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Abstract

Understanding determinants of land use in developing countries has become a priority for researchers and policy makers with
a wide range of interests. For the vast majority of these land use issues, the location of change is as important as its magnitude.
This overview paper highlights new economic approaches to modeling land use determinants that combine non-traditional
data sources with novel economic models and econometric techniques. A key feature is that location is central to the analysis.
All data elements include an explicit location attribute, estimation techniques include the potential for complications from
spatial effects, and results are location-specific. The paper reviews the theory underlying these models. Since this paper is
intended to provide the potential new researcher with an introduction to the challenges of this analysis, we present an overview
of how remotely-sensed data are collected and processed, describe key GIS concepts and identify sources of data for this type

of econometric analysis. Finally, selected papers using these techniques are reviewed.

© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Understanding determinants of land use in devel-
oping countries has become a priority for researchers
and policy makers with a wide range of interests. Con-
cerns about consequences of deforestation for global
climate change and biodiversity have received the most
attention,! but loss of wetlands, declining land produc-
tivity, and watershed management are critical prob-

* Corresponding author. Tel.: 4+1-217-333-6465;
fax: +1-217-333-5538.

E-mail address: g-nelson@staff.uiuc.edu (G.C. Nelson).

! Examples of multidisciplinary international efforts to under-
stand land use determinants include the Land Use/Cover Change
effort of the International Geosphere-Biosphere Program (http://
www.igbp.kva.se/cgi-bin/php/frameset.php), the International
Human Dimensions Program (http://www.uni-bonn.de/ihdp/)
and the Millennium Ecosystem Assessment (http://www.
millenniumassessment.org).

lems facing many developing country policy makers
striving to enhance economic development while pro-
tecting the environment. For the vast majority of these
challenges, the location of land use change is as im-
portant as its magnitude. For example, the loss of a
particular plot of forest containing unique species is
more serious than a much larger loss of a forest con-
taining species found in many other places. Deforesta-
tion that results in soil erosion above a drinking water
supply or major irrigation system has more deleterious
effects on water and food availability than elsewhere.

In developing countries, analysis of land use de-
terminants is especially constrained by lack of data.
One does not typically find detailed crop or forest sur-
veys, government statistical agencies are often under
funded and data collection for agricultural and natural
resource statistics can be sporadic.

This paper highlights new economic approaches to
modeling land use determinants. These approaches

0169-5150/02/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.
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combine non-traditional data sources? with novel eco-
nomic models and econometric techniques. A key fea-
ture of this approach is that location is central to the
analysis. All data elements include an explicit location
attribute, estimation techniques include the potential
for complications from spatial effects, and results are
location-specific.

This paper has four sections. In the first section, we
review the economic theory that is the basis for this
type of analysis. In the second section, we provide an
overview of how remotely-sensed data are gathered
and processed to become useful for econometric anal-
ysis. The third section provides a similar overview of
GIS concepts and how remotely-sensed data can be
integrated with other spatial data. The final section re-
views some empirical studies of land use in develop-
ing countries.

2. Economic theory underlying determinants of
land use?

The focus of this approach is an individual parcel
of land. The choice of land use on the parcel is made
by the “operator”, a single person, household, or
group of people in the case of common property own-
ership. Three sets of variables determine this choice.
The first set is the location’s geophysical characteris-
tics. These might be vegetative (type of forest cover,
soil quality), mineral, or even atmospheric (rainfall,
evapotranspiration). A second set of characteristics
is socioeconomic—Ilocation-specific attributes such

2 Examples include world-wide datasets such as the Digital Chart
of the World and the FAO World Soils Map, regional data sets
such as NOAA weather satellite data and the Baltic Sea Region
datasets (http://www.grida.no/prog/norbal/baltic/index.htm) and lo-
cal datasets of land use derived from satellite images.

3 This section draws heavily from Nelson et al. (2001). The
static version of the model was originally developed in Chomitz
and Gray (1996) and used to assess the effects of roads on land use
in Belize. Nelson and Hellerstein (1997) extended the theoretical
model to multiple time periods and used the approach to simulate
the land use effects of complete removal of a road network in
central Mexico. Numerous authors, including several in this issue,
have used variants of this methodology to study determinants of
land use in developing countries. Bockstael and associates at the
University of Maryland have used a similar methodology to study
urban expansion in the Washington, DC/Baltimore, MD region
(e.g. Bockstael, 1996; Irwin and Bockstael, 2002). Bell and Irwin
(2002) in this issue present this approach in more detail.

as prices of inputs and outputs; degree of operator
control over the parcel; and household characteristics.
Finally, geophysical and socioeconomic variables
combine with a set of production technologies that
relate inputs and outputs.

This literature typically assumes the operator of the
parcel (the person with effective control over the land)
uses its resources to increase his or her (or their, in the
case of common property) utility. In this theoretical
derivation, we equate utility and profit maximization
(we address the necessary assumption for this later).
The operator chooses a particular land use by compar-
ing the net present value of the returns to all possible
land uses. If we assume that a given land use has a
single marketed product, the net present value of the
return to that land use (h), its rent (Ry;) at time 7, is
given by

o0
—7 t
Rur= / (PhiT4t YhiT+t — WhiT+: X ) €00 de (1)
t=0

where P is the output price, y the quantity of output, w
is a vector of input costs, x is a vector of inputs under
operator control and j; is the location-specific discount
rate, all for each land use % at location / at time 7. At
each parcel, the operator identifies the x to maximize
R for each land use and then the operator chooses the
land use that has the highest Ry for the parcel. Note
that this formulation assumes that the operator starts
tabula rasa; there are no costs of converting from an
existing land use to one that has just become the most
profitable.

With several restrictive assumptions we arrive at
a theoretically-consistent reduced-form estimating
equation that includes prices of inputs and output, a
vector of geophysical characteristics (¢;), parameters
of a Cobb-Douglas production function (ax, input
elasticities and by, constant productivity shifter) with
k inputs, and a location-specific discount rate, i;. The
discount rate is location-specific to capture differences
in effectiveness of property rights and cultural values:
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Data restrictions impose additional constraints. Prices
are rarely available for all potential outputs and data
are available for a single period only. Hence, most
of the existing literature proxies prices of inputs and
outputs using cost of access measures, similar to these
developed in Chomitz and Gray (1996):*

Py = explyor + yuDil,
Chii = expldoxs + S1:a D11 3)

where Dj is the cost of access measure from a final
destination of output or source of input to location
1.3Substituting the price proxies and doing additional
manipulations gives:

In Rur = non + Y _MmamDim + _n2ir C1r
m r

+n3p Ini; + en = B1 X1 + en 4

In Eq. (4), the B}, values are reduced-form coefficients
that derive from the production functions and price
proxies, X, is a vector of parcel-specific geophysical
and socioeconomic characteristics and &y, is a stochas-
tic error term. Parcel / is devoted to land use m if
Ryt > Rur, Yh # m.

What we observe are the actual land use choices
rather than the R values. This situation is similar to the
discrete choice problem, where maximization of (un-
observed) utility leads to an observed choice among
discrete alternatives. We can reformulate this problem
as finding the probability of choosing land use k at
location [:

Pr[choice m] = Pr[ln R,;;7 > In Ry7],

where i € {1, ..., N} afinite set of available choices,
and A # m.

4 Note that this form assumes that the price proxies for all inputs
(Ckny) are the same. This assumption does not mean the effect of
a change in access cost is the same for all land uses. See Greene
(2000) for a theoretical explanation and Nelson and Hellerstein
(1997) for an example. This assumption seems reasonable for bulk
commodities that are transported in similar size lots, for example
in trucks or barges. It is probably less correct if the commodities
produced range in variety.

5 Note that it is possible to have distance be to more than
one market. For example, Nelson and Hellerstein (1997) have
multiple destinations—nearest village, nearest town, and nearest
large population center.

Substituting from Eq. (4) leads to

Pr[choice h] = Prlep — ey < (B, — B1) X1, ..., em
—ent < (Br — Bn) X1l

The choice of estimation techniques depends upon the

distribution of the error term. If it is extreme value and

the errors are uncorrelated across land uses, McFadden
(1973) has shown that

eBnXi

7
Zfll\/':l eﬂh X

)

Pr(choice m) =

This is the standard multinomial logit regression.

If we assume instead that the errors are distributed
normally, we have the multinomial probit (MNP)
model. This does not have the irrelevance of inde-
pendent alternatives (IIA) problem of the logit model
(it allows an unrestricted covariance structure), but
the maximum likelihood estimation of the B values
is computationally challenging for more than four
choices.®

In estimation, the X vector consists of three sets
of explanatory variables: G, site-specific geophysical
variables (soil quality, rainfall amounts, slope, eleva-
tion, etc.); D, cost-of-access, property rights, and other
socioeconomic variables; and S, spatial effects geo-
physical variables (discussed later). To avoid identifi-
cation, the B, values for land use O are set to zero (this
is usually done by the estimating software). The re-
maining Bj values can be interpreted as the marginal
effects of right-hand side variables on the In of the ra-
tio of the probability of a land use choice to the zeroth
land use. More generally,’

0 In(Pr; /Pr;) _

3X, B —B;. (6)

6 A relatively new estimation approach, called random param-
eters logit, allows the B; values to be functions of different ex-
ogenous variables and with varying error structures. Its developers
state that the various permutations of logit and probit are nested
within this technique (see, for example, McFadden and Train,
2000). However, there is no guidance as to the appropriate exoge-
nous variables and error structures. See Nelson et al. (2003) for
an example of its use.

7 One must interpret this effect carefully. An increase in the
probability of a land use relative to the base land use (or any
other for that matter) may have no significance on its likelihood
of being “chosen” when compared to other possible land uses.
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We use the estimated B, values to generate probabil-
ity predictions for each land use at every location in
the area under investigation. For example, with five
land use choices, we might find the following land use
probabilities at a location: forest type A, 72%; for-
est type B, 18%; agriculture, 3%; pasture, 6%; urban
areas, 1%. The sum of probabilities for all five cate-
gories is 100%.

2.1. Assessing predictive power

With a continuous left-hand side variable, we typi-
cally assess overall predictive power with an adjusted
R? measure and contributions of a right-hand side
variable with coefficient-specific standard errors. For
limited dependent variable models, both of these mea-
sures have problems. Since y does not exist, standard
measures based on € = y — y are not possible.

A number of pseudo R?> measures have been pro-
posed (see Maddala, 1983). The most common mea-
sure currently used is (1 — InL)/In L*, where L is
the likelihood function value for the full model and
L* is the value with only constants on the right-hand
side. Greene (2000) points out that this should not be
interpreted in the same way as the regular R?, i.e. a
continuous function that is correlated with predictive
power.

A standard approach to assessing predictive power
for individual observations is based on the predicted
probabilities of land use. Probability values range from
0to 100% for each land use at each location. Typically,
these probability values are converted to a point pre-
diction by assigning a location to the land use category
with the highest probability. This approach assigns a
land use to all locations, but does not distinguish be-
tween ‘strong’ and ‘weak’ predictions. For example,
with five land use categories, the largest probability
value can range from 99 to 20.1%. Chomitz and Gray
(1996) propose an alternate approach that involves as-
signing a location to a “natural” land use only if its
predicted probability is higher than the actual ratio of
that land use to total land area. This approach leaves
some locations unassigned. Geoghegan et al. (2001)
use another approach that keeps predicted and actual
areas the same but allows predicted location to vary.
The assignment algorithm allocates locations to the
highest probability observations until the actual num-
ber has been exhausted.

Once predictions have been made, the most fre-
quently used method of assessing the predictive power
is to calculate a “prediction matrix” comparing ac-
tual and predicted categories. The matrix rows typi-
cally show the number of locations actually in a given
category; its columns show the number of locations
predicted to be in a given category, where the pre-
dicted land use is the one with the highest probabil-
ity. Diagonal elements are correct predictions.? Two
types of category-specific ratios can be used to assess
the predictive power—number of correctly predicted
pixels to number of actual pixels and number of cor-
rectly predicted pixels to total predicted pixels. It is
quite common to find substantial differences in the ra-
tio values across categories, suggesting differences in
predictive power of the right-hand side variables for
different land uses. One area of future research is to
explore the use of exogenous variables for selected
categories only.

The prediction matrix gives no information on the
spatial accuracy of the prediction. One approach to
this issue is to plot all locations where the predicted
and actual land uses differ. Another approach is to use
the probability values directly. Two related graphical
measures of predictive power are presented in Nelson
et al. (2001). The first maps the maximum probability
value, Prpmax, at every location. This map gives a spatial
representation of the power of the prediction but does
not convey any information about prediction accuracy.
The second measure maps Prgiff = Prmax — Practual
(the probability value for the actual land use). If the
category with the highest probability value is also the
actual category, Prgiee = 0. Otherwise 0 < Prgir < 1.
A recent paper in the remote sensing literature with
some potential in this area is Pontius (2000). He uses
the kappa statistic

PO_PC

K= ———

P,— P

where P, is the observed proportion correct, P is
the expected proportion correct due to chance, and
Py, is the proportion correct with perfect classification

8 The prediction matrix is like a “confusion matrix” in the
remote sensing literature that compares categories identified by a
classification scheme to categories identified by ground observation
(Richards, 1993).
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to develop measures for overall and location-specific
predictive power.

2.2. Theory issues

The theoretical approach described above, and the
estimations based on it, can provide powerful results
but requires strong simplifying assumptions. The lit-
erature on household models (the classic reference
is Singh et al., 1986) has clearly demonstrated that
household utility maximization and profit maximiza-
tion are the same only when markets function per-
fectly, there are no transactions costs, and production
can adequately be characterized without regard to tem-
poral effects.® For example, the behavior of farmers
concerning subsistence crops versus market-oriented
crops can differ because of risk aversion or transac-
tion costs. In addition, the decision to enter the mar-
ket is itself an endogenous choice, leading to possible
sample selection bias (Vance and Geoghegan, 2003).
Also, as many farmers grow a number of different
crops, a portfolio choice model might be an appropri-
ate approach for modeling the entire suite of land use
choices.

Since much of this literature is concerned with
deforestation, the temporal dimension has received
increasing attention. While annual crops can be ad-
equately analyzed using cross-section data, many
forestry land uses require multiple years to generate
an output. In addition, swidden land uses shift from
agriculture to forest and back, potentially confounding
any analysis based on a single cross-section (Dvorak,
1992). Once a temporal component is added to pro-
duction, decision-making under uncertainty becomes
even more of an issue. One approach taken in the lit-
erature is to convert the dynamic problem to a static
problem. For example, Deininger and Minten (1999),
Cropper et al. (1999), and Geoghegan et al. (2001) use
land use information from two time periods, identify
locations where deforestation has taken place and ex-
plain deforestation with a set of exogenous right-hand
side variables. Mertens and Lambin (2000) identify
and explain land cover change trajectories. For ex-
ample, with two land uses (agriculture and forest)

9 We would like to thank an anonymous reviewer for empha-
sizing the relevance of the household literature to this area of
research.

and three periods, there are eight possible trajectories
(aaa, aff, afa, aaf, fff, faa, ffa, faf, ffa). Clearly, this
approach is not robust. As more land uses or periods
are added the number of trajectories expands rapidly.
Yet, another approach uses a survival or hazard model
methodology, where the linkage through time of the
observations is explicitly modelled (see Vance and
Geoghegan, 2002 for an implementation example and
Bell and Irwin, 2002 for a discussion of the approach).

Second, land use choice may be affected by
neighbouring parcels, through spatial externalities or
spatial interactions. For example, by incorporating
spatially-explicit ecological interdependencies in a
forestry management model, Swallow et al. (1997)
show that the optimal forestry management scheme
can differ substantially from using a non-spatial mod-
eling approach, including different harvesting periods
for the different stands and amounts of the total ben-
efits of recreation and forage availability to wildlife.
In the urban land use change literature, Irwin and
Bockstael (1996) show that a sub-optimal pattern of
land uses can occur when individual landowners do
not take into account the negative spatial external-
ities associated with suburbanization. The paper by
Anselin in this issue presents the spatial econometric
issues in more detail.

Third, the tabula rasa assumption is not appropri-
ate in important situations. Conversion from one land
use to another is seldom costless and may be essen-
tially infinite in the case of land uses that are infeasible
on a particular parcel (for example, producing paddy
rice on a steeply sloping hillside). If there are conver-
sion costs, then there are likely thresholds in land use
conversion, so that a larger divergence in the relative
prices of two crops is necessary to induce a switch
from one crop to another. In addition, the costs are not
necessarily symmetric. Conversion from a tree crop
to an annual field crop may entail a relatively small
cost, but growing new trees can take several years of
foregone revenue. Finally, the returns from a partic-
ular land use can depend upon the entire history of
land uses for the parcel, due to soil quality changes
and pest problems.

Fourth, this literature has not dealt systematically
with the issue of market structure, in large part be-
cause location-specific data on prices have been
difficult to obtain. The basic assumption of most re-
search is that distance or cost of access measures are
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acceptable proxies for input and output prices. Once
data on actual prices are available, modeling issues
including identifying the relevant market, transport
costs, and the possibility of price endogeneity.

Finally, any econometric estimation can only cap-
ture existing land uses. If the issue at hand is the intro-
duction of a new land use (say, growing a citrus crop
for export), it is impossible to estimate coefficients of
the effect of right-hand side variables on the probabil-
ity of that land use.

2.3. Spatial effects and limited dependent variable
analysis

The Anselin paper on spatial econometric topics in
this issue (Anselin, 2002) describes the potential for
bias and inefficiency if spatial effects are not accounted
for. Most of the research in this area is for datasets
with continuous right-hand side variables. However,
the consequences for limited dependent variable anal-
ysis, such as land use, are similar. While inefficiency
is not usually a problem because of the large datasets
typically used, bias in parameter estimates because of
spatial autocorrelation is a potential problem. The the-
ory of identifying and correcting for these issues with
limited dependent variables is in its infancy. For an
examination of these issues see Fleming (in press) and
the Anselin paper. '

Some authors have combined a regular sampling
procedure suggested by Besag (1974) with a simple
spatial lag variable included on the right-hand side.
The Besag approach is to include only observations
separated by sufficient distance in space that the au-
toregressive effect is absent. Spatial lag variables have
included the latitude and longitude values, and average
vegetative and soil quality indices in the surrounding
locations (e.g. Nelson and Hellerstein, 1997; Nelson
et al., 2001, 2003).

Any test for spatial effects requires a measure of
errors in prediction with known statistical properties.
A recent paper by Kelejian and Prucha (2001) pro-
poses a pseudo-error measure for limited dependent
variable estimation, similar to the Moran’s I-statistic,
derive its statistical properties and develop a mea-
sure of spatial correlation. See Munroe et al. (this
issue) for an example of how this statistic can be used
to assess the value of the ad hoc methods for cor-
recting for spatial autocorrelation mentioned above

and De Pinto and Nelson (in press) for more de-
tails on use of the statistic to test ad-hoc correction
approaches.

2.4. Answering interesting questions

To be of use to policy makers and researchers
asking land use questions, this type of analysis
must be amenable to simulation of alternatives of
policy-relevant variables. With estimates of the B
values, we can simulate the effect of changes in any
of the existing right-hand side variables. The basic
approach is to replace the right-hand side variables
with new values that reflect a policy or infrastruc-
ture change, and recalculate the probabilities and
predictions. Comparisons of the old and new land
use values indicate where and by how much the ex-
ogenous change affects land use. Comparisons can
be made using transition matrices!’ and land use
change maps. Examples of questions to which this
simulation approach has been used include how and
where does a new road affect land use (static analysis)
and deforestation (dynamic analysis), and how and
where do changes in property rights regimes affect
land use? We present selected examples at the end
of this paper and the papers included in this issue
provide more.

3. An introduction to remotely-sensed data

For the researcher new to the area of spatially-
explicit land use modeling, we provide a brief intro-
duction to data concepts and sources. Spatially refer-
enced data on land use/cover are needed to estimate
the coefficients in the models described above. For
locations that are remote or in developing countries,
spatially-explicit data collected on the ground are hard
to obtain. An alternative that has become increas-
ingly available is remotely-sensed data. This section
discusses the basics of how remotely-sensed data are

10 A transition matrix has one state of nature (e.g. existing land
use) along the vertical and a second state of nature along the
horizontal (e.g. land use without a reserve). A matrix cell contains
the number of members common to both the first and second
state. For example, if 9km? of forest in 1987 were converted to
agriculture in 1997, the intersection of the 1987 forest column
with the 1997 agriculture row would be nine.
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collected, highlights different kinds of remotely-sensed
data and provides an overview of how these data can
be converted into information about vegetative cover
and land use.

3.1. Satellites and sensors

Remotely-sensed data include information gathered
digitally by aerial photography and satellites.!! Solar
radiation is reflected from the surface of the earth—
from soil, water, vegetation and building—to sensors
that measure the intensity of different frequencies.
Each type of surface reflects or absorbs different fre-
quencies. Hence by a judicious choice of sensor type
it is possible to make inferences about what is on the
surface of the earth.

3.2. Remotely-sensed data source issues

Fig. 1 illustrates the basics of how a satellite cap-
tures information and what the data choices are. Earth
observing satellites (as opposed to geosynchronous
telecommunications satellites) orbit the earth at a low
altitude. The height of the orbit and its inclination de-
termine how often and at what time of day the satel-
lite passes over the same location. The height plus
the resolving power and field of view of the sensors
determine the width of the swath of the surface ob-
served and how much of the surface is captured by a
single sensor. Satellites have been developed that al-
low resolutions from 1 km (NOAA) to 0.65 m (Quick-
bird) (and probably smaller for spy satellites). Repeat
rates (how often a location is visited) range from ev-
ery few hours to 16 or more days. The number of fre-
quency values collected range from 4 (MSS) to 100s
(ASTER/MODIS).

It is useful to describe the characteristics of the
MSS sensor, carried on the early Landsat satellites,

1 For an excellent on-line introduction to satellite data, see
the NASA web site at: http:/rst.gsfc.nasa.gov/. For a historical
overview of satellite data collection, see Morain (1998). For fur-
ther detail on the technicalities of the processes involved with
developing satellite data, see Mather (1999). For an overview of
different approaches to using satellite data to develop land cover
maps, see DeFries and Belward (2000). Finally, for sources of
satellite data for social science applications beyond those presented
in this paper, see Chen (1998).

in more detail because it illustrates many of the is-
sues in collecting and using remotely-sensed data.!?
This sensor has an array of six detectors that measure
the intensity of light in each of four frequency ranges
or bands, from 0.5 to 1.1 wm. For example, band 1
records frequencies of 0.5-0.6 wm (green light) that is
reflected by chlorophyll. Band 2 records frequencies
of 0.6-0.7 wm (yellow/red light). These frequencies
are reflected by chlorophyll. The Landsat satellites op-
erate in a sun-synchronous, near-polar orbit imaging
the same 185km (115 miles) ground swath every 16
days (formerly 18 days on Landsats 1-3).

MSS band 1 can be used to detect green reflectance
from healthy vegetation, while MSS band 2 is de-
signed for detecting chlorophyll absorption in vegeta-
tion. MSS bands 3 and 4 are ideal for recording near
infrared reflectance peaks in healthy green vegetation
and for detecting water—land interfaces.

MSS bands 4, 2, and 1 can be combined to make
color images (called false-color), where band 4 con-
trols the amount of red in the image, band 2 the
amount of green, and band 1 the amount of blue in the
composite. This band combination makes vegetation
appear as shades of red with brighter reds indicating
more vigorously growing vegetation. Soils with no
or sparse vegetation will range from white (sands)
to greens or browns, depending on moisture and or-
ganic matter content. Water bodies appear blue. Deep,
clear water appears dark blue to black in color, while
sediment-laden or shallow waters appear lighter in
color. Urban areas appear blue—gray in color. Clouds
and snow appear as bright white; they are usually dis-
tinguishable from each other by the shadows associ-
ated with the clouds. To see an example of a false-color
composite MSS image of Boston harbor, visit
http://edcwww.cr.usgs.gov/glis/graphics/guide/landsat
/bostonmss. gif.

Two types of satellite images from sensors on the
Landsat satellites are widely available and inexpensive
(free to US$ 600)—MSS and TM images. AVHRR
images are from the weather satellites operated by
NOAA. Other sources such as Spot, Space Imaging,
and Digital Globe are proprietary and more expensive,

12 The MSS discussion is derived from the EROS Data Cen-
ter web site, http://edcwww.cr.usgs.gov/Webglis/glisbin/guide.pl/
glis/hyper/guide/landsat.
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MSS Scanning Arrangement
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Fig. 1. How satellites collect information. Source: EROS data center web site.

but can be purchased with high-quality processing that
can significantly accelerate analysis (Table 1).13

3.3. Converting reflectance data to useful information

Land uses typically cause distinctive patterns of
land cover. Each land cover type has different spectral
characteristics, absorbing some frequencies of light
and reflecting others. With an understanding of the
reflectance characteristics and some ground observa-
tions it is possible to use remotely-sensed data to make

13 More information on image availability, characteristics, and
prices can be found at the following web sites: http:/fedcwww.
cr.usgs.gov/, http://www.spaceimaging.com/, http://edcdaac.usgs.

gov/landsat7/,  http://edcimswww.cr.usgs.gov/pub/imswelcome/,
http://www.geocover.com/,  http://www.landsat4u.com/Merchant/
index.html, http://members.aol.com/landsatcd/ MOREHTML/

shuttle.html, http://www.nasm.edu/ceps/homepage.html, http://eol.
jsc.nasa.gov/sseop/, http://www.spot.com/ and http://www.rsi.ca/.

inferences about the type of land cover (and with some
additional uncertainty land use).

There are two common ways in which this is
done for agriculture and related natural resource
questions—vegetative indices and land use cluster-
ing/classification techniques.

3.3.1. Vegetative indices

While there are many ways to combine differ-
ent spectra to take advantage of the ways in which
vegetation absorbs and reflects solar radiation, the
most common is the normalized difference vege-
tative index (NDVI) that uses MSS (or equivalent)
bands 2 (0.58-0.68 wm) and 4 (0.725-1.1 wm). The
NDVI has a potential range from —1 to 1 but the
typical range is between about —0.1 (a not very
green area) and 0.6 (for a very green area). In most
cases, NDVI is correlated with photosynthesis. Be-
cause photosynthesis occurs in the green parts of
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Table 1
Selected satellites and their characteristics

Satellite/sensor Repeat rate Area of image Pixel Frequencies Dates available
dimension
Landsat/MSS 16-18 days 150km x 150km 80m 4—green, red, infrared Early 1970s—early 1990s
Landsat/TM 16-18 days 150km x 150km 30/15m 7—blue, green, red, 1 Mid 1970s-today
near infrared, 2 mid
infrared, 1 thermal
AVHRR Two times 800km x 800km 1.1km 4/5—green, red, Mid 1970s-today
per day infrared, lower
frequencies
IKONOS (Space Imaging) 1-3 days Variable 1-4m Same as MSS 2000-today
Quickbird (Digital Globe) 1-3 days 16km x 16km 0.6m 4—blue, green, red, 2002-today
near infrared
SPOT (Spot Image) 3-6 days 60km x 60km 10-20m 3—green, red, 1986-today

near-infrared

Note: For more details on the types of satellites, see http://atlas.esrin.esa.it:8000/lib/fag-1.html.

plant material the NDVI is normally used to esti-
mate green vegetation. However, a variety of com-
plications make the NDVI and other vegetative
indices at best imperfect estimates of the amount of
vegetation:

B4[’j - Bzi,j

@)
B4; j + B2; ;

NDV]; ; =
where Bn; ; is the intensity value of MSS band » at
relative points i and j.

3.3.2. Clustering/classification techniques

A land use category is a qualitative label given
to areas with similar operational characteristics (e.g.
forest, agriculture). There are often (but not always)
discontinuities in the characteristics of reflected light
as the field of view moves across different land
uses. Clustering techniques operate by assuming that
pixels with similar spectral characteristics have the
same land use. Two general approaches are used—
unsupervised and supervised classification. With un-
supervised classification, only spectral information
is used in the analysis (no field observations are
used). One or more algorithms are used to find lo-
cations with similar spectral (and sometimes other)
characteristics. One example is the histogram peak
approach (Fig. 2).

A more widely used set of algorithms involves dis-
tance measures. The general approach is to start with
an initial sample, choose clusters so within-cluster

distance is minimized and across-cluster distance is
maximize, then assume a normal distribution and use
a maximum likelihood estimator to assign remaining
pixels to clusters (Fig. 3).

Supervised classification involves the use of
ground-control points, called ground-truth, where
the true land cover is identified. These locations are
then used to guide the classification process, say by
identifying all locations whose combinations of char-
acteristics are within a certain spectral distance from
those of the ground-truth points.

Cat 1 Cat 2 (Cat B Cat 4

/

0 127
Intensity

One dimensional example of histogram approach to
cluster identification peak

Fig. 2. Histogram peak approach to classification.
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Intensity Cat 1

Cat 3

Cat 4

0

127
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Fig. 3. Distance-based classification algorithms.

4. Combining (remotely-sensed) land use data
with other geographic data

4.1. GIS theory

In this section, we present a brief introduction to
some of the most important concepts in GIS theory.
The first is the difference between raster and vector
representation of space.

4.1.1. Data representation—raster and vector

Raster data record spatial information in a regular
grid. Each cell within this grid contains a number rep-
resenting a particular geographic feature, such as soil
type, elevation or slope, land use, and price of an input
or output. Raster data are commonly used to store in-
formation about geographic features that vary contin-
uously over a surface, such as elevation, reflectance,
groundwater depths. Socioeconomic variables such as
transportation cost are also sometimes stored as raster
data. Image data are a form of raster data in which
each cell (also called a pixel, short for picture ele-
ment) stores a value measuring the intensity of light of
a given frequency range arriving at a satellite or aerial
camera.

With vector data, spatial information is stored as
x, y coordinates in a rectangular (planar) coordinate
system. Point features are recorded as single x, y
locations. Line features, including the outlines of
polygons, are recorded as an ordered series of x, y

coordinates. Each vector feature (point, line, or poly-
gon) has an attribute table that describes the attributes
of the feature. Vector data are used for recording the
location of discrete geographic features with precise
locations like streets, parcel boundaries, counties, and
telephone poles.

4.1.2. Georeferencing

A second key concept is georeferencing. The earth
is a sphere (although not a perfect one) and we
typically work with data taken from the surface of
that sphere and projected into two dimensions. Map
projections are attempts to portray the surface of
the earth or a portion of the earth on a flat surface.
Some distortions always result from this process.
Some projections minimize distortions in some of
the map features at the expense of maximizing er-
rors in others. Others moderately distort all map
features.

Geodetic datum define the size and shape of the
earth and the origin and orientation of the coordinate
systems used to map the earth. A datum is a set of
parameters defining a coordinate system, and a set
of control points whose geometric relationships are
known, either through measurement or calculation.
A datum is defined by a spheroid, which approx-
imates the shape of the earth, and the spheroid’s
position relative to the center of the earth. There
are many spheroids in use, and many more datum
based upon them. A local datum aligns its spheroid
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to closely fit the earth’s surface in a particular area
and its ‘origin point’ is located on the surface of the
earth.

4.1.3. Map algebra

A third set of key map concepts is map algebra,
where manipulations of one or more spatially refer-
enced datasets create new datasets. Examples include
calculating slope from an elevation dataset; calculat-
ing travel time or transportation cost data from a fric-
tion or impedance surface (a map that gives the cost
of moving across each map element) and calculating
the distances between different locations.

4.2. Extracting data from remotely-sensed and GIS
sources

Unfortunately for economic modeling purposes,
there are few standards for data structures. Every
GIS, remote sensing, and econometric software pack-
age has its own approach to storing data. To move
data from one package to another it is necessary to
know something about file formats. To provide some
insights on how to proceed in this area, we present
a brief description of the file formats for selected
software packages.

4.2.1. Raster data formats
Raster data are unique values for locations arranged
in a regular pattern. The data representation requires
knowledge of the value at each point and the location
of one of the points. The regular structure makes it
possible to infer the location of all the other points.
Data formats include:

e byte binary—1 (8 bit) byte represents one pixel;
values from 0 to 256 (unsigned) or —127 to 127
(signed); common for satellite image data;

e two byte binary—2 (8 bit) bytes represent one pixel;
values from 0 to 32,768 if unsigned, —16,384 to
+16,384 if signed; common for digital elevation
data and newer satellite images; byte order and sign
bit vary by computer system;

e real single precision binary—4 (8 bit) bytes repre-
sent one pixel; value range infinite; used for contin-
uous variables;

e character—each byte is an ASCII character. The
value 135 would take 3 bytes.

16 (feature id)
-27943.236328 2219055.250000
-27179.146484 2219286.000000

END
26 (feature id)

-63867.117188 2217780.250000
-62606.257812 2218345.000000
-61211.492188 2219213.750000
-60352.003906 2220168.500000
-60021.976562 2220086.000000
-59469.496094 2219540.000000

END

Fig. 4. An example of Arc Info’s Ungen vector data format.

Since this type of data is often voluminous a com-
pression algorithm is typically used. Unfortunately
there are no standard approaches to compression.
Run length encoded (RLE) is a common compression
approach. Data are stored in two byte pairs. The first
byte is how many repetitions; second byte is what
is repeated. A variant on this is to include some
kind of additional information on whether a row is
compressed.

4.2.2. Vector data formats

The most easily transferable vector data are in Arc
Info’s Ungen format. All features are represented by
ASCII data describing the location of its nodes. A
point would have just one x, y pair. A line would have
two x, y pairs. A road would have multiple x, y pairs
but the first and last would not be the same. A polygon
would have the same first and last x, y pairs. In addi-
tion, each feature has a unique id value. For extensive
datasets, this Ungen format can create very large file
sizes. The price of easy transferability is an inefficient
data storage method. An alternative that is growing in
popularity is ESRI’s shape file. Although this is a bi-
nary file format, the structure has been published by
ESRI and most GIS packages can read and write data
in this format (Fig. 4).

4.3. Secondary sources of GIS data

In this section, we describe a few of the spatial
datasets with regional or world coverage that are
readily available, often via the Internet. See Bell and



212 G.C. Nelson, J. Geoghegan/Agricultural Economics 27 (2002) 201-216

Irwin (2002), for additional locations of (primarily
US) datasets useful for regional and local analysis.

4.3.1. VMap—formerly Digital Chart of the World
(DCW)

VMap, a revised version of the Digital Chart of the
World (DCW) is a 1:1,000,000 scale map based on
the operational navigation charts (ONCs) used by air-
craft pilots. It was developed by the US National Im-
agery and Mapping Agency. VMap has data on coast-
lines, international boundaries, cities, airports, eleva-
tions, roads, railroads, water features, cultural land-
marks, and much more. It is the most detailed global
database available that provides consistent treatment
of geographic information worldwide, and is the only
source of spatial data for many areas of the globe.
The database totals 1.7GB in size and comes on four
CD-ROM:s. Parts of the original DCW dataset can be
downloaded from http://www.maproom.psu.edu/dcw/.
More than 200 attributes are organized into 17 the-
matic layers with text annotation for cities, mountains,
lakes, and other geographic features.

4.3.2. FAO World Soils Map

The Digital Soil Map of the World (version
3) was released in May 1994 and version 3.5 is
now available. The database is derived from the
FAO/UNESCO Soil Map of the World at the orig-
inal scale of 1:5,000,000. The database is avail-
able on CD and can also be downloaded from
http://www.fao.org/sd/eidirect/gis/eigis000.htm.

4.3.3. FAO Africa Rainfall

Since 1988, the FAO has been operating the Africa
Real Time Environmental Monitoring Information
System (ARTEMIS, http://metart.fac.org/). The sys-
tem acquires and processes hourly estimates of rain-
fall and in near-real-time vegetation index (NDVI)
images, using Meteosat and NOAA data. The system
covers the whole of Africa and the products are pro-
duced on a ten-day and monthly basis for use in early
warning for food security and desert locust control.

4.3.4. Earthsat TM

The US National Aeronautics and Space Ad-
ministration (NASA) funded a project to acquire
TM images of the entire globe for 1990 (or the
nearest year with cloud free cover) and process

them with a standard set of protocols. These im-
ages are being transferred to the EROS Data
Center’s Earth Observing System Data Gateway at
http://edcimswww.cr.usgs.gov/pub/imswelcome/ and
can be ordered for US$ 60 per scene. A similar dataset
is being constructed for 2000.

4.3.5. TRFIC

The Tropical Rain Forest Information Center
at Michigan State University provides a valuable
archival and distribution site for public domain im-
ages. They purchase images for their own use and
make them available at reduced cost. They also store
and disseminate public domain datasets purchased by
others. The web site for data access and purchase is
http://www.bsrsi.msu.edu/trfic/index.html.

4.3.6. CIESIN

CIESIN (http://www.ciesin.org/) has links to a vari-
ety of georeferenced socioeconomic and environmen-
tal data sources. We describe two here.

China Dimensions (http://sedac.ciesin.org/china/)
has a variety of socioeconomic data, including ge-
ographic information system (GIS) databases that
cover the administrative regions of China, at a scale
of 1:1,000,000. These databases may be integrated
with agricultural, land use, environmental, and so-
cioeconomic data to track China’s economic growth,
population increases, and environmental change.

A spatial dataset describing Central American vege-
tation, land cover, and conservation status is now avail-
able for downloading via file transfer protocol (ftp) at:
ftp://ftp.ciesin.org/pub/data/conservation/PROARCA/.
The dataset was developed by Proyecto Ambiental
Regional de Centroamerica/Central America Pro-
tected Areas Systems (PROARCA/CAPAS) and is
being distributed on behalf of the Nature Conservancy
(http://www.tnc.org/). The dataset is in ArcView 3.0
format.

4.3.7. USGS national land cover data

The United States Geological Survey (http:/
landcover.usgs.gov/mrlcreg.html) is in the process
of developing a national land cover dataset from
Landsat-TM images that contain over twenty land
cover classes for each state. Currently, approxi-
mately twenty eastern states are available in the final
format, while the rest of the country is in prelim-
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inary form, as accuracy assessment has not been
completed.

4.4. Primary sources of georeferenced data

Another approach for developing spatial datasets,
albeit more expensive, is to collect primary data. There
are a few large, interdisciplinary research projects un-
derway that link spatially-explicit socio-demographic
data with satellite and other GIS data in an agricul-
tural development context. Some examples of these in-
clude case studies in Mexico (Geoghegan et al., 2001;
Vance and Geoghegan, 2002), the Amazon (Wood and
Skole, 1998; Moran and Brondizio, 1998), Thailand
(Rindfuss et al., 2001), Cameroon (Mertens et al.,
2000), Vietnam (Miiller and Zeller, this issue) and
Honduras (Munroe et al., this issue). In this approach,
enumerators interview households with a standard sur-
vey instrument to collect assorted socio-demographic
data and then these household locations and their as-
sociated agricultural plots are located in space using
global positioning systems (GPS) technology, which
gives the precise location on the earth’s surface.

5. Modeling determinants of deforestation in
developing countries, examples

In this section, we review four papers that use a
spatially-explicit modeling approach to examine issues
of land use and deforestation in developing countries.
Kaimowitz and Angelsen (1998) provide an excellent
review of deforestation models and other models of
forest use in developing countries through the mid
1980s. A recent issue of Land Economics (Vol. 77, No.
2, 2001) presents several papers on this topic as well.

5.1. Roads, land, markets and deforestation: a
spatial model of land use in Belize

This path breaking paper by Chomitz and Gray
(1996) develops the theoretical model widely used
in this literature. The model is used to identify the
determinants of forest loss in southern Belize, an area
experiencing rapid expansion of both subsistence and
commercial agriculture. The paper uses geographic
data to distinguish the effects of roads from other
determinants of forests and forest loss. One of the

challenges in this literature is how to deal with the pos-
sibility that road location is endogenous; that is, that
roads are built to access favorable areas. Chomitz and
Gray address this problem by using an instrumental
variables approach, calculating an accessibility mea-
sure as if there were no roads. A second issue is how
to deal with the potential for spatial autocorrelation.
The authors report the use of a bootstrapping proce-
dure to estimate the standard errors of the coefficients.

The authors find that market distance, land qual-
ity and tenure have strong interaction effects on the
likelihood and type of cultivation. In a region with
geophysical characteristics favorable for commercial
agriculture, a location near a market has a 34% chance
of being converted to commercial agriculture but only
a 1.4% chance of being in semi-subsistence agricul-
ture. In a different location, with geophysical variables
more favorable to semi-subsistence agriculture, a lo-
cation near a market has a 45% probability of being in
semi-subsistence agriculture but only a 5% probabil-
ity of being in commercial agriculture. As distance to
the market increases, the probability of being in either
semi-subsistence or commercial agriculture drops off,
but it drops more rapidly for commercial agriculture.

5.2. Sustainable development in Panama’s Darien
Province: modeling land use change with spatial
econometric analysis

This paper (Nelson et al., 1999) reports results
from spatial econometric analysis undertaken for a
sustainable development project preparation at the
Inter-American Development Bank. A major element
of the project is paving the Pan American highway
which runs roughly north south through the province
to a point about 70km from the Colombian bor-
der. The highway, which was originally completed
in 1983, passes near a reserve for indigenous popu-
lations, and stops just north of the Darien National
Park, a UNESCO Biosphere Reserve and World Her-
itage Site. Concerns arose that paving the road would
encourage more use of the park and bring pressure
from immigrants on the reserve.

The study used a methodology similar to that devel-
oped by Chomitz and Gray to predict land use. Then
using the estimated coefficients, the effect of paving
the road on land use was simulated by re-computing
the cost of access, and calculating new probability
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values and land use predictions. The results suggested
that, except for one type of forest (cativo) with small
area, land use would not change significantly, espe-
cially in those areas of concern. The original con-
struction of the road in 1983 led to significant reduc-
tions in access cost and therefore land use change,
especially in the northern part of the province. The
paving would have relatively little effect, especially
because the province is well served with navigable
rivers.

5.3. Predicting the location of deforestation: the role
of roads and protected areas in North Thailand

Cropper et al. (1999) examine the question of what
factors affect the location of deforestation in north-
ern Thailand. The authors use the model to predict
where deforestation is likely to occur and to exam-
ine the effects of two government policies—road
building and establishment of protected areas—on
this likelihood. By 1986, 10% of Thailand lay within
protected areas, of which 52% was in national parks
and 42% in wildlife sanctuaries. The authors use a
spatially-explicit model to assess whether official pro-
tection has reduced the probability of deforestation in
these protected areas. The authors use binary probit
(deforestation/no deforestation) (in contrast to the two
papers reviewed above which use a logit model with
multiple land use categories), which does not suffer
from the irrelevance of independent alternatives (ITA)
problem (see Greene, 2000).

Their results on the effects of roads are qualitatively
similar to those of other studies. The effect of roads
on land use is conditioned by geographic and socioe-
conomic variables. For example, steeper slopes and
higher elevations reduce the probability that a location
has been cleared. The question of endogeneity of re-
serves is dealt with by using a watershed proxy. They
find, after correcting for this endogeneity, that wildlife
sanctuaries have a much larger protective effect than
do protected areas.

The authors use their results to simulate the effect on
protected areas of increased road building. They find
that bringing a paved road 1km closer to each point
in their sample increases the number of areas with
high probability of clearing. The locations of these
points are often near points predicted to be cleared
even before the simulated road building.

5.4. Agricultural expansion and deforestation:
linking satellite and survey data in southern Mexico

Geoghegan et al. (2001) compare two separate
econometric models of deforestation in the southern
Yucatan peninsula of Mexico. This region is part of
the largest continuous expanse of tropical forests re-
maining in Central America and Mexico, and has been
identified as a “hot spot” of forest and biotic diversity
loss. Two complementary datasets, one from house-
hold survey data on agricultural practices including
information on socio-economic factors and the second
from satellite imagery linked with aggregate govern-
ment census data, are used in two econometric model-
ing approaches. The first econometric model uses the
satellite data, other spatial environmental variables,
and aggregate socioeconomic data (e.g. census data),
in a similar manner to the papers described above, us-
ing a logit model to estimate the probability that any
particular pixel in the landscape will be deforested.
The explanatory variables are also similar to previous
studies: slope, elevation, soil type, distances to road,
village, market, and nearest agricultural land use; and
variables available from the census, such as popula-
tion density, where the census data are measured at the
village level, so that all pixels in a particular village
have the same value for these variables. The results
are also similar to previous studies: the higher the
elevation, the smaller the probability of deforestation;
the further a pixel is from the road, the less likelihood
of deforestation; the closer a pixel is to a market or a
village, the greater the probability of deforestation.

The second regression uses the survey data in an
OLS model to ask questions about the amount of
deforestation (a continuous variable) associated with
each individual farmer from the household survey and
to explain these choices as a function of demographic,
market, environmental, and geographic variables. The
geophysical variables are the same as in the logit
model—elevation; slope; soil type. The other vari-
ables come from the survey work and include distance
from house to agricultural plot; distance from plot to
major road; road distance to nearest major market;
measures of household human and physical capital;
and household population. The estimated coefficients
for the geophysical variables, as well as the household
population and human capital measures, are statis-
tically significant and the same sign as in the logit
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model. However, none of the location variables are
statistically significant in this model. One tentative
conclusion of the paper is that while location affects
the overall probability of deforestation, it does not
appear to explain the total amount of deforestation on
a given location by an individual farmer.

6. Conclusions

Analysis of land use and land use change in de-
veloping countries is difficult to imagine without the
use of georeferenced data. The only way to make
location-specific predictions is with spatial data. In ad-
dition, remotely-sensed, georeferenced data are often
the only information available about an area of interest,
or are much less expensive than relying exclusively on
primary data collection. Combining remotely-sensed
data with selected primary data collection has great
promise for addressing many of the questions raised
in Section 2.2.

Working with spatial data in economic analysis also
provides novel challenges. The volume of data is often
much larger than that found in most economic anal-
yses. Instead of potential observations in the 100s or
1000s, the number might be in the millions. For these
larger datasets the modeling challenges grow. The data
are seldom available in a form that is convenient for
analysis so unfamiliar data processing techniques must
be learned or the services of the relevant expert found.
Econometric analyses that take seconds or minutes for
small datasets take hours for extremely large file sizes.
Moving data between GIS software and econometric
software requires special attention be paid to file struc-
tures. Finally, as indicated in the Anselin paper in this
issue, the development of formal theory for dealing
with spatial dependencies with a limited dependent
variable such as land use and its implementation in
software packages is still in its infancy.

Finally, these techniques make it possible to per-
form simulations of the consequences of a variety of
policy changes—from infrastructure investments such
as roads and harbors to agricultural price and macroe-
conomic policies that affect relative prices facing
land use decision makers. With such simulations it is
possible to pinpoint the location of expected changes,
desirable and undesirable, reducing the cost of mitiga-
tion efforts. It is this ability to make location-specific

simulations, still in its early stages, that has perhaps
the most potential for relevance to a wide range of
policy makers.
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