available for fertiliser is limited. 

The suggested fertiliser treatment apparent from 
Figs. 4 and 5 is different from the advice that re­
sults from a traditional agronomic analysis (the OLS 
equation). Column 1 in Table 3 can be viewed as 
providing the basis for a traditional agronomic fer­
tiliser prescription. The use of spatial statistical and 
econometric techniques results in spatially explicit 
treatment prescriptions that may vary over different 
spatial clusters, and they are based on unbiased esti­
mates, because the bias related to ignoring inherent 
spatial linkages is avoided. 

One can wonder what the potential relevance of 
the above findings is for poor farmers in the Sahel. 



440 R.J.G.M. Florax et at./ Agricultural Economics 27 (2002) 425-443 

""' ., 
25 

0 

~ ~ m~~ ,, m 

=N 

"" ., ,. 
<; 

" . 

0 

•m 
m =K 

0 

0 

X-coordinate 

0 

X-coordinate 

Fig. 5. Yield changes in kg ha- 1 per unit ppm increase of P (top), 
N (middle), and K (bottom) in the topsoil. Note: the yield change 
is least for the light gray areas and increases towards darker areas; 
the classes are: 0-2, 2-4, 4--6, 6-10, 10-15, 15-25, 25-50 and 
>50kgha- 1 per unit ppm change. 

Certainly, they cannot afford the expensive data gath­
ering and subsequent labour-intensive laboratory and 
econometric analyses. Even if a governmental in­
stitution picks up this task, it will be impossible to 
cover the fields of all farmers. However, the soils 
of this area have a common formation history. They 
have developed in different kinds of coversand, but 
over substantial distances there appear to be unifying 
principles with respect to the factors that determine 
plant growth and crop yield (Voortman et al., 2002). 
These principles are likely to find expression in rem­
nant of natural vegetation and arable weed communi­
ties (Bannink et al., 1974), which farmers obviously 
recognise. Well-targeted research on a limited number 
of representative sites across climatologic zones can 
thus provide information of relevance for research 
and extension for large areas. 

Finally, the limiting factors in developing countries 
are generally labour and nutrients . As a rule there are 
no or only very limited resources available for addi­
tional manure or mineral fertiliser, or due to unreliable 
rainfall farmers consider it too risky to invest in such 
additional inputs (Brouwer and Bouma, 1997; Gandah, 
1999). It is, therefore, not so much a matter of re­
turn to capital or return to land, as well as return 
to labour and return to local inputs that matters . In 
our case study the manure and urine had been de­
posited by livestock resting around a well, before and 
after being watered. There was no intentional pat­
tern in the spatial distribution, other than that the an­
imals preferred to stay close to the well. There was 
no addition of other nutrients. The nutrient contents 
of the soil (as measured in this study) did not in­
clude the nutrients stored in the manure still on the 
surface, but did include the effects on the soil of pre­
vious years . Our data and analyses show that there is 
a considerable over-supply of manure in the part of 
the field close to the well, while in other parts addi­
tion of manure will significantly increase yield. The 
same inefficient application pattern is often found on 
fields where livestock are camped at night (Gandah, 
999). Provided the required labour is available at the 
right time of the year, farmers can considerably in­
crease the efficiency of the more or less haphazard 
manure application at very low cost, by redistribut­
ing some of the manure to other parts of the field. 
Any additional inputs they can afford can be applied 
similarly. 
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6. Conclusions 

In modern agricultural production systems preci­
sion agriculture is advocated because it constitutes 
an important means of handling local variations in 
soil characteristics when one wants to improve crop 
yields and increase input efficiencies. Precision agri­
culture depends on the use of a global (GPS) or local 
positioning system to generate spatial data, statistical 
and econometric tools to analyse such data in order 
to come up with highly localised optimal fertiliser 
prescriptions, and farm machinery capable of vari­
able rate applications. In both high-tech and low-tech 
precision agriculture the method to determine soil 
variability, and the subsequent use of spatial analy­
sis techniques to attain spatially optimised fertiliser 
mixes and doses, is important. 

A review of the agronomy literature shows that 
ANOVA of block experiments and more extensive 
regression analyses of multi-factorial experimental 
treatment with repetitions has not yet resulted in a 
thorough understanding of yield variation. Much of 
the research has focused on macronutrients (N, P and 
K) in the topsoil, although recently other physical 
and environmental aspects are also considered and a 
start has been made with incorporating the influence 
of space. This paper further extends the analysis of 
the inherent spatial nature of crop yield variation. We 
discuss several techniques from spatial statistics and 
spatial econometrics, and apply those techniques to a 
case study concerned with millet production on acid 
sandy soils of the West African Sahel. 

Spatial analysis techniques focus on detection and 
specification of spatial effects that may either show 
up in spatial heterogeneity or as spatial dependence 
(clustering). An exploratory analysis of crop yield 
and various other characteristics of the relevant parcel 
facilitates the detection of spatial effects. The use of 
Moran's I statistic, scatterplots, and GIS-based map­
ping are useful to assess the importance of intrinsic 
spatial linkages within the field and to investigate the 
extent of spatial heterogeneity in soil, ecology and 
yield. Subsequently, spatial effects can be assessed 
in a modelling context as well. Various test statistics 
are available, and the use of Lagrange Multiplier tests 
ensures that proper guidance to alternative specifica­
tions is safeguarded. The use of spatial econometric 
modelling techniques as compared to the traditional 

agronomic approach based on OLS regressions, con­
tributes to a more effective use of precision agriculture 
for two main reasons. First, accounting for spatial 
dependence among different subsections of the field 
avoids the bias or inefficiency that would result from 
the use of the simpler OLS estimator. Second, the spa­
tial heterogeneity can be explicitly modelled resulting 
in an analysis and subsequent fertiliser prescription 
that is much more accurate. Accounting for spatial 
effects also contributes to enhancing the explanatory 
power of agronomic yield models. 

The application of spatial statistical and economet­
ric techniques to millet yield data of a 1 ha plot in the 
Sahel has clearly demonstrated the advantages of using 
these techniques. Given our focus on the use of spatial 
techniques, several aspects have not yet been treated 
in depth in this case study. In particular, the specifica­
tion of the functional form of the yield function and 
the selection of explanatory variables (regarding, for 
instance, physical and environmental characteristics, 
and varying depth of measurement) merit further atten­
tion. The specification of relevant chemical and phys­
ical processes can also be further refined, for instance 
tendencies to soil destabilisation and surface sealing 
induced by the soil chemistry can result in lower water 
infiltration and poor seedling establishment. 

The current analyses clearly show that ignoring spa­
tial effects results in considerable bias with respect 
to local yield variability in relation to macronutrients. 
The attainment of appropriate management strategies 
and the efficiency and effectiveness of precision agri­
culture therefore crucially depends on the application 
of state-of-the-art spatial analysis. 
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