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Abstract 

Increasingly, spatial econometric methods are becoming part of the standard toolkit of applied researchers in agricultural, 
environmental and development economics. Nonetheless, applications in discrete-choice settings remain few and despite its 
appeal, applications of the Bayesian paradigm in these settings are still fewer. We provide a primer to the Bayesian spatial 
probit with the objective of making accessible to non-users a class of iterative estimation methods that have become fairly 
routine in Bayesian circles, offer an extremely powerful addition to applied researchers toolkits, and are essential in Bayesian 
implementation of spatial econometric models. We demonstrate the methods and apply them to estimate the 'neighbourhood 
effect' in high-yielding variety (HYV) adoption among Bangladeshi rice producers. We estimate the strength of this relationship 
using a standard, spatial probit model and compare the policy conclusions with and without the neighbourhood effect included. 
© 2002 Published by Elsevier Science B.V. 
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1. Introduction 

Discrete-choice models abound in many areas of 
agricultural economics, including technology adop
tion and land-use decision making. Inevitably, these 
problems are characterised by some form of spatial 
dependence. Although accounting for spatial interac
tions is becoming prevalent in applications involving 
continuous dependent variables, such aspects are 
rarely incorporated into discrete-choice models. The 
importance of accounting for spatial dependence in 
these situations cannot be over-emphasised. In many 
commonly applied models with a cross-sectional 

*Corresponding author. Tel.: +44-118-931-6775; 
fax: +44-118-975-6467. 
E-mail address: g.holloway@reading.ac.uk (G. Holloway). 

element, ignoring spatial relations can render con
ventional estimators inconsistent and/or biased. In 
some cases, spatial parameters also have important 
policy relevance. For example, the spatial autore
gression parameter (the 'neighbourhood effect') in a 
technology adoption setting contains important policy 
information for public policy planning (Case, 1992). 
Knowledge of the location and scale of its distribution 
can be important in informing extension agents and 
planners about the likelihood that initial investments 
will generate further 'secondary' or 'copy' adoption 
in a locality. And this information, in turn, can aid 
decision making so that research portfolio and public 
investment schedules are optimised. 

One reason likely for the paucity of spatial discrete
choice modelling is the complexity that it entails. Most 
of the available methods involve multidimensional 
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integration. Bayesian techniques incorporating Mar
kov-chain Monte-Carlo (MCMC) methods provide a 
powerful means to circumvent these problems. The ad
vantages of this approach compared to available alter
natives include non-reliance on asymptotic properties 
to ensure validity and generation of standard errors as a 
by-product of the estimation algorithm. The Bayesian 
approach provides a powerful alternative to conven
tional sampling theory techniques in handling many 
tricky issues that confront applied spatial research 
(Anselin, 1988). Currently in agricultural economics, 
however, application of the Bayesian paradigm is not 
widespread. Our objective in this paper is to provide 
a step-by-step approach to the Bayesian spatial probit 
demonstrating its reliance on basic building blocks 
with which many of us are familiar and as a by-pro
duct, demonstrating the full power of a class of tech
niques that are now becoming common place in other 
areas of applied research. 

We focus attention on one of the two Bayesian 
models that have been applied recently to implement 
truncated and discrete-choice data, namely, the spa
tially autoregressive probit (SARP) model, which is 
the framework of choice for modelling new technol
ogy adoption and is the model applied in the empiri
cal section of the paper. Pedagogically, the Bayesian 
spatial probit is but a step-wise generalisation of the 
MCMC routine that is required to estimate the stan
dard, normal-linear model. Because it represents the 
cornerstone of almost all MCMC work in applied 
Bayesian science and our main objectives are peda
gogic, the normal model provides a natural starting 
point from which to incorporate additional compu
tational and institutional detail. A focus on normal 
data provides, thus, ideal motivation for understand
ing the additional difficulties that spatial dependencies 
entail. 

Section 2 presents an introduction to MCMC meth
ods using normal data and outlines the Gibbs sampling 
algorithm that is the backbone of the spatial probit 
algorithm. This introductory section is intended for 
readers who are unfamiliar with Markov-chain meth
ods and perhaps, the Bayesian view. Section 3 extends 
the basic method to a spatial econometric model with 
continuous left-hand side data and incorporates two 
trivial modifications to derive the spatial probit algo
rithm. Section 4 introduces institutional detail rele
vant to the empirical application and introduces the 

Bangladeshi data and Section 5 presents the results 
of the spatial probit algorithm applied to the data. 
Conclusions are offered in Section 6. Throughout, the 
emphasis is on routine application of MCMC to solve 
complexities arising due to spatial dependence. 

2. Demonstrations nsing normal data 

Suppose data y = (YI, yz, ... , YN )1 are normally 
distributed with unknown mean, f£, and unknown vari
ance a 2 so that the data-generating model is 

(1) 

i = 1, 2, ... , N; where fL denotes the mean of the 
distribution for y; C:i the random error term that is 
normally distributed with mean zero and variance a 2 ; 

and hence, we may write, in a standard notation, cJ, 
t:z, ... , C:N "' iid N(f£, a 2). We observe the data, y, 
but do not observe the errors, e = (cJ, t:z, ... , t:N)', 

nor the parameters fL and a; and the objective is to 
make efficient use of y in deriving inferences about fL 
and a. 

Eq. (1), together with the distributional assump
tion on the error term, is sometimes referred to as the 
'normal-means model'. Because this data-generating 
model is so familiar it serves as a natural starting 
point from which to introduce a generic notation that 
we retain throughout the demonstrations. We continue 
to use y = (Yl, yz, ... , y N ) 1 to denote data but use 
JA(blc, d, ... , z) to denote a probability density func
tion (pdf) for the data where the symbols 'A, b, c, d,' 
and 'z' denote, respectively, the form of the density, 
its argument, and any parameters that are needed to 
charaterise its location and scale, skewness, kurtosis, 
and so on. This approach is important and fairly stan
dard in Bayesian developments where conditioning is 
of paramount importance. 

It is important to note for later developments that the 
function/(-) is in the form of a conditional pdf. Some
times this conditioning will play a pivotal role in deriv
ing efficient estimation strategies and sometimes it will 
not, and we make a point of symbolising when condi
tioning is important through the notationf(-1·) (the vari
ables preceding the slash depending on the ones that 
follow). In the context of the data-generating model 
JA(blc, d, ... , z), our task is to use observable data 
'b' to make inferences about variables (parameters) 
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'c, d, ... , z,' which we will refer to collectively as the 
unknowns, or, compactly, bye, f:J=(c, d, ... ' z)'. 

The point of departure between the present con
tribution and others within this Special Issue, is the 
single observation that, because the parameters in e 
are unknown they are, of course, random and have, 
therefore, associated probability distributions. In other 
words, for the purpose of developments in terms of 
EJ, recognition that its elements are unknown implies 
that they are 'random'. 

It is this step and this single step alone from which 
all subsequent developments emanate and it is im
portant to bear this mind as we develop our MCMC 
strategy to estimate the Bayesian spatial pro bit model. 
This application requires two inputs, namely a like
lihood for the entire data, which we denote l(f:Jjy), 
and a prior pdf characterising uncertainty about the 
unknown parameters, which we denote :rr(EJ). The 
assumption that the errors are independent allows 
us to multiply the individual normal densities com
prising the likelihood into the form .ece IY) = ni 
JN (Yi lfL, O"), which, when viewed as a function ofthe 
complete data, y, is observed to have the normal form 

l(EJjy) = fN (yltNfL, I NO") (2) 

where tN (Greek 'i' with subscript 'N') denotes an 
N-dimensional unit vector and IN denotes the N x N 
identity matrix. To draw inferences about e, we will 
update between the prior pdf :rr(f:J) and the posterior 
pdf :rr(EJjy) making use of Bayes' rule 

:rr(EJiy) ex l(EJiy):rr(f:J) (3) 

The right-side of Eq. (3) omits the scale factor that 
makes the integral of the left side equal to one and 
hence, justifies its interpretation as a true pdf. The fact 
that we are able to avoid the computations implied by 
the integrals 

is worth stressing because it is precisely these com
putations that are the major stumbling blocks to the 
widespread application of the Bayesian paradigm. 
Although noteworthy exceptions exist (see, for ex
ample, the papers cited by Dorfman (1998)), this 

development seems to have been more retarded in the 
agricultural economics literature than elsewhere. The 
advent of MCMC has, of course, changed this situ
ation elsewhere and will do the same in agricultural 
economics-once the full power of the technique is 
widely accepted. With this goal in mind, it is useful 
to note that the term on the right-hand side of Eq. (4) 
is the marginal likelihood for the data, a quantity that 
plays a pivotal role in model comparisons. We will not 
undertake model comparisons in this paper, although 
it is useful to note that the methods presented can be 
extended in a simple way to assess model probabili
ties (Chib, 1995; Chib and Jeliazkov, 2001). The main 
point for computational gains is that, because f(y) is 
not a function of e we can ignore it in subsequent 
developments concerning e. These subsequent de
velopments will typically involve the characterisation 
of marginal pdfs for the model parameters and the 
difficult task confronting us is the derivation of these 
marginal quantities from the joint posterior through 
the integrations 

n(ej ly) = fek {ek-1 ... {ej+l {ej-1 ... rez rei 
}rz.k }rz.k-1 }rz.j+J }rz.j-1 }rz.2 }rz.l 
x nce1, e2, ... , ek IY) de1, d82, ... , deJ-1 

x deJ+l · · · dek-1 dek (5) 

Derivation of the marginal distribution of an un
known quantity of interest is the target of a Bayesian 
investigation. Problems arise when the marginal den
sity may not exist (not considered here); or, if the 
marginal density exists but may not have moments that 
do (considered in the empirical section); or, when the 
marginal pdf exists but may not have a form for which 
the integrating constant (the constant that makes the 
area beneath the density sum to one) is available in 
closed form. It is precisely this latter situation in which 
MCMC and a special case, the Gibbs sampler, have 
particular advantages in exploiting conditional depen
dencies that prevail in almost all statistical settings. 
When the marginal distributions are not available in 
closed form, but the fully conditional distributions, 
n(8jl81, e2, ... ' ej-], ej+], ... ' ek, y) satisfy weak 
regularity conditions (Gelfand and Smith, 1990) and 
are easy to sample from, the Gibbs sampler provides 
an extremely powerful and easy-to-implement ap
proach to simulate draws from the marginal pdf. In 
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short, the Gibbs sampler provides a route for sam
pling from the marginal pdf even though we cannot 
express it explicitly. And when the fully conditional 
distributions are not all available in closed form a 
generalisation of the Gibbs sampler known as the 
Metropolis-Hastings algorithm can then be used to 
simulate from the target distribution. Although it re
quires more computation time than the Gibbs sampler, 
it is just as powerful and is more versatile due to the 
fewer conditions that are required for its use. Two 
examples will help to demonstrate. 

2.1. The Gibbs sampler 

In the normal-means set-up, the marginal distribu
tion for fL, is at distribution which, in its non-standard
ised form, is characterised by its mean, fl -
(t~lN)- 1 t~y; its d.f., v=N- 1; and its scale, &2 = 
(y- tNfl)'(y- tNfl)/v. The marginal distribution 
for u is an inverse-gamma distribution with degrees 
of freedom v and scale &2 . The two marginal dis
tributions n(fLIY) = fT (~Lifl, v, &2 ) and n(ujy) = 
j 1G(ujv, &2)) offer a complete description of the 
unknown quantities and are the target of the exer
cise. Although these marginal distributions are easily 
obtained by direct integration, we are interested in 
characterising them through the Gibbs sample, for 
which we require the full conditional distributions. 
To derive these distributions we need to first establish 
the form of the joint posterior 

n(f.l,, uiy) ow-CN+Ilexp { 2~2 (y-tN!L)'(y-tNf.l,)} 

(6) 

which evolves from combining the non-informative 
prior n(f.J,, u) ex u-1 (Jeffreys, 1961; Zellner, 1996, 
p. 708), with the likelihood (Eq. (2)) via Baye's 
rule (Eq. (3)). The full conditionals are n(fLiu, y) = 
!N (!Lifl, u) and n(uifL, y) = ! 1G(uiv, s2), s 2 = 
(y- LN!L)'(y- LN!L)/v, which we obtain from the 
joint distribution simply by viewing it solely as a func
tion of a single unknown quantity and then identifying 
that the resulting form is well known. The Gibbs sam
pler operates by iterating sequentially between these 
two conditional distributions drawing, in turn, an 
inverse-gamma random variable and a normal random 
variable. For S sufficiently large, and a starting value 

Table I 
Experimental data 

Normal means, Yi Regression 

Yi Xi 

-0.26 -5.35 4.82 
-0.36 1.93 -5.17 

0.61 10.69 -11.05 
-0.70 19.56 -14.32 
-2.38 1.11 -1.44 

0.44 10.45 -10.89 
-3.60 -8.33 8.37 
-1.79 -5.46 -2.77 
-1.13 6.40 -3.08 
-0.56 -4.24 1.58 

y = -0.97 y = 2.68 x = -3.39 
a= 1.23 a= 8.52 a= 6.87 

Data in column I generated randomly from Eq. (I); data in columns 
2 and 3 generated randomly from Eq. (8). 

fL = f.1,0 , the Gibbs samples {u(s), s = 1, 2, ... , S} 
and {/L(s), s = 1, 2, ... , S}, obtained by the sequence 
ul ~ JIG(ujv,f.J,o), ILl~ JN(!Lifl,ul), ... ,us~ 
JIG(ujv, /Ls-I), /Ls ~ JN (~Lifl, us) provides accu
rate estimates of posterior moments and indeed, the 
marginal distributions themselves. Figs. 1-3 present 
results for the Gibbs sampler applied to the nor
mal data in Table 1. The data y are generated from 
fN (yil - LJO, I w) and generate a posterior mean 
fl = -0.97 and sample variance s2 = 1.23. Fig. 1 
presents plots of the first 50 iterations in the Gibbs 
sample based on the start value f.1,0 = (t~tN )-1 t~ y 
and Figs. 2 and 3 compare the frequencies of draws 
obtained from the first 1000 iterations of the sample 
with frequencies generated by the target pdfs. The 
figures illustrate three important points. First, inde
pendent of the starting values, the draws mimic the 
actual draws one expects to obtain in draws from the 
true marginal pdfs. Second, few iterations are required 
before the Gibbs sequence converges to the true pdfs. 
Third, when it is emphasised that there are only 10 
observations in the sample, convergence is obtained 
under very limited information. 

2.2. Random walk Metropolis-Hastings sampling 

When the full conditional distributions are not avail
able in closed form a more general set of iter
ation methods must be invoked. One of these
the focus in empirical work-is the random walk 
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g 
~ 
.... 
2 
~ 0 mu ro .... 
ro 

0.. 

-I 

10 20 30 40 50 

Iteration 

Fig. 1. Gibbs sample draws from the normal-means model. Plots of the first 50 draws in the Gibbs sample based on the I 0 observations 
drawn from N(-1, I) (column I, Table 1) and start value fLo= (L~LN)- 1 L~Y· The data correspond to the normal-means model as specified 
in Eq. (1). Note that the true parameter values are fL = -1 and a = I. 

Frequency 

80 
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... n 
3 3.5 

Fig. 2. Comparisons of simulated and true frequencies from the normal-means model. Plots of simulated frequencies (filled bars) for sigma 
from the Gibbs sample versus true frequencies (unfilled bars) from the inverse-gamma distribution corresponding to the normal-means 
model in Eq. (1). 
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Fig. 3. Comparisons of simulated and true frequencies from the normal-means model. Plots of simulated frequencies (filled bars) for IL 

from the Gibbs sample versus true frequencies (unfilled bars) from the JT (tLIJl, v, a) distribution corresponding to the normal-means 
model in Eq. (1). 

Metropolis-Hastings (RW) algorithm. Although its 
roots are old (Metropolis et al., 1953; Hastings, 1970), 
it is difficult to locate applications of the technique 
in agricultural economics. The RW algorithm is but 
one of many variants of a basic accept-reject proce
dure which are suitable to model spatial dependence. 
Space limitations prevent reporting results across an 
array of models that the authors experimented with 
in the course of this project; but the RW algorithm 
proved considerably superior in terms of execution 
time and provided accurate estimates of system pa
rameters with minimal fuss. Like the Gibbs sequence, 
the RW sequence generates a Markov chain with de
sirable convergence properties; but, unlike the Gibbs 
sampler only a subset of the proposed draws in the 
algorithm are accepted. This key difference makes 
the search for 'efficient' strategies to improve the 
basic algorithm desirable and this goal is an ongoing 
focus in statistical research (see, in particular, Raftery 
and Lewis, 1992; Robert, 1995; Gilks et al., 1996). 
Continuing with notation developed previously, and 
the normal-means example, suppose that we wish 
to simulate a draw from the target density j(t-J,I·), 
which is not of a standard form. We obtain a draw-

a 'proposal' -from another distribution that, among 
other properties, is known (known integrating con
stant) and is easy to sample from, and we accept and 
reject the proposals based on a probability rule that 
results in the accepted sequence of draws generating a 
Markov chain that, eventually, converges to the target 
distribution. Use m to denote the proposal value and 
use.f(ml·) to denote the proposal density. In general, 
the proposal density can be conditional on a prior 
draw for the parameter of interest and hence, let us 
use .f (mlt-J,) to denote the conditioning. The defining 
feature of the RW algorithm is that the current draw 
for the parameter, m, depends on the previous draw, f.J,, 

through a random walk. In other words, the proposal 
and current values are related through the condition 

(7) 

where 8 is a random perturbation with distribution 
fp(8) that is independent of f.J, (and therefore, m). 
It follows from Eq. (7) that the proposal distribution 
has the form JP(m- t-J,) and we consider a second 
experiment. 

Suppose that the distribution for 8 is the stan
dard normal distribution fp(8) = fN (810, 1). The 
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distribution form is JN (mlf-L, 1) and we proceed by 
successively drawing from the normal distribution 
with mean the current draw 1-L and variance one. Then, 
the following steps simulate draws from the target dis
tributions of interest (Robert and Casella, 1999). Step 
1: generate a starting value 1-L = f-L 1• Step 2: generate 
m ~ jP(mif-L). Step 3: generate {L ~ j 0 (MI0, 1). 
Step 4: if {L :S f(m)jf(M) set f-L = m. Step 5: return 
to step 2. 

Fig. 4 presents plots of the first 50 iterations of the 
Gibbs sequence with the draw for 1-L simulated by the 
RW step. The draws are quite similar to the draws 
from the Gibbs sample and they mimic the values of 
the actual parameter values used to generate the data. 
Figs. 5 and 6 present plots of the histograms generated 
by the first 1000 draws. The simulated densities are 
quite close to the actual target densities. In summary, 
the RW algorithm provides a versatile alternative to the 
Gibbs sampler to simulate draws from the two target 
distributions. 

The methods applied in this section are the build
ing blocks of almost all the variants of the Gibbs 

2 sigma 

~ 
~ 

1-< 

£ 
§ 

0 rnu C<:! 
1-< 
C<:! 

0., 

-1 

10 20 

sampler and the Metropolis-Hastings algorithm that 
appear in the literature. Collectively, these steps pro
vide an extremely powerful tool kit from which the 
investigator can launch more sophisticated analyses. 
Nowadays, Bayesian research is not constrained by 
the need to provide numerical approximations to dif
ficult integral calculations by area methods such as 
Simpson's rule. Freed from the constraints that these 
integrations have in past bound investigations, we are 
now in a position to extend the normal-means frame
work to the target setting of spatial probit estimation. 
A manipulation that aids this link and is important 
in subsequent developments is to write x = lN and 
f3 = {L in the data-generating model in (3) and re
call the definitions of the means and variances in the 
original model, namely fl = (x' x) -I x' y = ~ and 
s2 = (y- xf3)'(y- x{J)jv, with x, anN x K ma
trix of observations on a set or relevant covariates and 
hence, f3 denotes a K-vector and v = N- K. Thus, the 
normal-linear regression model has also been accu
rately simulated through the Gibbs and random walk 
Metropolis-Hastings algorithms. 

30 40 50 
Iteration 

Fig. 4. Random walk Metropolis draws from the normal-means model. Plots of the first 50 draws in the Gibbs sample based on the 10 
observations drawn from N(-1, 1) (column 1, Table 1) and start value fLo= (t',tN)- 1t',y. The data correspond to the normal-means 
model as specified in Eq. (1). Note that the true parameter values are fL = -1 and a= 1 and that the patterns of the two series resemble 
closely those of the Gibbs draws in Fig. 1. 
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Fig. 5. Comparisons of simulated and true frequencies from the random walk Metropolis draws from the normal-means model. Plots of 
simulated frequencies (filled bars) for sigma from the Gibbs sample using a random walk Metropolis step versus true frequencies (unfilled 
bars) from the inverse-gamma distribution. Note that the two distributions are almost identical. 

Frequency 
180 

160 

140 

120 

100 

80 

60 

40 

20 

-4 -3 -2 -1 0 2 

Mu 

Fig. 6. Comparisons of simulated and true frequencies from the normal-means model. Plots of simulated frequencies (filled bars) for f.L 

from the Gibbs sample using a random walk Metropolis step versus true frequencies (unfilled bars) from tbe fT (JL[JL, v, a) distribution. 
The two distributions are virtually identical. 
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3. Spatial models 

The previous section based on the normal-means 
(normal-linear regression) model serves to illustrate 
the powerful way in which the various algorithms 
serve as alternatives to conventional approaches (di
rect integration in the case of normal data) to derive 
inferences with respect to a target marginal distribu
tion. But the normal data environment is, of course, 
simplistic and the results of the demonstrations, par
ticularly the accuracy of the derived distributions, can 
be questioned. Such scepticism is, we show, unmer
ited because the two spatial models of interest-the 
spatial autoregressive (SAR) model and the SARP 
model-are but simple extensions of the normal-linear 
framework. 

A principal source of information for learning about 
these models in the Bayesian environment are the pa
pers (LeSage, 1997, 2000, 2002) and much of what 
we present in this section is a 'resampling' of some of 
this work, together with several personal communica
tions about various sampling issues. We now continue 
a step-by-step development of the extensions from the 
normal regression model that are needed in spatial in
ference. Unlike that model, spatial problems generate 
distributions for which the marginal pdfs are not avail
able in closed form and require application of MCMC 
methods. In this case, measures of accuracy are now 
no longer available for all of the parameters in ques
tion. Nevertheless, it is possible with what we have 
established so far to give a heuristic indication of what 
a correctly implemented algorithm should produce. 

Before presenting results from simulated probit 
data, we consider the standard spatial framework, 
where the dependent variable is a known continuous 
measure of observed data. The development is similar 
to that of Anselin, 2002 (this issue). We are concerned 
with the model 

y = pwy +xP +e (8) 

where Y(Nxl) = (yl,y2, ... ,yN)' denotes observa
tions on a dependent variable of interest across spa
tially delimited units, i = 1, 2, ... , N; P(lxl) denotes 
correlation between units; W(NxN) denotes a spatial
weight matrix, defined in more detail, subsequen
tly;x(NxK) = (X1,X2, ... ,XK),XI(Nxl) = (xll, 
X21, ... , XN1) 1, X2(Nxl) = (XJ2, X22, ... , XN2) 1, ••• , 

x K(Nx I) = (XIK, X2K, ... , XNK)' denotes observa-

tions on the covariates; P (K xI) (fh, fh ... , fh )' 
denotes the ceteris paribus relationship between x 
andy; and €(Nxl) = (£1,£2, ... ,£N)' denotes ran
dom error, which, we assume, is distributed normally 
with mean zero and covariance a 2 IN; in other words, 
e ~ fN (eiON, a 2 IN), where ON is the length-N null 
vector and IN is the dimension-N identity matrix. 
The econometrician observes x, w and y and makes 
inferences about p, p and a. 

Eq. (8) is the data-generating equation for the SAR 
model. The SAR model is one of two conventional 
specifications discussed in the literature. The other 
model allows for correlations among errors across the 
spatial units. Our main interest in the empirical part 
of this paper concerns correlation across the depen
dent variables (not the errors) and so, for this reason 
and the interests of space, we focus on the SAR for
mulation. Developments for both models are present 
neatly in LeSage (2000), Eqs. (1)-(7). The empirical 
application to follow motivates the spatial correlation 
parameter, p, and the important spatial-weight matrix, 
w. Suppose that our interest lies in estimating the 
correlation across crop yields in contiguous settings 
(a situation only slightly dissimilar from our empiri
cal application) and suppose that, perhaps for policy 
purposes, we are interested in estimating the extent to 
which yields in associated areas are correlated; areas 
with high yields, presumably, associated with con
tiguous high-yielding areas, and so on. In this setting 
w represents an assignment of ones and zeros corre
sponding to contiguous areas, such that, Wij = 1 if ob
servations i andj are in the same 'location' and Wij = 
0, otherwise, i, j = 1, 2, ... , N, i =I= j. We assume 
that the correlation between an observation unit and 
itself is zero and hence, that wu = 0, i = 1, 2, ... , N. 
In most practical applications of this model it is cus
tomary to normalise each row of w such that each of 
the Ni ( <N) contiguous units affecting observation i 
has one Nith contribution to the total impact on i; but 
this normalisation is not necessary. The condition p =I= 
0 implies correlation within locations and forces en
dogeneity (qua simultaneity) between the crop yields; 
and the condition p = 0 implies that there is no corre
lation and forces the model to collapse to the standard 
multivariate model, which can be handled without the 
need to Gibbs sample (Zellner, 1996). The analogy 
in the non-spatial context is simply the difference be
tween a simultaneous-equations set-up and its reduced 
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form and the presence of non-zero p is the defining 
distinction, indeed the raison d'etre for the MCMC 
approach. But more precisely, it is the combination of 
the combined impacts of w and p that lead to endo
geneity, and whereas p denotes an unobserved param
eter with an associated probability distribution that 
must be estimated, w denotes given data. It is useful to 
note in passing that it would be desirable to estimate 
the elements of w but that the most useful parameter
isations lead to identification problems. We suspect 
that the development of more robust specifications of 
w is, perhaps, the most fruitful avenue for advances in 
spatial methods, at least where adoption issues are the 
focus. Finally, this statement assumes deeper meaning 
when it is recognised that (at least, in experimental 
settings) the choices of w and p are not independent. 
In fact, as Anselin (1988) shows any draw for p in a 
Metropolis-Hastings scheme must satisfy 

(9) 

where f!. is the inverse of the minimum eigenvalue of 
w and p is the inverse of the maximum eigenvalue. 

With reference to (8), in the case p = 0, we have 
the normal-linear model and all of the previous re
sults go through, with the reinterpretation that K = 1 
and f.L(lxl) = f3(Kxl) and X(NxK) = L(Nxl)· Conse
quently, the extension to consider spatial effects rests 
importantly on the distribution for p. We will follow 
the practice outlined above and use a non-informative 
prior pdf for the unknowns EJ=-(p, {3, u)', form the 
likelihood for the unknowns conditional on the data, 
y; and study the form of the resulting posterior as a 
starting point to formal analysis. The posterior is 

n:(EJ IY) ex IAiu-<N+l) exp { 2~2 (Ay-x{3)' (Ay-x{3)} 

(10) 

where A(NxN) =- IN - pw arises from the Jacobian 
of the transformation between y and £. It is impor
tant for later developments to recognise that the ma
trix A contains the unknown parameter p and that, 
when p = 0, A = IN and the model reduces to 
the normal-linear regression model. However, even for 
non-zero correlation, the joint posterior for e is very 
similar to the posterior for the normal-means model 
and so, many of those same concepts prevail. Because 
there are now three components of interest, we must 

fix two of these constant when developing the Gibbs 
strategy for estimation. First, in deriving the condi
tional distribution for u, we treat {3 and p as known 
constants. Given {3 and p, inspection of (10) and com
parison with (Zellner, 1996 (a.37)) reveals that the 
posterior for u has the form 

.n:(ulf3, p, y) ex i°Culv, s2 ) (11) 

an inverse-gamma distribution with v = N and s2 = 
(Ay- x{3)'(Ay- x{3)jv. Hence, the dependence of 
u on {3, p and y is through s2 . Second, holding u 
and p constant, the posterior is in an identical form to 
the multivariate regression model with the dependent 
variable redefined to be Z(Nxl) = Ay. Consequently, 
all of Zellner's results (Zellner, 1996, pp. 65-66) go 
through with this reinterpretation and we find that the 
conditional distribution for {3, has the form 

n:(f31p, u, y) ex fN ({31~, V fi) (12) 

~ =- (x'x)- 1x'z and Vt =- u 2(x'x)- 1. Thus, the full 
conditional distribution for {3 is multivariate normal 
with mean ~ and covariance matrix V fl. Finally, with 
u and {3 assumed fixed, we observe that the form of 
the posterior for p is precisely the form of the joint 
posterior (10). That is, n:(plu, {3, y) ex .n:(@ly) and 
no further simplification is possible. Due to the ap
pearance of the determinant resulting from the Ja
cobian transformation, this density does not have a 
well-known form and hence, we are in the situation 
motivated previously of requiring the application of a 
Metropolis-Hastings step to simulate draws for p. 

As we outlined above in the case of the RW algo
rithm, we will need a proposal density from which to 
generate draws. The normal distribution is a natural 
choice in each of the three cases due to the fact that, 
net of the Jacobian term, IAI, the fully conditional den
sity for p is normal with known mean and variance. 
More precisely, by completing the square in p it is 
possible to write for p 

.n:(plu, {3, y) ex lA I 

{ 1 A/ f A} x exp 2u 2 (p- p) (wy) (wy)(p- p) (13) 

where p =- ((wy)'(wy))- 1(wy)'(y- x{3). Hence, 
n:(plu,{3,y) ex IAifN(ul/3, V,a), where V,a =- u 2 

( ( w y )' ( w y)) -l. The fact that the full conditional dis
tribution for p contains a normal component makes it 
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sensible to choose as the proposal distribution a nor
mal density. And this is what we do in the demonstra
tion that follows. 

In the experiment we use the data in Table 1 (column 
2), which are simulated from the model (8) with e = 
(p, {3, 0")1 = (-0.75, -1.0, 1.0)' and (column 3) x ~ 
fN (xiON, 10/ N). In each of the three cases we sam
ple sequentially with the insertion of an additional step 
to simulate the draw for p, the conditional pdf of which 
is not available in known form. We use r to denote the 
candidate draws from the proposal density and use p to 
denote an accepted draw. Some experiments suggested 
that an acceptance rate of around 50% produced stable 
estimates in a timely manner and we endogenised the 
step size of the RW algorithm by allowing the stan
dard deviation in the random walk error, ~, to increase 
(respectively, decrease) by a scale factor 1.1 whenever 
the acceptance rate exceeded the upper bound from 
below (exceeded the lower bound from above) in a 
band set at acceptance rate limits of 40 and 60%. 

Fig. 7 plots the first 100 draws in the Gibbs sequence 
with the RW step inserted. The sequence was quick to 
converge and produced draws for each of the three pa
rameters that are close to the given values used to gen-

8 

7 

6 

0 

erate the data, namely (p, {3, 0") 1 (-0.75, -1, 1). 
The sample was obtained in less than a minute of real 
time. Fig. 8 presents plots of the histograms for p gen
erated from the experiment. The distribution is centred 
close to the given parameter value ( -0.75) and is ap
proximately normal. Experiments with different start 
values generated almost identical distributions and 
we conclude that the RW -Gibbs sequence produces 
robust estimates of the SAR model parameters. 

3.1. Random walk Metropolis sampling the 
Bayesian spatial probit 

Our final demonstration is the framework we apply 
to the empirical model introduced in the next section. 
Having provided a heuristic justification for the meth
ods in the context of continuous sample data, y, we 
consider the application of the RW algorithm to the 
spatial probit model. With reference to (8), we are now 
concerned with the model 

z = pwz +xP + e (14) 

and we observe y; = 1 if Z; > 0 and y; = 0, otherwise. 
Hence, the components of z = (z 1, Z2, ... , ZN )' as 

. 
..;··················································-······ 

-1 •• :"--------------.... ----------- ....... -•• 
10 20 30 40 50 

Iteration 

Fig. 7. Random walk Metropolis draws from the SAR model. Plots of the first 50 draws in the Gibbs sample for the SAR model with a 
random walk Metropolis step for a (solid line), p (dotted line) and f3 (dashed line) based on the 10 observations Table I (columns 2 and 
3) and start values ~-t0 = (t't)- 1t'y', p = 0. The true parameter values are a= I, p = -0.75 and f3 =-I. 
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Frequency~---------.------~~--------~--------~-----. 

40 

30 

20 

10 

-1 -0.9 -0.8 

Value 
-0.7 -0.6 

Fig. 8. Random walk Metropolis draws from the SAR model. Plots of simulated frequencies for p in the SAR simulation using a random 
walk Metropolis step. The true parameter value is p = -0.75. 

opposed to y = (yJ,Y2, ... ,yN)' are latent and in 
terms of our desire for step-by-step development, we 
have introduced one additional unknown into the 
model. Consequently, the Gibbs sampling algorithm 
will require one additional step for its implementation 
and that step-as one might expect-is to obtain a 
draw for the latent endogenous variable, z, from its 
fully conditional distribution. This distribution is obt
ained by interpreting the posterior solely as a function 
of the unknown vector z and by completing the square 
in the exponential part of the normal kernel. The prod
uct is the truncated, multivariate-normal distribution 

n(z[p, CJ, fi, y) ex JTN(z[z, Vz) (15) 

where z = (A'A)- 1A'xfi and V.z = CJ 2(A'A)- 1 and 
the truncation satisfies the conditions stated in the 
data-generating model (14). Although this single step 
is but a slight complication over the SAR algorithm, 
drawing from this conditional distribution can pose 
problems. This is because a simple acceptance scheme 
whereby the latent z is accepted if each component sat
isfies the inequality constraints has a very small chance 
of acceptance. Except for very small problems, this 
method is computationally impractical. The approach 

suggested by Geweke (1992) and adopted previously 
by LeSage (2002) is to use the acceptance scheme on 
the fully conditional distributions for each of the com
ponents of the vector z. However, this approach can 
still result in an unreasonably large number of rejected 
draws. The alternative is to retain the conditional ap
proach but use efficient one-for-one draws by apply
ing the probability integral transform (e.g. Mood et al., 
1974). We found that both methods generated accurate 
estimates, but that the probability integral transform 
method was far superior in terms of execution time. 

One additional modification to the previous algo
rithm is required prior to implementation. This adjust
ment is to fix one of the unknown parameters in order 
to identify the other unknowns in the model. This is the 
familiar scaling problem arising in conventional probit 
estimation because the probit model is valid only up to 
a scalar transformation. The usual practice, which we 
adopt here, is to fix the variance at one. Hence, ( 14) 
is implemented by imposing the restriction CJ = 1. 

An experiment uses the second and third columns of 
Table 1. Note in column 2 that four of the endogenous 
values are positive and six are negative. If we simulate 
draws assuming that these binary outcomes represent 
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Frequency,_.------.------or------.-------.--------------. 

50 

30 

20 

10 

-1 -0.9 -0.8 -0.7 

Value 
-0.6 

Fig. 9. Random walk Metropolis draws from the SARP model. Plots of simulated frequencies for p in the SARP simulation using a 
random walk Metropolis step. The true parameter value is p = -0.75. 

the observed data we expect to obtain draws for the 
latent data that are centred about the endogenous 
y values. This essentially, is the case and although 
space prohibits reporting the probability distribution 
so obtained, the histogram for p is only slightly dif
ferent from the distribution obtained from the spatial 
model with observable, continuous response data. 
Fig. 9 compares the draws for the spatial econometric 
model (SAR) and the spatial probit model (SARP). 
The simulated frequencies from the SARP model are 
the unfilled bars and the frequencies simulated by 
the SAR model are the filled bars. Both sets of fre
quencies are generated from a Gibbs sample of 1000 
accepted draws. The start values for p in the two mod
els are the same and we follow a suggestion in Albert 
and Albert and Chibs (1993) using z0 = y as the start 
value in the spatial probit algorithm. Experiments 
with other start values suggest that the results are in
dependent of this choice. Except for some skewness 
in the draws from the probit model, the frequencies 
generated by the two models are remarkably similar. 

In summary, the Gibbs sampler provides an ex
tremely powerful technique for simulating from a 

marginal distribution that is not available in closed 
form. The addition of a Metropolis step within the 
algorithm provides considerable versatility that fa
cilitates estimation of spatial econometric and spa
tial probit models. The technique is attractive and 
when viewed as a set of logical extensions to the 
normal-linear model, is mostly rather simple. Its prac
tical implementation met with few obstacles in a hard
ware/software environment that is widely available 
to other researchers. The technique provides accurate 
estimates of spatial model parameters and appears 
to be extremely robust, working well in a limited
information environment (only 10 observations). 
The success of the technique in the experimental set
tings raises considerable scope for its application in 
empirical work. Finally, in response to a relevant query 
by the Editor, it is worth pointing out that the tech
niques developed in the section are readily extendible 
to cases where the binary decision is undertaken on 
an array of possible alternatives. This situation
the case of multinomial choice-is easily handled 
by simulating instead of independent z; variates for 
each binary choice, a vector Zi, of truncated normal 
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deviates of dimension equal to the number of options 
confronting the decision-makers. Hence, a potentially 
richer class of investigative models is available from 
a trivial extension of the basic algorithm. 

4. Empirical application 

Application of the SAR probit model, Eq. (14) to 
neighbourhood effects in high-yielding variety (HYV) 
rice adoption evolves from previous work by Case 
(1992). Readers are referred to that source for further 
details and motivation. Briefly, a farmer's expected 
profit from adopting an HYV plant, in place of a local 
variety (LV) depends upon a set of price variables (in
put and output prices), a set of fixed factors (say, farm 
assets, land holding), a set of socio-economic charac
teristics (for example, education, wealth), and neigh
bourhood influences (expected profits to neighbours 
from adoption). The first three sets of characteristics 
are, of course, standard fare in adoption models. They 
are accounted for by the matrix X(NxK) in Eq. (14). 
The fourth effect is, of course, modelled through the 
combination of the spatial weight matrix W(NxN) and 
the spatial correlation parameter p. In Case's appli
cation to sickle-harvester adoption in Java, the term 
'neighbours' refers to all other farmers in the same 
district. All neighbours are weighted equally, and the 
neighbourhood effects for each farmer are normalised 
to 1. In other words, the row restriction LJWiJ= 1 
is imposed column wise on the rows. In the termi
nology of Anselin (2002), this specification is a form 
of hierarchical normal-linear model, where the 'com
mon higher-order level' is a district. We apply similar 
interpretations in this empirical application, with the 
higher-order level represented by villages. 

In the Bangladeshi context, rice is the staple for the 
vast majority of the population, and the predominantly 
agrarian economy revolves around the production of 
rice in three seasons (Eunus, 2001). Food security con
tinues to be a predominant concern, with the popula
tion expanding by 2.2 million a year. The Bangladesh 
Rice Research Institute has released dozens of vari
eties of HYV s over the years, and these modern va
rieties are known to enable substantially better yields 
than local varieties. In spite of such varietal develop
ment and progress in irrigation provision, Bangladesh 
has one of the lowest HYV adoption rates in Asia 

(Azam, 1996). The adoption issue is thus a critical one 
for Bangladesh. 

A literature does exist on HYV adoption in 
Bangladesh, mostly employing OLS or probit regres
sions of adoption on variables such as farm size and 
farmer education (see, for example, Kashem, 1987; 
Hossain, 1989; Ahmed and Hossain, 1990; Alauddin 
and Tisdell, 1991). However, as in the broader tech
nology adoption literature, these Bangladeshi studies 
have not considered the role played by the adoption 
attitudes of 'neighbours' in influencing the adoption 
decisions of individual farmers. As Case (1992) has 
argued, ignoring neighbourhood influences not only 
biases the estimated parameters in standard adoption 
models, but also sacrifices important policy-relevant 
information. For example, a key principle in rural 
extension activity in many developing countries is to 
disseminate information to a critical mass of farm
ers such that positive externalities in the form of 
'secondary' or 'copy' adoption in the locality carry 
forward the momentum generated by the initial in
vestment. The size of this externality constitutes im
portant data for policymakers operating under limited 
budgets and wishing to maximise returns to extension 
investment. 

There is some a priori evidence that a village-level 
synergy exists in technology adoption in Bangladesh. 
One example of this is the experience of INTERFISH, 
a large agriculture/aquaculture extension project de
signed to promote the spread of rice-fish cropping 
systems in rural Bangladesh. An external team re
viewing the achievements of the project found that 
'copy farmers' (secondary adopters) abounded in the 
areas where the project was based (Best et al., 1998). 
These secondary adopters were seen to commit in
creasing amounts of land to the new technology fol
lowing positive adoption decisions by neighbouring 
farmers. The review team estimated that the spatial 
reach via secondary adoption could be a radius of 2 to 
3 km and on this basis, suggested that future project 
activities should allow sufficient space between 
sites in order to maximise returns to the project's 
investment. 

Our empirical application applies the spatial lag 
model to cross-sectional, primary data for the Aman 
(monsoon rice) crop of 1996 in Bangladesh. The data 
were collected in an intensive farm-survey coordinated 
by one of the authors. Multistage random sampling 
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Table 2 
Summary statistics by adoption status 

Variable Non-adopters Non-adopters standard Adopters Adopters standard 
mean development 

NGO 0.26 0.44 
Asset 4620 10,058 
Education 5.29 4.58 
Experience 23.13 13.84 
Family size 6.28 2.54 
Farm size 0.67 0.69 
Rented land 0.09 0.18 
Market 3.77 2.56 
Rice mill 6.42 4.97 
Extension 10.08 5.47 

Source: survey of Bangladeshi respondents, by S. Rahman, 1995. 

techniques were used in selecting study locations as 
well as the sample respondents. In our application it is 
assumed that the attitude towards HYV adoption for 
farmer i depends not only on its own internal char
acteristics, but also on the influence of other farmers 
in the village. The effects of farmers in surrounding 
villages is, thus, assumed to be negligible. 

The survey, conducted in 1996, had strict constraints 
on budgets and personnel, and unfortunately, was not 
designed with spatial estimation in mind. Thus, sur
veys were carried out in clusters of villages in each of 
the three districts. The three clusters had 6-8 villages, 
respectively, making 21 villages in total in our sam
ple. The districts (clusters) themselves are hundreds 
of kilometres apart from each other, and therefore can 
safely be considered not to be in each other's neigh
bourhoods. Within each cluster, individual villages are 
between 2.5 and 8 km apart. While these are not ap
parently great distances, our experience of Bangladesh 
enables us to be reasonably comfortable with the 
assumption that none of the villages are within the 
other's 'neighbourhood' (interactions terms between 
villages in the w matrix are zero). Agrarian activities 
in Bangladesh are known to be intricately linked with 
the socio-economic dynamics of individual villages 
(Herbon, 1994). At the same time, villages are typi
cally located around small waterbodies, and the agri
culture is strongly adapted to the local micro-relief. It 
is therefore not surprising to find very different mixes 
of crops and modes of production in areas just a few 
miles away from each other. In light of these facts, 
and given the geographical makeup of our data, we 
have adopted the 'village' definition of 'neighbours'. 

mean development 

0.22 0.42 
4762 14,285 

3.26 4.26 
25.87 15.23 
5.84 2.43 
0.65 0.55 
0.19 0.29 
2.78 1.49 
8.74 5.29 

12.94 5.04 

The survey collected information on varietal choice; 
input and output prices; levels of fixed factors; and 
socio-economic characteristics of the farm families. 
A total of 406 observations on local varietal use (76 
observations) and modem varieties (330 observations) 
constitute the sample. The variables included in the 
model are the following: 

• District: dummy variable representing the district 
in which the farm is located; 

• NGO: dummy variable indicating whether the 
household received assistance from NGOs; 

• Assets: value of farm assets in thousands of Taka; 
• Education: number of years of schooling for house

hold head; 
• Experience: years of farming experience for house-

hold head; 
• Household size: number of people in household; 
• Farm size: total size of holding in hectares; 
• Rented hectares: hectares of land rented in hectares; 
• Market: distance from the nearest market ('growth 

centre'), in km; 
• Rice mill: distance from the nearest rice mill; 
• Extension: distance from the nearest Department of 

Agriculture Extension office. 

Table 2 presents summary statistics by adoption status. 

5. Results 

Estimation results both with and without neigh
bourhood influences are presented in Table 3. Con
fidence intervals (highest-posterior density intervals) 
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Table 3 
Equation estimates and marginal effects (95% confidence interval in brackets) 

Variable Spatial probit Non-spatial probit Spatial probit marginal Non-spatial probit 
coefficient coefficient effects marginal effects 

p 0.54 (0.41, 0.67) 
District 1 0.01 (-0.70, 0.71) 0.22 ( -0.50, 0.99) 0.00 ( -0.25, 0.24) 0.06 ( -0.14, 0.27) 
District 2 0.29 ( -0.84, 1.46) 0.36 ( -1.12, 1.90) 0.10 ( -0.29, 0.51) 0.11 ( -0.35, 0.58) 
District 3 -0.35 ( -1.85, 1.17) 0.94 (-2.88, 0.91) -0.12 ( -0.64, 0.42) -0.28 ( -0.93, 0.30) 
NGO -0.20 (-0.47, 0.04) -0.24 ( -0.52, 0.02) -0.07 (-0.16, 0.02) -0.07 ( -0.16, 0.01) 
Asset 0.03 (-0.01, 0.08) 0.03 ( -0.02, 0.08) 0.01 (-0.00, 0.03) 0.01 ( -0.01, 0.02) 
Education -0.15 (-0.28, 0.02) -0.16 (-0.29, 0.03) -0.05 ( -0.10, -0.01) -0.05 ( -0.09, -0.01) 
Experience -0.12 (-0.36, 0.10) -0.12 (-0.35, 0.10) -0.04 ( -0.12, 0.04) -0.04 ( -0.10, 0.02) 
Family size 0.32 ( -0.02, 0.66) 0.25 ( -0.08, 0.58) 0.11 ( -0.01, 0.23) 0.08 (-0.02, 0.18) 
Farm size -0.21 (-0.38, -0.03) -0.18 (-0.35, -0.01) -0.07 (-0.13, -0.01) -0.06 ( -0.11, -0.00) 
Rented land 0.17 (0.08, 0.26) 0.17 (0.08, 0.26) 0.06 (0.03, 0.09) 0.05 (0.03, 0.08) 
Market -0.17 (-0.52, 0.19) -0.43 ( -0.86, -0.02) -0.06 (-0.18, 0.06) -0.12 (-0.27, 0.00) 
Rice mill -0.19 (-0.55, 0.20) -0.27 (-0.78, 0.29) -0.07 (-0.19, 0.07) -0.08 ( -0.24, 0.07) 
Extension 0.50 ( -0.36, 1.40) 1.21 (0.13, 2.36) 0.17 (-0.13, 0.47) 0.36 (0.03, 0.71) 

Adoption percent (non-adopters) 70% 77% 
Adoption percent (non-adopters) 88% 75% 

Note: 95% hpd regions (confidence intervals) are presented in parentheses (intervals with boundaries of different sign are not significant 
at the 5% significance level). 

at the 95% level are reported in parentheses. The 
convention followed in sampling theory of presenting 
t-statistics associated with regression parameters is 
not followed here for two reasons. First, because the 
simulated distributions are themselves approxima
tions to t-distributions, the result that normalisation by 
standard errors brings the estimate into a t-distribution 
no longer holds. Second, the highest posterior density 
regions are the conventional statistics in Bayesian 
applications. Because the qualitative effects (signs of 
coefficients) of most of the covariates remain the same 
between the two models, it is worth contemplating 
the interpretation of the qualitative effects before dis
cussing differences in coefficient magnitudes between 
models. 

Of the human capital variables (education, experi
ence), only education is significant. While the nega
tive and significant estimate for education may appear 
counterintuitive, it is consistent with the findings of a 
previous study based on a simple probit estimate from 
earlier data. Rosenzweig (1982) postulates that edu
cation can affect new technology adoption in different 
ways. On the one hand, it can encourage adoption by 
lowering learning costs. On the other, it may discour
age adoption since education provides more profitable 
off-farm employment opportunities, and new tech-

nologies may reduce the ability of farm operators to 
substitute their time inputs away from cultivation. Al
though education has been found to positively affect 
HYV adoption in other rice economies such as In
donesia (Pitt and Sumodiningrat, 1991), we are able 
to strengthen the evidence for the opposite trend in 
the case of Bangladesh. 

NGO contact and asset values of the farm have 
insignificant coefficients. Family size is insignificant 
too; however, it becomes significant at the 10% level 
(not reported here). With the exception of planting 
and harvesting periods in which all family members 
contribute to operations, routine labouring is under
taken by adult males. But in the planting and har
vesting periods, there is an acute shortage of labour 
(Metzel and Ateng, 1993), and every spare hand, 
including children, is pressed into farm work. This 
phenomenon is even more acute in HYV cultivation, 
where crop management is generally more labour 
intensive. In this regard, a larger family size is more 
conducive to HYV adoption, and this observation is 
reflected in Table 3 estimates. A consumption-based 
explanation for this phenomenon has also been ad
vanced for the case of Bangladesh. Hossain (1989) 
finds a similar result and interprets it as a confir
mation of the Chayanovian hypothesis that higher 
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subsistence pressure leads to greater adoption of new 
technology. 

Farm size and rented hectares both have significant 
coefficients. Smaller farms appear to have a greater 
propensity for HYV adoption. Once again, a 'subsis
tence pressure' argument fits well with this finding. 
Land rental imposes an additional payment burden in 
cash or crop-share, which may provide an incentive 
for the adoption of higher surplus yielding varieties. It 
is possible in some settings that adoption encourages 
land rental instead of vice versa, because the surplus 
generated by HYV adoption may prompt farm expan
sion by rental. In the Bangladeshi context, however, 
it has been our observation that renting is common 
for marginal, entrant farmers as well as larger, more 
commercial farms. Indeed, land is so coveted and in 
such short supply that renting is often the only way 
in which landless labourers can become cultivators 
themselves. 

Turning to the variables measuring infrastructural 
underdevelopment (distances to markets, rice mills 
and extension offices) we find that their coefficients are 
all insignificant. Although the sign on the coefficient 

for distance from extension is counterintuitive in ad
dition to being insignificant, coefficients for distances 
from markets have the expected sign. With distances 
from markets and rice mills increasing, one would ex
pect incentives for HYV adoption to be depressed. The 
insignificance of coefficients for these variables pos
sibly indicates that the underlying variables are not 
well measured. In capturing the effects of extension 
activity on adoption, for instance, one would ideally 
like to have actual measures of extension contact, such 
as numbers of visits from extension agents. Unfor
tunately, these data are unavailable. Also, we do not 
have data on one key variable, soil/land quality, which 
could potentially cause spatial correlations. However, 
a recent study by Barr (2000) in Bangladesh has found 
that soil properties do not seem to affect cropping de
cisions by farmers. 

Two measures of primary importance in the study 
are the signs and magnitudes of the neighbourhood 
correlation coefficient, p. The posterior means esti
mate of this parameter is 0.54, and the confidence 
interval presented in Table 1 suggests that the es
timate is significantly different from zero. Fig. 10 
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Fig. 10. Empirical evidence on the neighbourhood effect. Empirical distribution for p (the 'neighbourhood' effect) as estimated from the 
SARP model (Eq. (8)) using the Bangladeshi data. 
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presents the complete distribution of draws from the 
Gibbs sample. This distribution, recall, is derived 
from a random walk Metropolis step. The distribu
tion is uni-modal and appears to be almost symmet
ric. Its key feature is its location. Very little of the 
density resides in the negative part of the real line. 
Hence, with few caveats, there exists a strong, pos
itive neighbourhood effect among the Bangladeshi 
respondents. 

With significant local synergies in adoption con
firmed, the question arises about the extent to which ig
noring these influences biases policy conclusions. The 
marginal probabilities reported in Table 3 do not seem 
to vary greatly between the spatial and non-spatial 
models for most variables. For example, the presence 
of one additional family member increases the prob
ability of adoption by 8% according to the traditional 
model. In contrast, inclusion of neighbourhood effects 
results in a marginal probability of 11%. However, 
the difference in predictions is seen to be substantial 
for a few variables. For instance, both models predict 

Distance 

increased distances from markets to depress adoption 
probabilities. But the non-spatial model overstates 
this effect very significantly, predicting that ceteris 
paribus every additional kilometre from the mar
ket reduces adoption probability by 12%, while the 
spatial model estimates the same effect to be only 
6%. 

Finally, we consider the implications of ignoring the 
neighbourhood effects in one situation that has sig
nificant relevance in the Bangledeshi context. This is 
the notion of some form of optimal size in the struc
ture of farm units. From the estimates for the probit 
and spatial probit models we note that there is a sig
nificantly negative response to farm size. The larger 
the farm the less inclined an operator is to adopt 
HYV inputs. But, in policy discussions concerning 
this potentially important effect it is natural to ask 
the size of farm at which adoption status changes. In 
other words, we seek the size of the farm operation at 
which a non-adopter decides to adopt and the size at 
which an adopter decides to reject the HYV input. This 
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Fig. 11. The implications of ignoring the neighbourhood effect in the Bangladeshi data. The figure presents 95% highest-posterior density 
regions for estimates of the farm size (O.lOha) at which adoption status changes using results from the non-spatial probit model (dashed 
lines-top and third to top) and the spatial probit model (solid lines-second to top and lower lines). The hectare estimates are generally 
larger and are more widely varied when the spatial effect is ignored. 
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quantity will vary among respondents and may be use
ful for planning purposes and land-use strategies and 
it is desirable to have an estimate of this quantity in 
policy discussions. 

Our sample is quite 'unbalanced'. About 80% of 
the sample consists of adopters. This imbalance makes 
policy prediction more difficult. Nevertheless, as we 
change farm size, we can imagine a spectrum of 'reser
vation values' (specified in terms of hectares of land 
holding) at which each respondent changes adoption 
status. These reservation values are estimable for each 
farmer through the insertion of one additional step in 
the Gibbs algorithm. This step is to find the level of 
the covariate in question for which the dependent vari
able in the regression model is exactly zero or, in other 
words, the level Xi defined by 

-x-JP-J xi= (16) 
f3J 

Here, x _ J denotes the covariate matrix with the col
umn corresponding to the land variable (column J) 
excluded, P-J denotes the corresponding coefficient 
vector, and f3 J denotes the coefficient of the land 
variable in the original regression. Due to the ap
pearance of the latter coefficient in the denominator, 
the left-hand side of (16) does not have a form that 
enables direct simulation. But, once again, using the 
Gibbs sequence we are able to generate a sample of 
draws for Xi and in so doing, characterise its loca
tion and scale. Although the estimates themselves 
may be extremely important for policy purposes, in 
the spirit of the methodological contributions of the 
paper we are mostly interested in how these esti
mates are affected by the exclusion of neighbourhood 
effects. 

Fig. 11 presents two sets of estimates of 95% 
highest-posterior density zones for the quantities in 
( 16) from the standard pro bit model (dotted lines) 
and the spatial probit model (solid lines). The two 
distributions are dissimilar with the estimates ob
tained from the SARP model considerably more pre
cise. The importance of allowing for neighbourhood 
impacts appears, thus, to play an important role in 
the Bangladeshi data and to reiterate the cautionary 
remarks offered by Case (1992), their exclusion sig
nificantly biases empirical results and thus, the policy 
conclusions that evolve from them. A strong, positive 
neighbourhood effect is present in the data and we 

must take care to account for it in devising policy 
prescriptions. 

6. Conclusions 

MCMC methods have completely revolutionised 
Bayesian inference. Problems that were not man
ageable just a decade ago have become routine and 
with them, the Bayesian paradigm is making inroads 
into many fields of empirical research. In this paper, 
we provide a stepping-stone primer to Bayesian spa
tial probit estimation and demonstrate its importance 
in policy formation. Policy conclusions are affected 
by the propensity of adoption decisions by neigh
bours to affect others and we find a strong, positive 
neighbourhood effect in the Bangladeshi data. This 
conclusion is obtained robustly through a simple 
extension of a basic algorithm used to estimate the 
normal-linear model. The algorithm is implemented 
with hardware and software that is widely available 
to other researchers and generates precise estimates 
of policy parameters, efficiently, robustly and with 
few computational demands. 

Finally, in the interests of broadening exposure to 
alternative arrays of techniques, a very useful col
lection of material on Bayesian spatial estimation is 
found at (Jim LeSage's website) http://www.spatial
econometrics.com. At the least, the step-by-step in
troduction that we present in the current contribution 
increases the accessibility of this fundamental re
source for tools in spatial inference. If adopted by our 
neighbours, the class of techniques available there are 
likely to stimulate additional advances in the growing 
field of applied spatial inference. 
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