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Abstract 

This paper reviews a number of conceptual issues pertaining to the implementation of an explicit "spatial" perspective in 
applied econometrics. It provides an overview of the motivation for including spatial effects in regression models, both from a 
theory-driven as well as from a data-driven perspective. Considerable attention is paid to the inferential framework necessary 
to carry out estimation and testing and the different assumptions, constraints and implications embedded in the various 
specifications available in the literature. The review combines insights from the traditional spatial econometrics literature as 
well as from geostatistics, biostatistics and medical image analysis. 
© 2002 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Recent years have seen a virtual explosion in the 
application of spatial models in a range of fields in the 
social sciences in general, and in applied economics in 
particular (recent reviews are given in, e.g. Anselin and 
Bera, 1998; Goodchild et al., 2000; Anselin, 2001b,c). 
Over time, the methodology of spatial econometrics 
(Paelinck and Klaassen, 1979; Anselin, 1988) has ma­
tured and evolved from an aspect of spatial statistics 
with primary application in regional science and an­
alytical geography (Ord, 1975; Cliff and Ord, 1981), 
to an increasingly visible thread in formal economet­
ric theory (for example, Conley, 1999; Kelejian and 
Prucha, 1999, 2001; Baltagi and Li, 2001; Lee, 2002). 
Similarly, when dealing with aggregate cross-sectional 
data in empirical work, testing for spatial autocorre-
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lation and estimating models that formally incorpo­
rate spatial effects is no longer exceptional. Arguably, 
spatial regression techniques are beginning to become 
part of the toolbox of applied econometrics. In agri­
cultural and resource economics, illustrations of this 
perspective can be found in Benirschka and Binkley 
(1994), Bockstael (1996), Weiss (1996), Nelson and 
Hellerstein (1997), Bell and Bockstael (2000), Florax 
et al. (2001), Hurley et al. (2001), Anselin et al. (2002), 
Irwin and Bockstael (2002), Kim et al. (2002) and Roe 
et al. (2002), among others. 

While undoubtedly considerable progress has been 
made, most applications of spatial econometrics are 
rather limited in the way in which spatial interaction 
is incorporated in the model specifications. The typi­
cal approach is to distinguish between so-called spa­
tial lag and spatial error models (see Anselin, 1988). 
The former incorporate a spatially lagged dependent 
variable (Wy) on the right hand side of the regression 
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model. Spatial error autocorrelation is either modeled 
directly, following the general principles of geostatis­
tics, or by utilizing a spatial autoregressive process 
for the error term (for a recent review of these models, 
see Anselin and Bera, 1998; Anselin, 2001b). What 
is not always well understood in this process is that 
different spatial models induce sometimes radically 
different spatial correlation patterns, which do not 
necessarily match the underlying theoretical interac­
tion model. 

In this paper, I review some issues in the specifi­
cation and interpretation of spatial regression models. 
The objective is to pull together results from a variety 
of disciplines in which different modeling strategies 
have been pursued, including spatial econometrics, 
biostatistics, medical image analysis and geostatistics. 
The review is aimed at a general audience of applied 
econometricians, without assuming familiarity with 
spatial econometrics. Hence, the approach taken is 
primarily pedagogic and mostly a reformulation and 
elaboration of ideas that have been outlined in some 
form in earlier review papers (specifically, Anselin 
and Bera, 1998; Anselin, 2001b,c, 2002). The em­
phasis throughout is less on technical aspects than on 
the underlying concepts and intuition. The objective 
is to highlight unusual results and suggest additional 
ways in which spatial models may be introduced in 
applied econometrics. A more technical treatment is 
pursued in a companion paper. 

The focus of the paper is exclusively on spa­
tial correlation in linear regression models, leaving 
the discussion of spatial heterogeneity aside. 1 Also, 
space-time models and spatial panel specifications are 
not considered explicitly, although most of the struc­
tures considered can be implemented in a space-time 
context without modification. 2 

The remainder of the paper consists of four sections 
and a conclusion. First, theoretical motivations for the 
inclusion of spatial dependence in a regression model 
are considered. This is followed by a similar focus 
on data-driven motivations. Next, a number of con-

1 For a general review of approaches to model spatial hetero­
geneity in a regression context, see, among others, Anselin (1988, 
1990), Casetti (1997), Fotheringham et a!. (1998) and LeSage 
(2002). 

2 See for example Elhorst (200 I) for a recent review of some 
of the issues, and Anselin (1988, 200lb), for the specification of 
spatial panel data models. 

ceptual issues are reviewed that pertain to the founda­
tions for statistical inference in spatial regression mod­
els, including data models, the construction of spatial 
weights and asymptotics. Finally, some comments are 
formulated on the issue of ecological regression, i.e. 
the application of spatial regression models to aggre­
gate units, such as counties or states. 

2. Theory-driven specifications 

The inclusion of spatial effects in applied econo­
metric models is typically motivated either on theoret­
ical grounds, following from the formal specification 
of spatial interaction in an economic model, or on 
practical grounds, due to peculiarities of the data used 
in an empirical analysis. I consider the theoretical 
perspective first. 

In their description of the definition of spatial 
econometrics, Paelinck and Klaassen (1979) stressed 
the importance of spatial interdependence, the asym­
metry of spatial relations, and the relevance of factors 
located in "other spaces". This early formulation 
of the importance of spatial interaction was mostly 
based on pragmatic grounds. However, more re­
cently, these concerns are also reflected in theoretical 
economic models of interacting agents and social 
interaction. Such models deal with questions of how 
the interaction between economic agents can lead to 
emergent collective behavior and aggregate patterns, 
and they assign a central role to location, space and 
spatial interaction. The substantive concepts receive 
different labels in various subfields, such as social 
norms, neighborhood effects, peer group effects, so­
cial capital, strategic interaction, copy-catting, yard­
stick competition and race to the bottom, to name 
a few. However, an important commonality is the 
need to formally specify the range and strength of 
the relations between the interacting agents, which in 
empirical practice translates into the need to specify 
a structure for spatial correlation. 

Examples of such theoretical frameworks in eco­
nomics are models of complex behavior built on 
principles from statistical mechanics, such as interact­
ing particle systems and random field models (Brock 
and Durlauf, 1995; Akerlof, 1997; Durlauf, 1997); 
macroeconomic models with mean field interaction 
(Aoki, 1996); models for neighborhood spillover 
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effects (Durlauf, 1994; Borjas, 1995; Glaeser et al., 
1996); and models of increasing returns, path depen­
dence and imperfect competition underlying the new 
economic geography (Fujita et al., 1999). 

Rather than providing a detailed review of how 
specific spatial econometric models follow from these 
theoretical considerations, I will first focus on two 
particularly interesting forms that have seen consider­
able application in practice: spatial reaction functions 
and potential variables. Next, I present some remarks 
on spatial latent variable models. 

2.1. Spatial reaction function 

A spatial reaction function (Brueckner, 2002) ex­
presses how the magnitude of a decision variable for 
an economic agent depends on the magnitudes of the 
decision variables set by other economic agents.3 This 
provides the theoretical basis for a so-called spatial 
lag model, or, mixed regressive, spatial autoregressive 
model (Anselin, 1988): 

y=pWy+Xf3+c, (1) 

where, as usual, y is ann x 1 vector of observations on 
the dependent (decision) variable, W is ann x n spa­
tial weights matrix that formalizes the network struc­
ture (nodes and links) of the social network of then 
agents,4 p is the spatial autoregressive parameter, X 
is an n x k matrix of observations on the exogenous 
variables, with an associated k x 1 regression coef­
ficient vector {3, and £ is a vector or random error 
terms. 

Brueckner (2002) develops two theoretical frame­
works for strategic interaction that yield ~eaction 
function as the equilibrium solution. One is referred 

\ 
to as a spillover model, in which an agent i cho~ses 
the level of a decision variable, Yi, but the values\of 
the y chosen by other agents (say,Y-i, where the -t 
subscripts refers to all agents other than i) affect its 
objective function as well. For example, this would be 

3 Brueckner (2002) develops his argument in the context of 
public economics and refers to the "agents" as "jurisdictions," 
which are the decision-making agents in this setting. Here, I will 
use the more generic term agents. See also Section 5 for a discuss­
ion of the interpretation of reaction functions when the units are 
aggregates of agents, which is an important distinction. 

4 A more formal treatment of the spatial weights is postponed 
until Section 4.2. 

relevant in a situation where a farmer would determine 
the amount of farmland devoted to a crop by taking 
into account the amounts allocated by the other farm­
ers in the system. Consequently, the objective function 
for each agent is: 

(2) 

with x; as a row vector of (exogenous) characteristics 
of i. The solution to the usual objective maximization 
problem yields the reaction function as: 

Yi = R(Y-i.x;). (3) 

The spatial lag model (1) is an implementation of 
the reaction function obtained by specifying a linear 
functional form for R and by restricting the set of in­
teracting agents to the "neighbor" structure expressed 
in the spatial weights W. Even though this imposes 
a large number of zero constraints in W in the struc­
tural form (1), the corresponding reduced form reveals 
a global range of spillovers: 

y =(I- pW)- 1Xf3 +(I- pW)- 1£, (4) 

in which the "Leontief inverse" (I - p W) -I links the 
decision variable Yi to all the Xi in the system through 
a so-called spatial multiplier. In addition, (4) illus­
trates how the dependent variable Yi at i is determined 
by the error terms at all locations in the system, and 
not just the error at i. This simultaneity makes the 
spatially lagged "01 variable endogenous, which ne­
cessitates specialized estimation techniques, such as 
maximum likelihood estimation or instrumental vari­
ables approaches (see, e.g. Ord, 1975; Anselin, 1988; 
Kelejian and Robinson, 1993; Kelejian and Prucha, 
1998). 

The particular form of the spatial multiplier in 
(4) is only one example out of a taxonomy of mod­
els for spatial spillovers, as presented in Anselin 
(2002). Different ranges for the spatial spillovers can 
be incorporated by applying the spatial lag operator 
(pre-multiplication by the spatial weights matrix W) to 
they, X or£ terms in a regression specification. How­
ever, it is important to note that models that include 
Wy all induce a global form of spillovers. Local forms 
of spillover are obtained from spatial lags for the ex­
planatory variables (WX, see Section 2.2) and particu­
lar error covariances, such as those induced by a spatial 
moving average model and a spatial error compo­
nents model (see Anselin, 2002; Anselin and Moreno, 
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2002). These do not seem to fit the strategic interaction 
framework. 

Brueckner (2002) illustrates how a number of em­
pirical applications of strategic interaction models are 
special cases of his spillover model, with applications 
to state expenditures, pollution abatement and other 
forms of yardstick competition.5 

A second theoretical framework is referred to as 
the resource flow model. Here, the agent's decision 
variable is not directly affected by the levels chosen 
by other agents, but only indirectly. The indirect effect 
follows from the presence of the value of a "resource" 
in the individual agent's objective function: 

U(y;, s;, x;), (5) 

where s; is the amount of the resource available to 
agent i. For example, this could pertain to a farmer's 
decision of how much irrigation to apply to a field, 
where the resource s; would be the amount of wa­
ter available for this purpose. The interaction between 
agents follows from the way in which the resource is 
distributed among them, which depends both on the 
characteristics of each agent (x;, for example, the type 
of crop grown on the field), as well as on the decisions 
taken by the other agents (how much water they use): 

(6) 

After substituting (6) into (5), the interaction vari­
ables Y-i become part of the objective function, and 
the resulting equilibrium solution takes the same form 
as the reaction function (3) for the spillover model. 
Brueckner (2002) illustrates how a number of tax com­
petition and other strategic interaction models fall in 
the resource flow category and thus also suggest a spa­
tiallag specification.6 

It is important to note that the spillover and the re­
source flow models both lead to the same spatial lag 
econometric specification. Put differently, the spatial 
econometric model as such is not sufficient to identify 
the economic mechanism that leads to the presence 
(and empirical evidence) of spatial interaction. This is 
an example of the inverse problem, which is pervasive 

5 Familiar examples are Case et al. (1993), Besley and Case 
(1995), Murdoch eta!. (1997), and Bivand and Szymanski (1997, 
2000). 

6 Examples are Brueckner (1998) and Saavedra (2000), among 
others. 

in spatial data analysis (see, for example, Chiles and 
Delfiner, 1999, Chapter 8). A similar problem is en­
countered in the interpretation of a spatial lag model 
as the expression of a spatial diffusion process.? While 
diffusion processes will lead to equilibrium outcomes 
that are compatible with a spatial lag specification, 
other processes may yield the same outcome as well. 
In other words, these different processes are observa­
tionally equivalent. 

The essence of the problem is that a single cross­
sectional data set contains insufficient information to 
identify the precise nature of the underlying mecha­
nism. This is only one example of the kinds of identi­
fication problems encountered in spatial econometric 
models, as shown by Manski (1993) and Kelejian and 
Prucha (1997), among others.8 

2.2. Potential variables 

A potential variable formally expresses the impor­
tance of "other spaces" in a regression specification. 
The theoretical motivation for this goes back to the 
early treatment of spatial interaction in the regional 
science literature by Isard (1960). There, the potential 
for interaction between an origin i and all destinations 
j was formulated as a sum of "mass" terms in the 
destination, suitably downscaled by a distance decay 
function. Specifically, with ZJ as a measure of mass 
(e.g. income, population size) and f(d;j) as a distance 
decay function, the potential at i becomes: 

P; = L f(dij)Zj· 
j 

(7) 

Note that the destinations need not be the same as the 
origins for this concept to work, although they typi­
cally are.9 Commonly used distance decay functions 

7 See, for example, the discussion in Baller et a!. (2001) and 
Messner and Anselin (2002). 

8 In point pattern analysis, this identification problem is referred 
to as the problem of true versus apparent contagion. In a nutshell, 
the information in a cross-section is not sufficient to distinguish 
between clustering as resulting from a contagious process, or 
clustering as a result of spatial/structural heterogeneity (for details, 
see, among others, Upton and Pingleton, 1985; Cressie, 1993). 

9 For example, in Anselin et a!. (1997) a variable is included 
that incorporates the effects of counties surrounding an MSA, as 
a "ring" variable, whereas those counties are not part of the data 
set for the dependent variable. 
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are the negative exponential, f(dij) = e-Ydu, and the 

inverse distance function, f(dij) = di"""/ .10 

A concept related to notion of a potential is the spa­
tial cross-regressive term or spatially lagged explana­
tory variable (WX), discussed in Florax and Folmer 
(1992). Such a variable consists of a weighted sum of 
values at other locations, or, for each observation i: 

[Wx]i = L WijXJ, 
jf.i 

(8) 

where the importance of each link i- j is expressed in 
the weights. The weights are perfectly general, and can 
include the distance decay specifications given above. 
Typically, they are based on geographic contiguity of 
the units of observation. The non-zero elements in 
the ith row of W determine the range of interaction 
that affects location i, or, the range of spatial spill­
over. 

In contrast to the spatially lagged dependent vari­
able that follows from the spatial reaction function, 
the spatial cross-regressive term does not imply a 
multiplier effect. Whether its range is global (in­
cluding all other observations) or local (limited to 
a few "neighbors") depends on the specification of 
the spatial weights, that is, on the extent to which 
zero restrictions (of the form Wij = 0) have been 
imposed. 

In a regression specification, the same variables may 
be included in non-lagged and spatially lagged form, 
as in 

y = X/3 + 1VXy + c, (9) 

where zero restrictions can be imposed on specific 
elements of the parameter vectors f3 and y. In addition, 
when both the original values (xk) and the spatial lag 
(Wxk) for the same variable are included, tests for 
the importance of distance decay can be performed 
(distance decay implies Yk < f3k). Finally, in contrast 
to the spatial lag model, the spatial cross-regressive 
specification does not require specialized estimation 
methods and ordinary least squares remains unbiased 
for y. 

10 The parameter y is either estimated jointly with the other pa­
rameters of the model, which turns it into a non-linear specifica­
tion, or set a priori. Common choices in the inverse distance model 
are the integers 1 and 2, the latter following from the Newtonian 
gravity model. See Isard (1960), for an extensive discussion. 

2.3. Spatial latent variable models 

So far, the theoretical models considered were for­
mulated for a continuous dependent variable y. In ap­
plied econometrics, a more relevant specification often 
pertains to discrete dependent variables, where only 
a limited number of values are observed, such as the 
presence or absence of an action, or whether one out 
of a small number of alternative decisions has been 
taken. The standard approach to modeling such phe­
nomena is to develop a specification for an unobserved 
underlying latent dependent variable for each agent, 
say Y7. The link between the latent variable and the ob­
served discrete phenomenon is obtained by specifying 
a threshold, say c, such that Yi is observed whenever 
Y7 > c. A typical application of this approach is in 
spatial land use models, where only the outcome is ob­
served (one out of a set of discrete land use decisions), 
but the decision process is related to a latent variable, 
such as profitability, in a random utility framework. 

A spatial latent variable model is a specification for 
this process where spatial correlation is introduced be­
tween the decision variables and/or in the error struc­
ture of the model. As a familiar point of departure, 
consider a latent linear regression model, where the 
unobserved dependent variable Y7 is related to a 1 x k 
row vector of explanatory variables x; and an error 
term ci: 

A matching spatial lag model would then be 

y*=pWy*+Xf3+c, 

or, equivalently: 

* """ * '/3 Yi = P ~ WiJY J + xi + 8i, 
jf.i 

(10) 

(11) 

(12) 

where y* is the full n x 1 vector of the latent de­
pendent variables. Note that this is compatible with a 
spatial reaction function for the latent variables, but 
not necessarily for the observed discrete outcomes. In 
other words, it is the latent Wy* that is present in the 
actors' objective functions, such as Eq. (2), but not the 
observed Wy. For example, this would imply that it is 
the unobserved profitability of the neighbors parcels 
that enters in the utility function of a spatial land use 
model, but not the observed actual land uses. 
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The matching reduced form of the latent spatial lag 
process is as in (4), but again pertaining to the vector 
of latent variables: 

or 

y* = (/- p W)- 1 Xf3 + u, (14) 

where u =(I- pW)-1c:. 
For simplicity, let the threshold c = 0 and let Yi 

be binary, taking on the value of 1 whenever y( > 0. 
From (13), it follows that: 

y( = Laijxjf3 + u;, 
j 

(15) 

where aij is the element (i, j) of the Leontief inverse 
matrix (I- pW)- 1, and u; = L_1 aijC:j. The sum­
mation over j implies that y( is determined not only 
by x~, but also by all the other xj in the system, and 
not only by c:;, but by the other error terms c: 1 in the 
system as well. 

The discrete variable y; is observed whenever y( > 
0 in (15), or 

L aijxjf3 + Ui > 0. 
j 

(16) 

For a symmetric random variable u;, this yields the 
familiar condition 

Prob[y; = 1] = Prob[u; < gi(X, W, {3, p)], (17) 

where g; = Lj aijxjf3 depends on X, W, f3 and 
p. Note that in (17), u; is not i.i.d. as in the usual 
(non-spatial) model, but is a random variable whose 
marginal distribution is determined (in part) by the co­
variance matrix of the multivariate random vector u. 

In the case of a standard normal c:;, i.e. for a spa­
tial probit model, the random vector u will be mul­
tivariate normal with a covariance matrix Cov[u] = 
[(I- p W)' (I- p W) r 1. An important consequence of 
this complex covariance structure is that the marginal 
u; will be heteroskedastic. This makes standard pro­
bit estimation inconsistent. In addition, due to the 
high degree of covariance, it is necessary to integrate 
out the n - 1 other random variables in order to ob­
tain the marginal distribution for each individual u;. 
Note that when c:; does not follow a normal distri­
bution, the transformed multivariate random variable 

(I - p W) -l c: is not necessarily well defined. For ex­
ample, this is the case for a logit specification and for 
models of counts (Poisson models), where the result­
ing multivariate specification is intractable. 

The essence of the problem is again the simultaneity 
of the y(, which precludes an easy solution such as 

Prob[y; = 1] = Prob [c:; < p L WijYj + x~f3J . 
N=i 

(18) 

This expression is not operational, since the Yj that 
enter in the inequality condition are not observed, and 
are themselves determined by y;*. 

This simultaneous model contrasts with a condi­
tional approach, in which either Yi or Prob[yj = 1] 
are (assumed to be) observable. An implication of the 
conditional approach is that the spatial pattern of the 
y 1 cannot be explained by the model. In other words, 
in order to be operational, a conditional model requires 
that the values of the y j for the neighbors are obtained 
separately from the spatial model (12). More impor­
tantly, the two approaches are not equivalent, a point 
sometimes lost in the interpretation of results obtained 
in empirical practice. 

A distinct advantage of the conditional approach is 
that standard estimation techniques can be applied, as 
long as the spatial lag term can be inserted as an ob­
servable on the right hand side of the condition (18). In 
practice, this can be implemented by a judicious spa­
tial resampling (cluster sampling of non-contiguous 
clusters), although this typically involves a substantial 
loss of information. 11 In contrast, the complexity of the 
multivariate interactions in (17) invalidates standard 
probit or tobit techniques and requires specialized es­
timation and tests. This is still very much an active 
area of research. A number of suggestions have been 
formulated, such as the use of the expectation, max­
imization (EM) approach (McMillen, 1992), general 
method of moments (GMM) estimation (Pinkse and 
Slade, 1998), and simulation estimators, such as re­
cursive importance sampling (Vijverberg, 1997; Beron 

11 For example, if observations typically have four neighbors, 
the effective sample size in a non-contiguous subsample would 
be one-fourth of the original sample size. This loss of degrees of 
freedom will result in a lower precision of the estimates, limiting 
this approach in practice to very large data sets. 



L. Anselin/ Agricultural Economics 27 (2002) 247-267 253 

and Vijverberg, 2002) and the Gibbs sampler (LeSage, 
2000). 12 

3. Data-driven specifications 

In practice, the motivation for applying a spatial 
econometric model is typically not driven by formal 
theoretical concerns, but instead is a result of data 
"problems". For example, the scale and location of the 
process under study does not necessarily match the 
available data, such as when agricultural land markets 
are studied with data at the county level. This mis­
match will tend to result in model error structures that 
show a systematic spatial pattern. Also, explanatory 
variables are often "constructed" by spatial interpola­
tion to make their scale compatible with that of the 
dependent variable. Again, this spatial prediction will 
tend to result in prediction "errors" that show system­
atic spatial variation. This problem is commonly en­
countered in models where economic outcomes are 
related to environmental or resource variables, such 
as air or water quality. Spatially aggregate measures 
of the latter are computed by interpolating measures 
obtained for a small set of monitoring stations, whose 
locations do not coincide with those of the economic 
agents. Another often encountered situation is when 
data on important variables are missing, and those 
variables show spatial structure, as is often the case in 
studies of tropical land use and deforestation. A com­
mon characteristic of these data problems is that the 
error term in a regression model will tend to be spa­
tially correlated. 13 

In contrast to theory-driven models, which can be 
referred to as dealing with substantive spatial corre­
lation, the correlation in the error models is referred 
to as a nuisance. From a technical viewpoint, the pa­
rameters used in the specification of the structure of 

12 A review of estimation issues in spatial latent variable models 
is contained in Fleming (2002). Testing for spatial autocorrelation 
in probit and tobit models is considered in Kelejian and Prucha 
(2001) and Pinkse (2002). 

13 This pertains not only to the error terms in classical linear 
regression models, but extends to generalized linear models (such 
as Poisson regression models) and generalized additive models 
(e.g. models for rates) as well. Examples can be found in Gotway 
and Stroup (1997), Waller et a!. (1997a,b), Best et a!. (1999), 
Lawson (2001), MacNab and Dean (2002), among others. 

the spatial correlation can therefore often be consid­
ered to be nuisance parameters, which facilitates esti­
mation in some instances. 14 The main objective of the 
econometric exercise is to obtain unbiased/consistent 
and efficient estimates for the regression parameters 
in the model (f3), while taking into account the spatial 
structure incorporated in the error covariance matrix. 
Formally, the main interest is in the familiar regres­
sion model: 

y = Xf3 + £, (19) 

where the error covariance matrix, Cov[££1], or, equiv­
alently, E[££1], specifies spatial covariance when the 
off-diagonal elements are non-zero, E[£i£j] #- 0 (for 
i #- j), in accordance with a given "spatial ordering" 
(Kelejian and Robinson, 1992). Specific forms for the 
covariance structure are either specified directly (in 
so-called direct representation models) or follow from 
a spatial stochastic process model (such as a spatial 
autoregressive or spatial moving average model). 

3.1. Spatial filtering 

An interesting perspective in the context of spa­
tial correlation as a nuisance is the so-called spa­
tial filtering approach. Similar to first differencing 
for time series, one can consider a form of spa­
tial differencing. 15 However, unlike the time series 
case, for row-standardized spatial weights, the first 
differencing leads to singularity, since p = 1 is out­
side the proper parameter space. For general, not 
row-standardized weights the parameter space is typ­
ically constrained to values much smaller than 1, 
so that (unsealed) first differencing is similarly not 
allowed. 

More formally, a spatial first difference can be ex­
pressed as: 

y- lfY = (X- WX)f3 + u, (20) 

or, 

(I - W)y = (I - W)Xf3 + u. (21) 

Since the row elements of W sum to 1, the matrix 
(I - W) is singular. Instead of using a "pure" first 

14 For a review of the econometric issues, see Lancaster (2000). 
15 For some early examples, see Martin (1974) and Getis (1995). 
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difference, a spatial autoregressive parameter must be 
included, as in 

(/- pW)y = (/- pW)X,B + u. (22) 

The operation where a vector (or matrix) of data is 
pre-multiplied with the matrix expression (/ - p W) 
is called a spatial filter. Further pre-multiplying both 
sides of the equation by (I - p W) - 1 yields 

y = X,B + (/- pW)-1u, (23) 

which is equivalent to a model with a spatially autore­
gressive error term: 

s = (/- pW)-1u, 

(/- pW)s = u, 

s=pWs+u. 

(24) 

(25) 

(26) 

In other words, specifying a spatial autoregressive 
process for the error term is equivalent to carrying 
out a standard regression on spatially filtered vari­
ables. However, unlike the time series case, the spa­
tial autoregressive parameter cannot be obtained from 
a straightforward auxiliary regression, but estimation 
must be carried out jointly with that of the other model 
parameters. As a result, the spatial filter is mostly a 
convenient interpretation, but not a solution to the es­
timation problem. 

Similar to the approach taken in (12), the spatial lag 
model (l) can be expressed as a spatial filter as well. 
However, the filter only pertains to the left hand side 
of the equation, as in 

(!- pW)y = X,B +u. (27) 

This can be interpreted as a way to clean the dependent 
variable y of the effects of spatial correlation, while 
maintaining the "correct" (i.e. consistent and efficient) 
estimates for ,8. However, as in the spatial error model, 
it is not possible to estimate the parameter p separately 
from the other parameters of the model, so that there 
is no gain in the estimation. Moreover, model (27) 
relates deviations from a spatial mean in y to levels for 
X, which may not be appropriate in many contexts. It 
should only be considered as a last resort, when there 
is no substantive basis for a lag model, but strong 
empirical evidence in its favor, such as indicated by the 
results of model diagnostics. Typically, however, other 
problems, such as scale mismatch, a poor selection 

of the weights and more serious rnisspecifications are 
likely to be the culprit and should be considered before 
resorting to an interpretation of the lag model as a 
spatial filter. 

4. Inferential framework 

In this section, I review some issues that are seldom 
made explicit in applied work, but that are fundamental 
for the statistical inference in spatial econometrics. 
Three aspects in particular are considered: the data 
model underlying the statistical analysis, the choice of 
spatial weights and distance decay functions, and the 
asymptotic approach toward inference. 

4.1. Data model 

In his classic text, Cressie (1993) outlines a tax­
onomy for spatial statistical analysis, distinguishing 
between point pattern analysis, geostatistical mod­
els and so-called lattice or regional models. In point 
pattern analysis, the main interest focuses on the 
location of the observations as such, and whether 
this suggests clustering or other non-random pat­
terns. Since point pattern analysis is seldom used in 
economic analysis, it will not be further considered 
here. 16 Instead, the focus is on the distinction be­
tween the geostatistical and lattice approaches and 
the contexts in which they are appropriate in applied 
econometrics. 

The fundamental difference between the geostatis­
tical and lattice approaches can be related to the no­
tion of a data model from the computer data base 
and geographic information science literatures. A data 
model is an abstraction of reality in a form amenable 
for analysis by a computer. In dealing with spatial 
data, the basic distinction is between objects and fields 
(Goodchild, 1992). 17 

Objects are discrete entities and are typically repre­
sented in a geographic information systems (GIS) as 
points, lines and polygons (in a so-called vector GIS). 

16 Apart from Cressie (1993), early comprehensive reviews of 
point pattern statistics are provided in Ripley (1981), Diggle (1983) 
and Upton and Pingleton (1985). A "modern" approach, based on 
Bayesian hierarchical modeling is outlined in Wolpert and Ickstadt 
(1998), Ickstadt and Wolpert (!999) and Best et al. (2000). 
17 See also Egenhofer et al. (1999) for a recent overview. 
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In economic analysis, these objects correspond to eco­
nomic agents or "jurisdictions," with discrete locations 
in space, such as addresses, census tracts and counties. 
In contrast, fields pertain to continuous spatial distri­
butions, represented as surfaces (in a so-called raster 
GIS). In economic analysis, one can envisage fields 
as price or risk surfaces, for example in the study of 
land values, crop yields or air quality. 

Sometimes it is not immediately obvious whether 
an object or field approach is more appropriate. For 
example, land values could be studied as character­
istics of discrete spatial objects (parcels) or could 
be viewed as samples from a continuous land value 
surface. Similarly, location-specific yield measures 
in a precision agriculture application could be con­
ceived of as samples from a continuous yield sur­
face, or alternatively, be associated with a regular 
lattice overlaid on the field. The implications of the 
choice of framework for statistical inference are far­
reaching. 

Of the two, the object view and associated lattice 
data perspective seem to be more natural for the study 
of discrete economic agents, and is the one typically 
associated with spatial econometrics. However, unlike 
"standard" econometric analysis, the observations in a 
spatial analysis of objects are no longer a representa­
tive sample from a population of objects. Instead, they 
consist of a single data point on the complete spatial 
pattern among them. 

For example, a cross-sectional data set on economic 
variables for US states is not a sample from a popu­
lation of imaginary states, but its spatial pattern (e.g. 
as shown by a map for state incomes) is a single ob­
servation from all the possible stochastic patterns that 
an underlying mechanism may generate. In order to 
carry out statistical inference, a notion of a superpop­
ulation or spatial random process is required (e.g. a 
Markov random field, MRF). This assumes the exis­
tence (conceptually) of a stochastic process that may 
generate many possible spatial patterns, of which the 
observed data is one. The objective of the analysis is 
then to characterize the spatial process by means of 
the observed spatial pattern. Both a spatial lag and 
a spatial error specification can be accommodated in 
this framework. 

A number of unusual features of this approach are 
worth pointing out. Since the complete spatial pattern 
is the observation in lattice models, missing values 

are hard to deal with. 18 In other words, a fully filled 
out space must be observed, without any "holes". For 
example, in the analysis of land values or crop yields 
for parcels in a region, this would require that all the 
parcels in the region are observed. 

Also, typically, the spatial units (such as US states) 
are contiguous and exhaust the space, so that a notion 
of interpolation is impractical. For example, it would 
be hard to imagine predicting for a "state" in between 
Kansas and Colorado. Instead, spatial prediction ap­
plies to extrapolation, or the application of a model 
estimated from the observed spatial pattern to another 
set of spatial units, outside the observed set, or for a 
different time period. 

In a lattice approach, observations can be viewed as 
nodes on a network, with links between them indicat­
ing the connectedness between nodes. This representa­
tion is very general, and easily extends beyond a pure 
geographic setting to economic and social networks 
(e.g. Friedkin, 1998). It requires the formal specifica­
tion of the network structure, which is implemented 
by means of spatial weights (see Section 4.2). 

A slightly different case occurs where a sample 
of discrete units is observed, each with a relevant 
set of "neighbors," as in some cluster sample de­
signs. For example, this may occur for a data set of 
land use by parcel, where each observation is matched 
to its nearest neighbors. While similar to the lattice 
setup, an important distinction is that the values for 
the neighbors are assumed known, and the pattern for 
the neighbors themselves is not explained. More pre­
cisely, the conditional distribution of land uses, con­
ditional upon that observed for the neighbors is being 
modeled, not the joint distribution of all the land uses 
in the system. This important distinction was also en­
countered in the discussion of spatial latent variable 
models. 

When the data model is a field, a geostatistical 
perspective is appropriate, since it views the observa­
tions as sample points from a continuous surface. The 
objective of a geostatistical analysis is to infer the 
spatial distribution for the surface from information 

18 Note that this pertains to a classical statistical analysis. In a 
Bayesian viewpoint, both data and parameters are considered to 
be random, so that missing values can be incorporated in the same 
way as unobserved parameter values. A review of issues pertaining 
to "data augmentation," although without treating spatial aspects 
of the issue can be found in Tanner (!996). 
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provided by the pairwise association between the 
sample points, expressed as a function of the distance 
that separates them (for extensive reviews, see, among 
others, Cressie, 1993; Goovaerts, 1997; Chiles and 
Delfiner, 1999; Stein, 1999). 

The geostatistical perspective is a natural frame­
work when dealing with an incomplete set of spatial 
observations, where the objective is to predict values 
for unobserved locations. This focus on spatial in­
terpolation (kriging), is a distinctive characteristic of 
geostatistics, and contrasts with the emphasis on esti­
mation and inference in the lattice perspective. For ap­
plied econometric work, it is important to note that in 
a geostatistical approach to spatial regression models, 
the main interest therefore lies in optimal prediction 
(rather than estimation), exploiting the spatial patterns 
in the error term. In a geostatistical approach, there is 
no direct counterpart to a spatial lag model or spatial 
reaction function. 

An additional aspect of the geostatistical perspec­
tive is that the choice of the number and location of 
sample points becomes part of the analysis, in contrast 
to the lattice perspective, where the locations are given 
and fixed. The optimal design of spatial sampling net­
works is a topic that is receiving increasing attention, 
particularly in the area of environmental monitoring. 19 

In applied work, it is important to select the proper 
data model for the analysis. Primarily, this boils down 
to making a distinction between a design consisting of 
discrete objects and a design that is conceptualized as 
a sample from a continuous spatial surface. In many 
applications in applied econometrics, the latter is ar­
tificial when it comes to modeling economic agents. 
However, when the set of spatial observations is in­
complete (i.e. with missing values or holes in the lay­
out), the geostatistical/field approach is the only one 
that remains internally consistent. Also, a hybrid form 
is possible, when some of the explanatory variables 
are "interpolated" from a geostatistical model, but the 
model itself pertains to discrete agents, leading to a 
spatial errors in variables specification (see Anselin, 
2001c). 

The contrast between the two data models is sum­
marized in Table 1. 

19 Some recent reviews of the salient issues can be found in 
Arbia and Lafratta (1997), Mtiller (1998), and Wikle and Royle 
(1999), among others. 

Table 1 
Implications of data models 

Object Field 

GIS Vector Raster 
Spatial data Points, lines, polygons Surfaces 
Location Discrete Continuous 
Observations Process realization Sample 
Spatial arrangement Spatial weights Distance function 
Statistical analysis Lattice Geostatistics 
Prediction Extrapolation Interpolation 
Models Lag and error Error 
Asymptotics Expanding domain Infill 

4.2. Spatial weights 

A fundamental problem in the analysis of spatial 
correlation in a pure cross-sectional setting is the lack 
of identification of the parameters of the complete 
covariance matrix. The covariance matrix contains 
n potentially different variance terms al as well as 
n(n - 1)/2 off-diagonal terms au (= Oji. since the 
covariance matrix is symmetric). Clearly, a single 
cross-section of n observations contains insufficient 
information to allow for the estimation of the indi­
vidual variance-covariance terms. Asymptotics do 
not help, since the problem gets worse as the sam­
ple size grows (an incidental parameter problem). In 
sum, it will be necessary to impose a structure on 
the variance-covariance and to express it as a func­
tion of a small number of estimable parameters. In 
spatial regression analysis, this is approached from 
two main perspectives, matching the data models 
outlined in Section 4.1. In a geostatistics-inspired 
approach, the covariance is specified directly as a 
function of the distance between pairs of observa­
tions. Different specifications for this distance decay 
function have been employed, but most are some 
variant of a negative exponential model. Examples 
and a discussion of estimation and identification 
issues can be found in Cook and Pocock (1983), 
Mardia and Marshall (1984), Dubin (1988, 1992), 
Dubin et al. (1999), and Anselin (2001a), among 
others. 

In contrast, using an object view and correspond­
ing lattice model, the covariance structure follows in­
directly from the specification of the spatial weights 
matrix that underlies a spatial process model (Markov 
random field). Different specifications for the weights 
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and their consequences are reviewed in the remainder 
of this section. 

Before proceeding with this, it is worthwhile to 
briefly consider a third way of imposing structure, re­
fened to in the literature as spatial error components. 
The full covariance structure follows from decompos­
ing the enor term into components and imposing a 
model for the variance and covariance of these terms. 
This approach is prevalent in hierarchical and multi­
level modeling, where one error component is asso­
ciation with a model for (excess) heterogeneity and 
the other with a model for spatial variation, follow­
ing the suggestion of Besag et al. (1991). Examples 
of the incorporation of spatial random effects in hier­
archical Bayesian models in biostatistics are reviewed 
in, among others, Waller et al. (1997a,b) and Best 
et al. (1999). Applications using a multilevel modeling 
framework are illustrated in Langford et al. (1999a,b), 
Leyland et al. (2000) and Leyland (2001). Enor com­
ponents were introduced in spatial econometric spec­
ifications by Kelejian and Robinson (1995).20 

Formally, the spatial weights matrix is an n x n 
positive matrix (W) which specifies "neighborhood 
sets" for each observation. In each row i, a non-zero 
element WiJ defines j as being a neighbor of i. By 
convention, an observation is not a neighbor to itself, 
so that the diagonal elements are zero (wu = 0). Note 
that this definition is much broader than the term 
neighbor suggests. In most applications in applied 
econometrics, the neighbors are contiguous spatial 
units, as in Fig. 1, but this can be easily generalized 
to any network structure. For example, in Fig. 2, 
the six observations are nodes on a network and the 
existence of a neighbor relation matches the links be­
tween the nodes.21 The layouts in both Figs. 1 and 2 
yield the same 6 x 6 spatial weights matrix, illustrated 
on the left hand side of Table 2 (from Anselin and 
Smirnov, 1996). This is usually refened to as a binary 
contiguity matrix, since the weights are set to one for 
neighbors, and zero for others. For ease of interpre­
tation and to make the parameter estimates between 
different models more comparable, the spatial weights 

20 See Anselin and Moreno (2002) for a review of some techni­
cal issues associated with specifying and testing for spatial error 
components. 
21 Figs. I and 2 were first used as illustrations in Anselin and 

Smirnov (1996). 
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Fig. I. Example spatial layout. 

Table 2 
Spatial weights matrix 

0 0 0 0.00 0.33 0.00 0.33 0.33 0.00 
I 0 0 I 0 0.33 0.00 0.00 0.33 0.33 0.00 
0 0 0 0 I I 0.00 0.00 0.00 0.00 0.50 0.50 

0 0 I 0 0.33 0.33 0.00 0.00 0.33 0.00 
I I 1 0 0 0.25 0.25 0.25 0.25 0.00 0.00 
0 0 0 0 0 0.00 0.00 1.00 0.00 0.00 0.00 

matrix is typically row-standardized, as shown on 
the right hand side of Table 2. Each element in the 
standardized matrix, wij = wu/ LJ wu, is between 
0 and 1, which suggests that a spatial lag operation 
(pre-multiplying a vector of observations by W) cor­
responds to an averaging of the neighboring values.22 

The specification of the weights matrix is a mat­
ter of some arbitrariness and is often cited as a major 
weakness of the lattice approach. A range of sugges­
tions have been offered in the literature, based on con­
tiguity, distance, as well as more general metrics.23 

A number of issues related to the specification of 
spatial weights require careful consideration in prac­
tice. First, even when the weights are based on simple 

22 Note that the resulting matrix is no longer symmetric, since 
Lj wu i= L; Wj;, which needs to be accounted for in the compu­
tations of maximum likelihood estimates. 
23 For more extensive reviews, see Cliff and Ord (1973, 1981), 

Upton and Fingleton (1985), Anselin (1988) and Anselin and Bera 
(1998). 
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Fig. 2. Spatial network structure. 

contiguity, different weights structures may result for 
the same spatial layout. In the classic example of a reg­
ular square grid layout, the options are referred to as 
the rook case (only common boundaries), the bishop 
case (only common vertices) and the queen case (both 
boundaries and vertices). Depending on the criterion 
chosen, a location will have either four (rook, bishop) 
or eight (queen) neighbors on average (apart from edge 
effects). This implies quite different covariance struc­
tures for the associated random processes. Even in ir­
regular spatial layouts, a decision must be made as to 
whether units that only share a common vertex should 
be considered to be neighbors (queen) or not (rook). 

In practice, the construction of the neighbor struc­
ture of irregular spatial units is based on the digital 
boundary files in a GIS. Imprecision in the storage 
of the polygons and vertices can cause problems in 
this respect, yielding "islands" or other unexpected 
connectedness structures when deriving the spatial ar­
rangement from these boundary files. 24 

A second type of problem occurs when the spatial 
weights are based on a distance criterion, such that 
two units i and j are defined as neighbors when the 
distance between them (or, for areal units, the distance 
between their centroids) is less than a given critical 
value. When there is a high degree of heterogeneity 
in the spatial distribution of points or in the areas of 
regions, there may be no satisfactory critical distance. 
In those instances, a "small" distance will tend to yield 
a lot of islands (or, unconnected observations). Also, a 

24 In GIS terminology, the polygons should be "clean" before tbe 
topology can be "built". 

distance chosen to ensure that each unit has at least one 
neighbor may result in an unacceptably large number 
of neighbors for the smaller units. 

In empirical applications, this problem is encoun­
tered when building distance-based spatial weights for 
US counties (western counties have much larger areas 
than eastern counties) or urban census tracts (core 
census tracts are much smaller than suburban census 
tracts). Similarly, when modeling land use or land val­
ues based on parcel data, problems will occur when the 
area of the parcels is highly variable. A common solu­
tion to this problem is to constrain the neighbor struc­
ture to the k-nearest neighbors, thereby precluding 
islands and forcing each unit to have the same num­
ber of neighbors. Whether or not this is appropriate 
in any given situation remains an empirical matter.25 

A third issue may arise when the weights are based 
on "economic" distance (Case et al., 1993) or another 
general metric, such as derived from a social net­
work structure (Doreian, 1980). Care must be taken 
to ensure that the resulting weights are meaningful, fi­
nite and non-negative. In addition, the "zero-distance 
problem" must be accounted for. The latter occurs 
when a distance measure, such as dij = lzi- Zj I, be­
comes zero, due to rounding problems or because two 
observations show identical socio-economic profiles. 
As a result, inverse distance weights such as Wij = 
1 I dij are undefined. 

25 One consequence of tbe choice of k-nearest neighbor weights is 
that tbe weights matrix becomes asymmetric. This is qualitatively 
different from a row-standardized (asymmetric) matrix derived 
from a symmetric contiguity matrix (for technical details, see 
Smirnov and Anselin, 2001). 
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It is also important to maintain the weights matrix 
as exogenous. When the same variables are used to 
compute a general distance metric as are included in 
the model, the weights are unlikely to remain exoge­
nous. Consequently, the resulting model specification 
becomes highly non-linear with endogeneity that must 
be instrumented out. TYpically, this is not the result 
one has in mind when designing a weights matrix. 

A slightly different type of "economic" weights fol­
lows when a block structure is imposed, as in Case 
(1991, 1992). This is a form of hierarchical spatial 
model, where all units that share a common higher or­
der level are considered to be neighbors. For example, 
this would make all counties in the same state neigh­
bors, yielding a block-diagonal spatial weights ma­
trix. This structure precludes neighbors between the 
higher order levels and between lower order units that 
may be contiguous across higher order levels (such 
as neighboring counties in adjoining states). When 
implemented in row-standardized form, this type of 
weight also has a peculiar side effect. Since each 
weight in effect becomes Wij = 1jn8 , where n8 is the 
number of units in the higher order level (counties in a 
state), the effect of each individual neighbor will dis­
appear as n8 -+ oo. This happens in the limit, since 
the asymptotics operate on the cross-sectional dimen­
sion. Consequently, in the limit, the weights matrix 
becomes effectively zero, eliminating the effect of the 
spatial correlation. 

Interestingly, this "economic weights" specification 
is the one employed in a recent paper by Lee (2002), 
where it is argued that OLS is consistent for the spatial 
lag parameter (the standard result is that it is not). 
Given the peculiar structure for the weights, this turns 
out to be a very special result, and does not pertain to 
the type of spatial "correlation" typically implemented 
in empirical spatial econometric work. Also, it would 
seem that the result is of limited practical use, since 
any type of meaningful correlation structure should 
not disappear in the limit. 

The various weights specifications considered so far 
all share the property that their elements are fixed. It 
is straightforward to extend this notion and to incor­
porate parameters in the weights matrix, for example 
when the weights reflect the notion of a potential (see 
Section 2.2), as in Wij = 1/dij, or Wij = e-f3dij (see 
Anselin, 1988, Chapter 3). The generalized Cliff-Ord 
weights are another well-known example, with Wij = 

bij 1 dij, where bij is the share of the common border 
between units i and j in the perimeter of i (and, typi­
cally, bij =I= bji), and a and f3 are parameters (Cliff and 
Ord, 1973, 1981). In practice, these parameters are of­
ten set a priori, for example yielding a "gravity" like 
model with Wij = 1/d~.26 

However, when the parameters of the weights ele­
ments are jointly estimated with the parameters in the 
model, the resulting specification is highly non-linear 
(for examples, see Anselin, 1988; Bolduc et al., 1992, 
1995). Moreover, when a scaling factor, such as a 
spatial autoregressive coefficient, is included together 
with parameterized weights, both sets of parameters 
are not necessarily identified. It is also important to 
note that a weights matrix parameterized as a distance 
function is not equivalent to the direct representation 
model for the covariance. The structure of the corre­
sponding covariance depends not only on the weights, 
but also on the choice of the spatial process. However, 
irrespective of the latter, there is no one-to-one match 
between the weights and the covariance. 

It is also important to keep in mind that weights that 
are a function of distance depend on the scale of the 
distance metric. Ignoring this scale-dependence may 
lead to unexpected results (such as zero weights ma­
trix) when the coordinate units from which the dis­
tances are computed are non-standard. 

There is very little formal guidance in the choice of 
the "correct" spatial weights in any given application. 
When the focus is on a model for substantive spatial 
dependence, care should be taken to match the spatial 
interaction patterns suggested by the theoretical frame­
work (for example, a spatial reaction function imply­
ing a specific range of interaction). In other situations, 
the specification is much more ad hoc and sensitivity 
analysis of the results is very important. In practice, 
model validation techniques, such as a comparison of 
goodness-of-fit, or cross-validation, may provide ways 
to eliminate bad choices. Fortunately, empirical inves­
tigations can increasingly exploit both time and space 
dimensions (spatial panel data analysis), which opens 

26 Other examples found in the literature are Wij = .JN;Nj/d;j. 

where N stands for the population (or mass) in an area (Ferrandiz 
et al., 1995), or W;j = N;Nj/dij with a cutoff distance beyond 
which all weights are set to zero (Femindiz et a!., 1999), or also 
Wij = e-d;j/~ (Best et a!., 1999). In the latter example, 8 was set 
to a value of 33 to make the magnitude of the weight equal to 
0.01 for two units that were the median inter-unit distance apart. 
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up a number of opportunities to relax the structure 
of the weights matrix and employ non-parametric or 
semi-parametric methods to estimate a generic covari­
ance structure, avoiding some of the strong priors re­
quired in the cross-sectional setting. 27 

4.3. Asymptotics 

Classical (as opposed to Bayesian) statistical in­
ference in models that incorporate spatial correlation 
is based on asymptotic properties.28 These properties 
only hold under a fairly restrictive set of assumptions, 
or, regularity conditions, which impose constraints on 
the degree of heterogeneity and range of dependence 
of the spatial stochastic process that is considered to 
generate the data. Unlike what is often assumed, these 
regularity conditions and the associated laws of large 
numbers (to prove consistency) and central limit the­
orems (to ascertain asymptotic normality) are quite 
special and not straightforward generalizations of the 
time series case of dynamic heterogeneous processes 
(treated, for example, in Ptitscher and Prucha, 1997). 
A few of the distinguishing characteristics of asymp­
totics in space are worth considering. 

In a spatial setting, there are two fundamentally 
different ways to grow the "sample" to the limit (i.e. 
to obtain n ~ oo ). These approaches match the 
two different data models considered in the paper. 
In the field perspective and associated geostatistical 
approach to spatial modeling, the asymptotics are 
based on a fixed region, from which an increasingly 
denser sample of points is taken, or infill asymptotics 
(Cressie, 1993). Intuitively, the denser and denser 
samples provide more and more information on the 

27 See also Frees (1995), Driscoll and Kraay (1998) and Chen 
and Conley (200 1) for a lattice perspective, and Sampson and 
Guttorp (1992), Guttorp and Sampson (1994) and Damian et a!. 
(200 1) for a geostatistical approach. 
28 In a Bayesian approach to spatial regression analysis, both 

the data and the model parameters are considered to be random 
variables. Inference is based on an analysis of the posterior distri­
bution of the model parameters, which is constructed by combin­
ing a prior distribution with a likelihood using Bayes' theorem. 
In spatial regression analysis, this requires the specification of 
priors for the structure and the parameters of the spatial covari­
ance matrix (in addition to the other model parameters). Recent 
overviews of this approach are provided in Clayton and Kaldor 
(1987), Handcock and Stein (1993), Ecker and Gelfand (1997), 
LeSage (1997), Wikle et a!. (1998), Best et a!. (1999), Berger 
et a!. (2001), and Damian et a!. (2001), among others. 

spatial distribution of the underlying surface. In con­
trast, in the object view and associated lattice model 
approach, there is no surface, and the asymptotics are 
obtained by adding more and more discrete objects to 
the sample, or, by expanding the domain. 

The two paradigms are not equivalent. In fact, prop­
erties that hold under one framework do not necessar­
ily hold under the other (Lahiri, 1996). To illustrate 
this point, consider a setting where the spatial weights 
matrix defines neighbors as those points within a given 
fixed distance band. In an expanding domain frame­
work, there is no problem, since adding new objects 
only affects the neighbor structure for those observa­
tions at the margin.29 In other words, the number of 
neighbors and the implied "range" of spatial corre­
lation is not (substantially) affected by growing the 
sample. In contrast, with infill asymptotics, the sample 
would become increasingly denser, resulting in more 
and more points meeting the critical distance criterion 
for each observation. Therefore, the number of neigh­
bors will increase with the sample size, effectively re­
moving the spatial correlation (for row-standardized 
weights) as the sample grows. This runs counter to the 
regularity conditions required for expanding domain 
asymptotics. 

In a nutshell, the regularity conditions required for 
the expanding domain asymptotics in lattice models 
boil down to limits on the heterogeneity of the process 
(variance and higher order moments) and constraints 
on the range of spatial dependence. The latter can be 
thought of as a formal expression of Tobler's "first law 
of geography," according to which everything depends 
on everything else, but "close" things more so (Tobler, 
1979). Similar regularity conditions are required in the 
geostatistical approach, to ensure that the covariance 
structure that follows from the specified distance de­
cay function is positive definite (for technical details, 
see Cressie, 1993). Formally, the conditions pertain 
to summability and differentiability of the elements 
of the covariance matrix. An extensive and unifying 
technical treatment of these issues was recently pro­
vided by Kelejian and Prucha (1998, 1999, 2001) (for 

29 However, as discussed in Anselin and Kelejian (1997), the fact 
that the weights change at the boundary is a non-standard situation. 
As Kelejian and Prucha (1998, 1999) have pointed out, this requires 
the use of triangular arrays as well as specialized central limit 
theorems in order to establish the asymptotic properties. 
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antecedents, see also Magnus, 1978; Mardia and 
Marshall, 1984; Mandy and Martins-Filho, 1994). 

In applied spatial econometrics based on the lattice 
approach, sufficient conditions are typically satisfied 
by limiting the number of neighbors in the weights and 
ensuring this does not grow with the sample size. Con­
ditions on the heterogeneity are complicated by the 
fact that many spatial processes induce heteroskedas­
ticity (or, non-stationarity), which must be properly ac­
counted for.30 In practice, weights based on contiguity 
or similar principles (distance bands) will satisfy these 
regularity conditions. Matters are less straightforward 
when complex weights are introduced (such as param­
eterized distance functions) for which it is not always 
possible to establish that the regularity conditions are 
satisfied. Evidence of the violation of these assump­
tions is sometimes provided by "weird" results, such 
as negative variance estimates and explosive spatial 
interaction functions. 

5. Ecological regression 

In empirical practice, the estimation of models such 
as a spatial reaction function, specified in the form of a 
spatial lag model (1), is often carried out for aggregate 
spatial units of observation, such as counties or cen­
sus tracts. In the statistical literature, this is referred to 
as ecological regression, and often criticized as yield­
ing invalid inference, the so-called ecological fallacy 
problem. More precisely, the ecological fallacy per­
tains to cross-level inference or cross-level bias. This 
is what happens when parameters and other charac­
teristics of a distribution are estimated at an aggregate 
level, but behavioral and socio-economic relations are 
inferred for another, disaggregate level. 

5.1. Ecological fallacy 

An enormous literature has been devoted to the 
problem of ecological fallacy in sociology, political 
science and economics, going back to the classics 

30 Note that in some treatments stationarity is a crucial assump­
tion, which rules out spatial processes that induce heteroskedas­
ticity. See, for example, the central limit theorems based on 
Bolthausen (1982) used as the basis for the GMM estimator in 
Conley (1999). Also, note that in a geostatistical approach, there 
is no such induced heteroskedasticity. 

of Gehlke and Biehl (1934), Robinson (1950) and 
Goodman (1953).31 In economics, this issue is closely 
related to the aggregation problem, or the extent 
to which micro-relationships can be inferred from 
macro-estimates (for recent review of the relevant is­
sues, see Stoker, 1993). In general, unless extremely 
rigid (and unrealistic) homogeneity constraints are 
imposed, it is impossible to transfer findings from the 
macro-level to a micro-interpretation.32 

In practice, this is easily overlooked, but even in 
very simple situations, and with a high degree of ho­
mogeneity, the ecological approach creates problems 
of interpretation. Consider a regression at the individ­
uallevel, where individuals are stratified by group, and 
both individual-level variates as well as group-wise 
aggregates are included in the model (the example is 
adaptated from Greenland, 2002, p. 390): 

(28) 

where Xik is a characteristic of individual i in group 
k (e.g. income for household i in county k) and 
Xk = Li Xik/nk (with nk as the group size) is the 
group average for that characteristic (e.g. county av­
erage income). In the literature, f3 is referred to as 
the individual effect and y as the contextual effect. 33 

The corresponding macro-regression relates the group 
averages to each other, or 

(29) 

with the group averages as Yk = Li Yik/nk. When the 
groups do not contain an equal number of members, 
the error term in (29) will become heteroskedastic. In 
other words, at the aggregate level, heteroskedasticity 
should be expected, and an i.i.d. assumption for the 
errors is incompatible with the aggregation rule. 

In addition, the coefficient of the average Xk in the 
aggregate model no longer allows for the separate 

31 For recent overviews of this extensive literature, see also Achen 
and Shively (1995) and King (1997). 
32 In a very stylized setting, often used in voting rights analysis, 

King (1997) has suggested a "solution" to this problem, which he 
refers to as "ecological inference" or ei. The essence of this ap­
proach is to treat the unobserved individual parameters in a random 
coefficient framework and to simulate their posterior distribution, 
using additional information from individual-level constraints. For 
a discussion of the role of spatial effects in this model, see Anselin 
and Cho (2002). 
33 For a related discussion of identification issues in economic 

models of interaction, see Manski (1993). 
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identification of the individual and contextual effects, 
but confounds the two. More precisely, even when 
there is no within-group heterogeneity (all the groups 
have the same f3 and y coefficients), the estimate 
from the aggregate model only corresponds with an 
individual-level coefficient when there is no contex­
tual effect (y = 0). Similarly, it only corresponds to 
a "pure" contextual effect when there is no individual 
effect (fJ = 0).34 

5.2. Spatial aggregation 

In spatial analysis, an additional twist is added to 
the ecological regression problem, in that it is not 
only the level of aggregation that matters, but also 
how "elemental units" are combined spatially. This is 
referred to as the zoning problem or the modifiable 
areal unit problem (MAUP), first illustrated by the 
"million or so correlation coefficients" in Openshaw 
and Taylor (1979). Considerable attention has been 
paid to the interrelation between MAUP and spatial 
correlation (Arbia, 1989). More recently, statisticians 
have approached this problem as a special case of the 
change of support problem (COSP) (see Cressie, 1996; 
Gotway and Young, 2002). 

Extending the example in (28) with a spatial autore­
gressive term, some of the complexities of spatial eco­
logical regression become apparent. At the individual 
level, a spatial lag specification would be: 

n 

Yik = P L WijYJh +a+ Xikf3 + XkY + 8ik, (30) 
i=l 

where it is important to note that the non-zero weights 
in Wij are not limited to neighbors that belong to the 
same group. The specification in (30) is typically what 
one has in mind when implementing a spatial reaction 
function for economic agents i. 

By comparison, a spatial lag specification at the 
aggregate level, for the groups g, with g = 1, ... , G, 
would be: 

G 

Yk =A. L WkgYg +a+ Xk(fJ + y) + Ek> (31) 
g=l 

with Wkg as the elements of a group-level spatial 
weights matrix of dimension G x G that reflects 

34 See Greenland (2002) and also Stoker (1993) for a more 
elaborate discussion. 

the neighbor structure for the aggregate spatial 
units. 

While the regressive part in (31) is a straightforward 
extension of the non-spatial case, the autoregressive 
part is not an aggregate of the spatial autoregressive 
terms in (30). Several factors preclude a simple ag­
gregation. Consider the case of an aggregated spatial 
weights matrix based on simple contiguity that would 
be constructed from collapsing the rows and columns 
for the elements in each group. Formally, this is ac­
complished by means of an n x G aggregation matrix 
H, with elements hig = 1 for i E g and zero other­
wise, such that 

wa = H'wn H, (32) 

with wn as the individual-level weights. This yields 
a G x G matrix with elements w~ obtained as the 
sums of all the weights wij for which i E k and j E 

g. If the original weights wn contained non-zero el­
ements for agents in the same group, the aggregate 
weights from (32) should have non-zero diagonal el­
ements, Wkk i= 0. This is typically ruled out (see 
Section 4.2). Therefore, zero diagonals in the weights 
for an aggregate-level model are inconsistent with a 
spatial aggregation of the individual spatial weights. 

The aggregated between-group weights Wkg (with 
k i= g) are the sum of the weights for individual 
agents that were cross-group neighbors in each group 
(the number of weights wij i= 0 for which i E k and 
j E g). In a spatial aggregation over irregular units, 
the share of such neighbors in each group is unlikely 
to be constant, yielding unequal weights Wkg for any 
given k. In contrast, in a typical group-level appli­
cation, contiguity weights would be set equal for all 
elements in the same row, again violating the proper 
spatial aggregation. 

More importantly, the aggregate over groups of the 
individual-level spatial lag terms is not equal to the 
spatial lag of the aggregate values. This can be traced 
back to the aggregation over the reduced form (4). At 
the individual level, the Yik are a weighted average 
of the xi in the system, with the weights for each 
i corresponding to the row elements of the inverse 
matrix A = (I - p W)-1. Formally, and ignoring the 
structure of the error term, at the individual level, 

n 

Yik = L au( a+ XjhfJ + XjhY) + e, 
j=l 

(33) 
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where j is the index of the individual observation and 
h is a generic group indicator. The summation in (33) 
is over all j and includes elements in group k as well 
as in other groups in the system. The weights in au are 
unequal. The aggregation of A by means of the matrix 
H used above will yield a group level spatial multiplier 
A G = H' AH. For the same reasons as outlined for 
the spatial weights, the spatial multiplier matrix for 
the groups ([/ - A. W0 r 1) will be inconsistent with 
a spatial aggregation of the individual-level weights. 
As a result, the group average of the individual Yik 

obtained from the reduced form will not equal the h 
from the group-level reduced form. 

Given these problems, one might be tempted to dis­
miss spatial lag models estimated for aggregate units. 
Clearly, a naive interpretation of the parameters of 
such a model is misguided when they are considered 
as proxies for individual-level parameters that reflect 
substantive spatial dependence, e.g. as implied by a 
spatial reaction function. However, there remain many 
contexts where the interest is in the aggregate object 
considered in its own merit, and not as an aggregation 
of lower level units. For example, in many applica­
tions of policy evaluation, the focus would be on state 
or county-level economic indicators as such, without 
requiring an explicit link to the micro-units. In such 
situations, there is no problem with the use of ecolog­
ical spatial lag models as specification of substantive 
economic relations. 35 

6. Conclusions 

As a spatial perspective is becoming increasingly 
common in applied econometric work, it is important 
to keep in mind the formal framework within which 
proper estimation and inference can be carried out. 
Different model specifications imply different spatial 
correlation structures that may not always be compat­
ible with the economic theory behind the interaction 
model. The data are often problematic, and prevent the 
use of an optimal spatial scale in many empirical situa­
tions. Choices must be made about the data model and 
appropriate statistical paradigm. The specification of 
spatial weights is often ambiguous and the conceptual 

35 See also Schwartz (1994), for related arguments in the public 
health arena. 

interaction model does not always match the formal 
simultaneous or conditional specification. Moreover, 
the danger of ecological fallacy lurks everywhere. 

With more user friendly software available, these 
important choices may be hidden from the analyst, or a 
particular perspective forced on the unsuspecting prac­
titioner. The goal of this paper was to focus attention 
on a number of conceptual issues that must be resolved 
in order to obtain a sound design for a spatial econo­
metric analysis. While the discussion was mostly in­
formal, the main ideas remain valid and hopefully will 
guide applied econometricians in future spatial work. 
A more technical treatment is offered in a companion 
paper. 
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