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Abstract 

We conduct tests for the presence of low-dimensional chaotic structure in the futures prices of four important agricultural 
commodities. Though there is strong evidence of non-linear dependence, the evidence suggests that there is no long-lasting 
chaotic structure. The dimension estimates for the commodity futures series are generally much higher than would be for low 
dimension chaotic series. Our test results indicate that autoregressive conditional heteroskedasticity (ARCH)-type processes, 
with controls for seasonality and contract-maturity effects, explain much of the non-linearity in the data. We make a case that 
employing seasonally adjusted price series is important in obtaining robust results via some of the existing tests for chaotic 
structure. Finally, maximum likelihood methodologies, that are robust to the non-linear dynamics, lend strong support to the 
Samuelson hypothesis of maturity effects in futures price changes. 
© 2002 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

It is well documented that a variety of deterministic 
non-linear relationships can produce highly complex 
time paths capable of passing most standard tests of 
randomness (see Brock, 1986, for a survey). Such 
random-looking but deterministic series have been 
dubbed 'chaotic' or 'strange' in the literature (e.g. 
Devaney, 1986; Guckenheimer and Holmes, 1986). 
Chaotic dynamics may explain a richer array of time 
series behaviour. For instance, sudden/large move
ments in commodity prices, exchange rates, equity 
prices and other financial or economic time series 
will not be properly captured by linear, or even most 
non-linear models, while chaotic models may be 
suitable in explaining such behaviour. Direct appli
cation of chaotic structures to economic theory has 

* Corresponding author. Tel.: +1-503-283-7465; 
fax: + 1-503-978-8041. 
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been initiated only in the last 20 years (Stutzer, 1980; 
Benhabib and Day, 1981, 1982), with researchers 
such as Brock and Sayers (1988) employing relatively 
new techniques to test the null hypothesis of chaos in 
a number of macroeconomic series (such as the US 
unemployment rate).l The evidence of chaos in eco
nomic time series such as GNP and unemployment 
has thus far been weak (Brock and Sayers, 1988). 

On the other hand, the few studies on commodity 
price structure have generally found evidence con
sistent with low dimension chaos: Lichtenberg and 
Ujihara (1988) apply a non-linear cobweb model to 
US crude oil prices; Frank and Stengos (1989) es
timate the correlation dimension and Kolmogorov 
entropy for gold and silver spot prices; Blank (1991) 
estimates the Lyapunov exponent for soybean futures; 
DeCoster et al. (1992) apply correlation dimension to 

1 For a more complete review of the applications of chaos to 
economic theory, see Baumol and Benhabib (1989). 

0169-5150/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. 
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daily sugar, silver, copper and coffee futures prices; 
Yang and Brorsen (1993) employ correlation dimen
sion and the Brock, Dechert and Scheinkman (BDS) 
test on several futures markets, including soybean, 
corn and wheat. 

Such evidence in favour of chaos in agricultural 
commodity markets is noteworthy. First, the search 
for predictable patterns in commodity markets is of 
obvious importance to farm policy. Given that many 
disparate domestic and international factors affect 
commodity prices, and that information on such fac
tors is sadly lacking, the accurate structural modelling 
of such variables could be considered impossible. The 
evidence on chaos offers some scope for modelling 
price behaviour by simply employing the time se
ries of prices, which are now readily available-even 
on an hourly basis. Furthermore, it has long been 
speculated that trading strategies based on technical 
analysis will be more successful if the time series 
are non-linear or even chaotic (Bohan, 1981; Brush, 
1986; Pruitt and White, 1988, 1989; Clyde and Osler, 
1997). Similarly, many studies demonstrate that com
mon technical rules, inherently non-linear in nature, 
produce superior outcomes relative to trading rules 
based on linear models (LaBaron, 1991; Brocket al., 
1992; Taylor, 1994; Blume et al., 1994; Chang and 
Osler, 1995). Clyde and Osler (1997) make a more di
rect link between chaotic systems and the viability of 
technical trading. They demonstrate that well-known 
technical patterns in prices (e.g. head-over-shoulder) 
will be more useful in short-term trading strategies 
when the underlying price series are chaotic. 

Why do commodity prices exhibit stronger evi
dence of chaos? Baumol and Benhabib (1989) have 
suggested that disaggregated variables, such as com
modity prices or production levels, that are inherently 
subject to resource constraints are generally better 
candidates for chaotic structure. Evidence of chaos 
in commodity prices may, in this case, explain why 
commodity markets, more than others, continue to 
attract large numbers of technical traders. However, 
do alternate explanations exist for the differences in 
the evidence across commodity prices and aggre
gated economic time series? The prior studies on the 
structure of commodity prices were conducted with 
fairly coarse tests for chaos and/or suffered from 
short data spans. In addition, most of these studies 
have also failed to control for seasonal variations in 

commodity prices. This failure may be especially 
important given the evidence that seasonality and 
non-linearity may be closely related. For instance, 
Deaton and Laroque (1992) demonstrate that com
modity prices spend long periods in the 'doldrums', 
showing little movement but high autocorrelation, but 
frequently break out in violent fashion. The authors 
suggest that the standard rational-expectations model 
for commodity prices is capable of explaining such 
behaviour. Importantly, the authors suggest that the 
non-linearity in price patterns is related to the in
herently seasonal inventory changes. Chambers and 
Bailey (1996) also show that 'periodic disturbances' 
in commodity prices (namely harvest-related shocks) 
can exist in rational-expectations equilibria. Their 
study further highlights the potential of (and the the
oretical grounds for) incorporating controls for such 
shocks to enhance the capacity of models to account 
for observed fluctuations in commodity prices. 

In this paper, we provide new evidence on the struc
ture of commodity prices. We examine the non-linear 
dynamics and their explanations for four important 
commodity contracts: soybean, corn, wheat and cot
ton from the late 1960s to the mid-1990s. Testing for 
chaotic structure in commodity prices is a meaning
ful exercise for several reasons. Chaos would imply 
that while prices are deterministic, long-range predic
tion based on technical or statistical forecasting tech
niques becomes treacherous, as initial measurement 
errors will multiply exponentially.2 We address this 
issue in greater detail in the next section. 

The four commodities selected for this research 
play a dominant role in the US agriculture sector. The 
US is by far the world's largest producer of com and 
soybean. Corn is the leading US crop in terms of dollar 
value and acreage under cultivation, and roughly 20% 
of US production is exported. The US is the fourth 
largest producer of wheat and the second largest pro
ducer and consumer of cotton, behind China, and the 
largest cotton exporter (for further details, see Foreign 
Agriculture Service (FAS) and the National Agricul
tural Statistical Service (NASS) of the US Department 

2 Definitions of 'chaos' structure are often based on the mag
nification of initial measurement errors. For instance, a popular 
definition requires that the largest Lyapunov exponent be posi
tive (e.g. Brock et al., 1993), where the Lyapunov exponent is a 
measure of the speed of multiplication in forecast errors of initial 
measurement error. 
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of Agriculture). The prices of these commodities are 
subject to a great deal of seasonality. Generally, prices 
rise from the harvest lows to late spring, reflecting 
carrying costs and dwindling supplies. Of course, 
prices are also affected by weather patterns, the avail
ability of substitute grains and products, and export 
demand-which may depend on factors varying from 
foreign production to the size of foreign livestock 
herds. 

Our paper is distinguishable from the previous 
studies on chaos in commodity futures markets in 
that: (i) relatively long price histories are examined;3 

(ii) unlike prior papers, the data are subject to adjust
ments for seasonalities and maturity effects that may 
otherwise lead to an erroneous conclusion of deter
ministic structure; (iii) a wide range of autoregressive 
conditional heteroskedasticity (ARCH)-type models 
are considered as explanations for the non-linearities; 
(iv) alternate statistical techniques are employed to 
test the null hypothesis of chaotic structure. Like 
most prior studies, we present strong evidence that 
commodity futures prices display non-linear depen
dencies. Unlike these earlier studies, however, we find 
evidence that is clearly inconsistent with long-lasting 
chaotic structure. This difference may be attributed 
to differences in sample size and methodology. We 
make a case that employing seasonally adjusted price 
series may be critical to obtaining robust results with 
the existing tests for chaotic structure. We identify 
some commonly known ARCH-type processes that 
satisfactorily explain the non-linearities in the data. 
The exponential GARCH model of Nelson (1991) 
is found to generally perform the best in account
ing for the non-linear dynamics in the commodities 
analysed. 

The next section motivates the tests for chaos and 
further discusses the implications of chaotic struc
ture in commodity prices. Simulated chaotic data is 
employed to highlight some important properties of 
chaos. Section 3 describes the procedures employed 
to test the null hypothesis of chaos. Section 4 presents 

3 Yang and Brorsen (1993) examine the non-linear dynamics 
in daily futures prices for various commodity futures over the 
1979-1988 interval. Blank (1991) examines only 2 years of data 
for soybean futures (the November 1986 contract). DeCoster et al. 
( 1992) cover an interval more comparable to ours, from October 
1972 to March 1989, for silver, copper, sugar and coffee contracts. 

the test results for the five commodities. Section 5 
closes with a summary of the results. 

2. Chaos: concepts and implications for 
commodity markets 

Since the concepts of chaos are well developed in 
the literature, our descriptions are brief relative to 
some papers that we refer to here. There are sev
eral definitions of chaos in use. A definition similar 
to the following is commonly found in the literature 
(Devaney, 1986; Brock, 1986; Deneckere and Pelikan, 
1986; Brock and Dechert, 1988; Brock and Sayers, 
1988; Brocket al., 1993): the series a1 has a chaotic 
explanation if there exists a system (h, F, xo) where 
a1 = h(x1), x 1 + 1 = F(x1), xo is the initial condition 
at t = 0, and where h maps the n-dimensional phase 
space, Rn to R 1 and F maps Rn toRn. It is also required 
that all trajectories, Xr. lie on an attractor, A, and that 
nearby trajectories diverge so that the system never 
reaches an equilibrium or even exactly repeats its path. 

The above definition restated: the time series a1 

(e.g. daily returns for cotton futures) is said to have 
a chaotic explanation if there is some state vector x1 

that evolves deterministically, x 1 + 1 = F(x1), and 
there is some function h(x) so that a1 = h(x1) for all 
t. If one knew (h, F) and could measure x1 without er
ror, one could forecast Xt+i and, thus, at+i perfectly. 
In this respect, chaos is the opposite of the process 
that is instantaneously unpredictable. With respect 
to the divergence property and attractor, A: in order 
that F generates random-looking behaviour (which 
is deterministic), nearby trajectories must diverge 
exponentially. Moreover, in order that F generates 
deterministic behaviour, locally diverging trajectories 
must eventually fold back on themselves. The attrac
tor A may be thought of as a subset of the phase 
space towards which sufficiently close trajectories are 
asymptotically attracted (Brock and Sayers, 1988). 

Chaotic time paths will have the following proper
ties that should be of special interest to commodity 
market observers:4 (i) the universality of cettain 
routes (such as the period doubling of trajectories) 
that are independent of the details of the map; (ii) 

4 See Brock et a!. (1993) for a more complete description of 
the properties. 
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time paths that are extremely sensitive to microscopic 
changes in initial conditions, this property is often 
termed sensitive dependence upon initial condition or 
SDIC;5 (iii) time series that appear stochastic even 
though they are generated by deterministic systems, 
i.e. the empirical spectrum and autocovariance func
tions of chaotic series are the same as those generated 
by random variables, implying that chaotic series will 
not be identified as such by most standard techniques 
(such as spectral analysis or autocovariance functions). 

The above properties of chaos are probably better 
appreciated in the framework of a chaotic function. 
Here, we briefly illustrate some of these properties 
in the framework of the logistic equation, a function 
commonly employed to demonstrate the chaos phe
nomenon (Baumol and Benhabib, 1989; Hsieh, 1991). 
Consider the non-linear equation (logistic function) 
with a single parameter, w: 

(1) 

Fig. 1 graphs the relationship (x1 + 1, x1) for w = 
3.750, xo = 0.10.6 It is apparent that the (xr+l, x1) os
cillations form a distinctive phase diagram (the bound
ing parabolic curve). As the oscillations expand, they 
encounter and bounce off the phase curve, moving 
closer to an apparent equilibrium on the negative slope 
of the phase curve. However, the convergence towards 
any equilibrium in that vicinity can only be tempo
rary, since the slope of the phase curve (Bx1+r!Bx1 = 
w ( 1 - 2x1)) is less than -1. Fig. 1 also illustrates the 
property of period doubling of trajectories in chaotic 
systems and demonstrates the concept of low dimen
sion: the chaotic map of Xt+l against x1 gives us a 
series of points in the phase curve. Even in the limit, 
these points would only form a one-dimensional set
a curve. If the x1 + 1 and x1 relationship was random, the 
points would be scattered about the two-dimensional 
phase space. 

5 This property follows from the requirement that local trajec
tories must diverge; if they were to converge, the system would 
be stable to disturbance and non-chaotic. 

6 The selection of w > 3 was not arbitrary. At w < 3, the series 
would converge to a single value. At w = 3, the series fluctuates 
between two values (or equilibria). The number of solutions con
tinues to double (not infinitely) as w is increased beyond 3, pro
ducing a time path that is oscillatory (see Baumol and Benhabib, 
1989). 

To illustrate the important property of SDIC, we 
graph in Figs. 2 and 3 the time paths (x1 , t = 1, ... , 60) 
for the logistic equation with w = 3.750, xo = 0.10, 
and w = 3.750, xo = 0.103, respectively. It is im
mediately apparent that the logistic equation has pro
duced fairly complex time paths. Note that a change 
(an 'error') of only 0.003 introduced in xo has caused 
the time path to be vastly different after only a few 
time periods. For the first 11 periods, the time path in 
Fig. 2looks almost identical to that in Fig. 3. However, 
the paths diverge substantially after t= 11. While we 
employ the logistic equation to demonstrate a chaotic 
time path here, the same sort of behaviour (where er
rors magnify exponentially) holds for a wide set of 
chaotic relations. 

These illustrations allow us to suggest that the pres
ence of chaos will hamper the success of technical 
traders and long-range forecasting models. Of course, 
one could forecast x1 perfectly if one could measure 
w and xo with infinite accuracy. As such measure
ment is not practical, both basic forecasting devices
extrapolation and estimation of structural forecasting 
models-become highly questionable in chaotic sys
tems (see also Baumol and Benhabib, 1989). 

A similar comment may be made with respect to the 
implications of chaos for policy makers (market regu
lators). If a price series is chaotic, regulators must have 
some knowledge ofF and h to effect meaningful and 
non-transitory changes in price patterns. Then too, it 
is not obvious that regulators will succeed in promot
ing their agenda. Without highly accurate information 
ofF and h, and the current state xo, chaos would im
ply that regulators cannot extrapolate past behaviour 
to assess future movements. In effect, they would only 
be guessing as to the need for regulation. In other 
words, the sensible technical analyst and policy maker 
ought to be indifferent to whether or not the non-linear 
structure is chaotic, unless of course, she had detailed 
knowledge of the underlying chaotic structure. 

It should be noted, however, that chaotic systems 
may provide some advantage to forecasting/technical 
analysis in the very short run (perhaps a few days when 
dealing with chaotic daily data). As indicated earlier, 
a deterministic chaotic system is, in some respects, 
polar to an instantaneously unpredictable system. For 
instance, Clyde and Osler ( 1997) simulate a chaotic se
ries and demonstrate that the head-over-shoulder trad
ing rule will be more consistent at generating profits 
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Fig. 1. Logistic map (xr+J, xr) for periods 1-60, Xr+l = 3.75x(l- x), xo = 0.10. 
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Fig. 3. Time path of logistic equation Xt+i = 3.750x(l- x), xo = 0.103. 

(relative to random trading) when applied to a known 
chaotic system. However, the results of Clyde and 
Osler also indicate that this consistency declines dra
matically, so that the frequency of 'hits' employing the 
trading rule is not distinguishable from that of a ran
dom strategy after just a few trading periods (days)? 

3. Testing for chaos 

The known tests for chaos attempt to determine 
from observed time series data whether h and F 
are genuinely random. Three tests are employed 
here: the correlation dimension of Grassberger and 
Procaccia (1983) and Takens (1984), the BDS statis
tic of Brock et al. (1987) and a measure of entropy 
termed Kolmogorov-sinai invariant, also known as 
Kolmogorov entropy. Among this group, Kolmogorov 
entropy probably represents the most direct test for 

7 It is also noteworthy that short-term forecasting techniques, 
such as locally weighted regressions, are known to perform better 
for chaotic than for random data (Hsieh, 1991 ). 

chaos, measuring whether nearby trajectories sepa
rate as required by chaotic structure. However, this 
and other tests of SDIC (Lyapunov exponent) are 
known to provide relatively fragile results (Brock and 
Sayers, 1988), creating a need for alternate tests for 
chaos.8 We briefly outline the construction of the 
tests, but do not address their properties at length, as 
they are well established (Brocket al., 1987, 1993). 

3.1. Correlation dimension 

Consider the stationary time series Xt, t = 
1, ... , T .9 One imbeds x1 in an M-dimensional space 
by forming M-vectors, xfl = {xr, Xt+l· ... , Xt+M-d. 

starting at each date. One employs the stack of these 

8 Furthermore, there may be structural changes in the prices that 
lead to the failure to detect chaos despite the presence of short-run 
chaotic dynamics. For this reason, the failure to detect chaotic 
structure will be interpreted as a lack of long-lasting or long-term 
chaotic structure rather than as a complete lack of chaos. 

9 It is known that non-stationary processes can generate low 
dimensions even when not chaotic (Brock and Sayers, 1988). To 
rule out non-stationarity as a 'cause' for low dimension, one may 
difference the original series if it contains a unit root. 
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vectors to carry out the analysis. If the true system is 
n-dimensional, provided M > 2n + 1, theM-histories 
can help recreate the dynamics of the underlying sys
tem, if they exist (Takens, 1984). One can measure 
the spatial correlations among theM-vectors by calcu
lating the correlation integral. For a given embedding 
dimension M and a distance c, the correlation integral 
is given by: 

{ 

the number of (i, j) for which } 
M llx1M- xfll ~ c 

e (c) = lim 2 
t-HXJ T 

(2) 

where 11·11 is the distance induced by the norm. 10 

For small values, one has eM (c) ~ CD where D 
is the dimension of the system (see Grassberger and 
Procaccia, 1983). The correlation dimension in em
bedding dimension M is given by: 

{ lneM(c)} 
DM (c)= lim lim 

8---+0T---+co lnc 

and the correlation dimension itself is given by: 

D = lim DM 
M---+co 

(3) 

(4) 

If the value of DM stabilises at some value (D) as M 
increases, then D is the correlation dimension. If DM 
continues to increase with M, then the system can be 
regarded as stochastic since, for practical purposes, 
there is no difference between a high-dimensional sys
tem and randomness. Furthermore, one's computa
tions can only be of finite resolution and data sets are 
of limited length, limiting the embedding level. On the 
other hand, if a stable low value of DM is obtained 
(substantially lower than 10), there is evidence that the 
system is deterministic. 11 

A problem associated with the implementation of 
Eqs. (3) and (4) is that, with the limited length of the 
sample, it will almost always be possible to select a 

10 In practice, T is limited by the length of the data which in 
turn places limitations on the range of the values of 8 and M to 
be considered. 

11 Grassberger and Procaccia (1983) determine the correlation 
dimension of the logistic map at 1.00 ± 0.02, the Henon map at 
1.22 ± 0.01, and the Mackey Glass equation at 7.5 ± 0.15. For 
further discussion, see Brock et a!. (1993). 

sufficiently small c so that any two points will not 
lie within c of each other (Ramsey and Yuan, 1987). 
A popular approach to overcome this difficulty is to 
instead estimate the statistic: 

M ln eM (8i) -ln eM (ci-!) sc =----~------~-
ln(ci) -ln(ci-1) 

(5) 

for various levels of M (Brock and Sayers, 1988). The 
SCM statistic is a local estimate of the slope of the 
eM versus c function. Following Frank and Stengos 
( 1989), we take the average of the three highest values 
of SCM for each embedding dimension. 

There are at least two ways to consider the SCM 
estimates. First, the original data may be subjected 
to shuffling, thus destroying any chaotic structure 
that exists. If chaotic, the original series should 
provide markedly smaller SCM estimates than its 
shuffled counterpart (Scheinkman and LeBaron, 
1989).12 Second, along with the requirement (for 
chaos) that SCM stabilises at some low level as we 
increase M, we also require that linear transforma
tions of the data leave its dimensionality unchanged 
(Brock, 1986). For instance, we would have ev
idence against chaos if AR errors provide SCM 
levels that are dissimilar to those from the original 
series. 

3.2. BDS statistic 

Brock et al. (1987) employ the correlation inte
gral to obtain a statistical test that has been shown 
to have strong power in detecting various types of 
non-linearity as well as deterministic chaos. 

BDS show that if x1 is i.i.d. with a non-degenerate 
distribution: 

(6) 

for fixed M and c. Employing this property, BDS show 
that the statistic: 

(7) 

where uM, the standard deviation of[·], has a lim
iting standard normal distribution under the null 
hypothesis of i.i.d. WM is termed the BDS statistic. 

12 As discussed earlier, chaotic behaviour is associated with lower 
dimension than found in randomness. 
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Non-linearity is established if wM is significant for 
a stationary series void of linear dependence. The 
absence of chaos is suggested if it is demonstrated 
that the non-linear structure arises from a known 
non-deterministic system. For instance, if one obtains 
significant BDS statistics for a stationary data series, 
but fails to obtain significant BDS statistics for the 
standardised residuals from an ARCH model, it can be 
said that the ARCH process explains the non-linearity 
in the data. This would preclude low dimension 
chaos. 

Brock et al. (1993) examine the finite sample dis
tribution of the BDS statistic and find the asymptotic 
distribution will well approximate the distribution of 
the statistic when: the sample has 500 or more obser
vations; the embedding dimension is selected to be 5 
or lower; c is selected to be between 0.5 and 2 standard 
deviations of the data. The authors also find that the 
asymptotic distribution does not approximate the BDS 
statistic very well when applied to the standardised 
residuals of ARCH-type models (also see Brocket al., 
1987). This is noteworthy as financial and commod
ity price movements are often found to have ARCH 
processes. The authors suggest bootstrapping the null 
distribution to obtain the critical values for the statistic 
when applying it to standardised residuals from these 
models. 

3.3. Kolmogorov entropy 

Kolmogorov entropy quantifies the concept of 
SDIC. Consider the two trajectories in Figs. 2 and 3. 
Initially, the two time paths are indistinguishable to 
the casual observer. As time passes, however, the tra
jectories diverge. Kolmogorov entropy (K) measures 
the speed with which this takes place. 

Grassberger and Procaccia (1983) devise a measure 
for K which is more implementable than earlier mea
sures of entropy. This measure is given by: 

K I. I" 1" ( eM (c) ) 2=1m 1m 1mln 
8->0M-HXJN->oo CM+1(c) 

(8) 

If a time series is non-complex and completely pre
dictable, K2 --+ 0. If the time series is completely 
random, K2 --+ oo. That is, the lower the value of 
K2, the more predictable the system. For chaotic sys
tems, one would expect 0 < K2 < oo, at least in 
principle. 

4. Evidence from commodity futures markets 

We employ daily prices of nearby (expiring) futures 
contracts for soybeans (CBOT), corn (CBOT), wheat 
(CBOT), and cotton #2 (NYCE). 13 These commodi
ties were selected for study because of their relatively 
long futures price histories. See Table 1 for the in
tervals studied. To obtain a spliced, continuous price 
series for each commodity, we follow common prac
tice in tracking a particular contract until the last day 
of the pre-expiration month, at which point the series 
switch to the next nearby contract. Daily returns are 
obtained by taking the relative log of prices as in, Rr = 
(ln(Pr/ P1_!)) x 100, where P1 represents the closing 
price (2:15p.m. US Central Time for soybeans, corn, 
and wheat, and 3:00p.m. for cotton) on day t. 14 

Table 1 presents diagnostics for the four R1 series. 
The series are stationary according to the augmented 
Dickey Fuller (ADF) statistics. The series are found to 
suffer from linear and non-linear dependencies as in
dicated by the Q(12) and Q2(12) statistics. ARCH ef
fects are strongly suggested by Engle's (1982) ARCH 
x2 statistic. Thus, as expected, there are clear indi
cations that non-linear dynamics are generating the 
commodity price series. Whether these dynamics are 
chaotic in origin is the question that we turn to next. 

To eliminate the possibility that linear structure or 
seasonalities may be responsible for the rejection of 
chaos by the tests employed below, we first estimate an 
autoregressive model for each of the four commodities 
with controls for possible seasonal effects, as in: 

p 12 

Rt = Lf3iRt-i + LYiM(j + Ut (9) 

i=l j=l 

where the Mjt represent month-of-the-year dummy 
variables. The lag length for each series is selected 
based on the Akaike (1974) criterion. 15 The resid
ual term (u1) represents the price movements that are 
purged of linear relationships and seasonal influences. 

13 The data are obtained from the Futures Industry Institute, 
Washington, DC. 

14 We do not employ smoothing models to detrend the data, as 
we feel that the imposed trend reversions may erroneously be 
interpreted as structure (see Nelson and Plosser, 1982). 

15 The theoretical grounds for controlling for seasonality in ex
plaining other aspects of commodity price behaviour are provided 
in Deaton and Laroque (1992) and Chambers and Bailey (1996), 
among others. 
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Table 1 
Diagnostics on the returns (R1 ) for soybean, com, wheat and cotton 

Soybean Com Wheat Cotton 

Interval 11 December 1969 to 11 December 1969 to 2 April 1968 to 23 August 1972 to 
30 March 1995 30 March 1995 30 March 1995 30 March 1995 

Observed 6395 6376 6802 5680 
Mean 0.013 0.011 0.011 0.030 
Standard deviation 1.576 1.373 1.554 1.451 
ADF -9.461" -9.159" -8.960" -33.480" 
ADF(D -9.514" -9.197" -8.989" -33.504" 
Q(l2) 58.570" 52.520" 53.410" 45.540" 
Q2(12) 3066.330" 712.740" 773.570" 954.040" 
ARCH(6) 864.630" 637.480" 312.080" 374.260" 

ADF, ADF(n represent the augmented Dickey Fuller tests (Dickey and Fuller, 1981) for unit roots with and without trend, respectively. 
The Q(l2) and Q2(12) statistics represent the Ljung-Box (Q) statistics for autocorrelation of the R1 and R'f series, respectively. The 
ARCH(6) statistic is the Engle (1982) test for ARCH (of order 6). 

a Represents significance at the I% level. 

Table 2 
Linear structure and seasonality of the returns (R1) for soybean, com, wheat and cotton 

RHS variable 

Rr-1 
Rr-2 
Rt-3 

Rr-4 
January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 
R2 

Q(6) 
Q(l2) 

Soybean 

0.080" (6.43) 

0.051 (0.76) 
0.007 (0.10) 
0.137b (2.10) 
0.058 (0.84) 
0.142b (2.07) 

-0.031 (-0.45) 
-0.043 (-0.64) 
-0.113c (-1.69) 
-0.044 (-0.64) 
-0.037 ( -0.55) 

0.081 ( 1.18) 
-0.064 ( -0.95) 

0.010 
6.480 

15.620 

Com 

0.066" (5.24) 
-0.045" (-3.61) 

0.009 (0.15) 
-0.067 ( -1.09) 

0.146" (2.56) 
0.024 (0.48) 
0.109c (1.83) 
0.015 (0.26) 

-0.186" (-3.12) 
-0.062 ( -1.08) 

0.037 (0.60) 
-0.031 (-0.54) 

0.008 (0.14) 
0.117b (1.99) 
0.010 
4.500 

13.030 

Wheat Cotton 

0.024b (1.99) o.o5o• (3.64) 
-0.063" (-5.20) -0.048" (-3.81) 
-0.017 (-1.40) -0.003 ( -0.27) 

-0.015 ( -1.13) 
-0.063 ( -0.98) -0.031 (-0.47) 
-0.104 (-1.53) 0.108 (1.56) 
-0.118c ( -1.85) 0.053 (0.76) 
-0.062 (-0.94) 0.181" (2.66) 
-0.125c ( -1.92) -0.052 ( -0.77) 
-0.007 (-0.11) 0.037 (0.56) 

0.112c (1.73) -0.230" (-2.80) 
0.100 (1.58) -0.028 ( -0.44) 
0.238" (3.61) 0.007 (0.11) 
0.045 (0.71) -0.008 ( -0.13) 
0.035 (0.52) 0.043 (0.63) 
0.082 (1.25) 0.200" (2.94) 
0.009 0.008 
6.070 0.180 

17.230 18.160 

Coefficients and residual diagnostics from OLS regressions of returns on prior returns and 12 month-of-year dummies. The Q(6) and Q(l2) 
statistics are Ljung-Box (Q) statistics for residual autocorrelation. Statistics in brackets are t-values. 

• Represent significance at the I% level. 
b Represent significance at the 5% level. 
c Represent significance at the 10% level. 

Table 2 reports the results from the OLS regressions. 
There is evidence of seasonal effects in each of the 
four returns. 16 There is also significant linear structure 

16 To further examine the significance of the seasonality, we ran 
the above model with a constant and without the January dummy. 
The hypothesis that all the dummy variable coefficients are equal 
to zero is rejected at the 5% level for each of the commodities. 

in the returns, up to two lags for corn, wheat and 
cotton. The Durbin-h and Q statistics indicate that the 
residuals are free of linear structure. 

4.1. Correlation dimension estimates 

Table 3 reports the correlation dimension (SCM) 
estimates for various components of the four returns 



132 A. Chatrath et al.l Agricultural Economics 27 (2002) 123-137 

Table 3 
Correlation dimension estimates 

Series Embedding dimension (m) 

5 10 15 20 

Logistic• 1.02 1.00 1.03 1.06 
Logistic AR(l) 0.96 1.06 1.09 1.07 
Logistic (AR( 1 ), S) 0.97 1.06 1.08 1.06 
Soybean returns 3.53 6.04 7.82 9.07 
Soybean AR(l) 3.77 6.62 8.66 10.60 
Soybean (AR(l), S) 3.98 7.07 9.34 12.80 
Soybean shuffled 3.91 7.71 10.46 15.80 
Corn returns 3.80 5.91 8.05 10.26 
Corn AR(2) 4.03 7.28 10.56 14.87 
Corn (AR(2), S) 4.12 7.35 10.77 17.33 
Corn shuffled 3.70 7.32 11.89 18.10 
Wheat returns 3.73 6.79 9.16 11.07 
Wheat AR(3) 4.36 8.19 10.81 12.06 
Wheat (AR(3), S) 4.55 8.27 11.38 15.14 
Wheat shuffled 4.11 8.31 13.08 18.11 
Cotton returns 4.08 7.82 11.80 13.00 
Cotton AR(4) 4.29 8.07 12.84 22.92 
Cotton (AR(4), S) 4.24 8.12 13.62 25.40 
Cotton shuffled 4.18 8.82 13.83 27.16 

AR(p) are autoregressive (order p) residuals, (AR(p), S) are residu
als from autoregressive models that correct for seasonal (monthly) 
effects. 

a w = 3.750, n = 2000. 

series as well as the logistic series developed earlier. 
We report results for embedding dimensions up to 20 
in order to check for saturation.17 An absence of satu
ration provides evidence against chaotic structure. For 
instance, the SCM estimates for the logistic map stay 
close to 1.00, even as we increase the embedding di
mension. Moreover, the estimates for the logistic series 
do not change meaningfully after AR transformation 
or seasonal adjustment. Thus, as should be expected, 
the SCM estimates are not inconsistent with chaos for 
the logistic series. 

For the four-commodity series, on the other hand, 
the SCM estimates provide evidence against chaotic 
structure. For instance, if one examines the estimates 
for the corn returns alone, one might (erroneously) 
make a case for low dimension chaos: the SCM statis
tics seem to 'settle' close to 10. However, the estimates 
are substantially higher for the AR(2) series. Thus, the 
correlation dimension estimates suggest that there is 

17 Yang and Brorsen (1993), who also calculate correlation di
mension for various commodity futures, compute scM only up 
toM= 8. 

no chaos in corn prices. Similar patterns are found for 
the other three commodities. 

It is notable, however, that the SCM estimates for 
the AR(p) series are generally smaller than the esti
mates of the series with seasonal correction (AR(p ), S). 
For instance, the estimates for the AR(2) corn series 
are smaller than for the (AR(2), S) series. Moreover, 
note that the estimates for the (AR(2), S) corn series 
are not very different from the estimates from the ran
dom (shuffled) corn series. Thus, the correlation di
mension estimates are found to be sensitive to controls 
for seasonal effects. This has important implications 
for future tests for chaos employing SCM. 

4.2. BDS test results 

Table 4 reports the BDS statistics for the (AR(p ), S) 
series corresponding to each of the four commodities 
and for standardised residuals (e!h0 ·5 ) from three types 
of ARCH model with their respective variance equa
tions: 

GARCH(1, 1): h1 =a+ a1e;_1 + fhht-I 

+f3zTTMr (10) 

I Bt-l I (Bt-l) E-GARCH : log(h1) =a + a1 -- + az --
ht-1 ht-1 

+ fh loghr-1 + /Jz TTMr 

(11) 

Comp GARCH(1,1): 

ht = qt + a(s;_1 - qr-1) + fh (hr-1 - qr-d 

+ .82 TTMr, 

qr = w + p(qt-1- w) + c;[J(s;_1 - hr-1) (12) 

where the return equation which provides s1 is 
the same as in Eq. (9), and TTM represents 
time-to-maturity (in days) of the futures contract. 18 

!8 The return equations from the ARCH systems provide coef
ficients similar to those in Table 2. We also estimated another 
familiar model, GARCH in mean (GARCHM). The BDS statis
tics from the GARCHM and GARCH(l, 1) models were found 
to be very similar so, in the interest of brevity, we do not pro
vide the former. The GARCH model is due to Bollerslev (1986), 
the exponential model (EGARCH) is from Nelson (1991) and the 
asymmetric component ARCH model is a variation of the thresh
old GARCH model of Rabemananjara and Zakoian (1993). 
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Table 4 Table 4 (Continued) 
BDS statistics for (AR(p), S) residuals and standardised residuals 
from three ARCH models Standard deviation Embedding dimension 

Standard deviation Embedding dimension 2 3 4 5 

2 3 4 5 2.0 21.05• 25.07" 27.00" 28.60" 

Panel A: soybean GARCH(l, I) standard errors 

(AR(l ), S) errors 0.5 4.75" 5.30" 5.21" 5.72" 

0.5 25.58" 33.50" 41.44" 52.80" 1.0 4.61" 4.73" 4.37" 4.66" 

1.0 27.23" 34.03" 39.70" 46.10" 1.5 4.29" 4.14" 3.60" 3.68" 

1.5 26.90" 32.92" 37.30a 42.13" 2.0 3.92" 3.64" 3.04" 2.89" 

2.0 25.50" 30.878 34.238 36.80" EGARCH(l, 1) standard errors 

GARCH(l, 1) standard errors 0.5 2.83b 2.88b 2.29b 2.22b 

0.5 1.88b 2.05" 2.21" 2.78" 1.0 2.89c 2.67c 1.89c 1.78c 

1.0 0.91 0.87 1.11 1.60b 1.5 2.94c 2.54 1.73 1.61 

1.5 0.17 0.03 0.36 0.80 2.0 3.05c 2.64 1.86 1.66 

2.0 0.01 -0.15 0.27 0.54 AGARCH(l, 1) standard errors 

EGARCH(l, 1) standard errors 0.5 3.35" 3.98" 4.50" 5.62" 

0.5 0.79 0.76 0.78 1.32 1.0 2.96" 3.25" 3.64" 4.84" 

1.0 -0.00 -0.11 0.04 0.47 1.5 2.17" 2.26" 2.58" 3.78" 

1.5 -0.25 -0.37 -0.10 -0.35 2.0 1.24 1.12c 1.19c 2.11 a 

2.0 0.01 0.01 0.40 0.78 Panel D: cotton 

AGARCH(l, 1) standard errors (AR(4), S) errors 

0.5 1.75" 2.56" 3.728 5.62" 0.5 16.60" 19.81" 21.86" 25.27" 

1.0 -0.02 0.42 1.38b 2.91" 1.0 16.58" 20.00" 22.36" 25.34" 

1.5 -1.81 -1.90 -1.19 -0.09 1.5 15.29" 18.23" 20.65" 23.05" 

2.0 -2.45 -2.97 -2.63 -2.00 2.0 14.58" 17.058 19.22" 21.20" 

Panel B: corn 
GARCH(l, 1) standard errors 

(AR(2), S) errors 0.5 3.87" 3.11" 2.22" 2.57" 

0.5 22.44" 30.07" 38.07" 49.18" 1.0 2.60" 1.95" 1.39c 1.63b 

1.0 23.36" 29.50" 34.02" 38.98" 1.5 1.64 0.93 0.52 0.66 

1.5 23.38" 28.758 31.59" 34.16" 2.0 1.00 0.18 -0.12 -0.06 

2.0 21.93" 25.73" 29.96" 33.57" EGARCH(l, 1) standard errors 

GARCH(l, 1) standard errors 
0.5 3.37" 2.45c 1.51 J.71C 

0.5 -0.08 0.68 0.72 1.18 
1.0 2.41 1.62 0.92 1.00 

1.0 -0.11 0.65 0.64 1.00 
1.5 1.74 0.92 0.42 0.50 

1.5 0.01 0.63 0.49 0.78 
2.0 1.43 0.65 0.34 0.44 

2.0 0.52 0.79 0.80 0.97 AGARCH(l, 1) standard errors 
0.5 4.74" 7.06" 10.90" 17.10" 

EGARCH(l, 1) standard errors 1.0 1.68" 2.058 2.50" 3.32" 
0.5 -0.22 0.61 0.52 0.83 
1.0 0.12 0.94 0.87 1.11 

1.5 -0.20 -0.28 -0.15 om 
2.0 0.16 -0.34 -0.56 -0.70 

1.5 0.68 !.52 1.40 1.57 
2.0 1.67 2.40 2.31 2.45c BDS statistics are evaluated against critical values obtained from 

AGARCH(l,l) standard errors 
Monte Carlo simulation (see Appendix A). 

0.5 0.36 0.69 !.Ole 1.41" 
a Represent significance at the 1% level. 

1.0 0.48 uoc uoc 1.34" 
b Represent significance at the 5% level. 

1.5 0.61 0.99c 1.01 c 1.15b 
c Represent significance at the 10% level. 

2.0 0.91 1.23c J.09C 1.23b 
The time-to-maturity variable is intended to control 

Panel C: wheat 
(AR(2), S) errors 

for any maturity effects in the series (Samuelson, 

0.5 16.27" 20.32" 23.03" 26.16" 
1965). The BDS statistics are evaluated against critical 

1.0 18.99. 22.88" 25.19" 27.77" values obtained by bootstrapping the null distribution 

1.5 21.288 25.33" 27.368 29.39" for each of the GARCH models (see Appendix A). 
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The estimates from the above variance equations are 
discussed later in the paper. 

The BDS statistics strongly reject the null hypoth
esis of no non-linearity in the (AR(p), S) errors for 
each of the commodity futures. This evidence, that 
the commodity futures have non-linear dependencies, 
is consistent with the findings in Table 1, and in Yang 
and Brorsen (1993), among others. The BDS statistics 
for the standardised residuals from the ARCH-type 
models, however, indicate that the source of the 
non-linearity in at least two of the four commodities 
is not chaos. For instance, for the soybean contract, 
the BDS statistics are dramatically lower (relative 
to those for the (AR(p), S) errors) for all the stan
dardised residuals, and are consistently insignificant 
for the EGARCH model. For the com contract, the 
GARCH(1, 1) model seems to satisfactorily capture 
the non-linear dependence in the data: the BDS statis
tics for the standardised residuals from this model are 
consistently insignificant. On the other hand, for the 
wheat and cotton contacts, the BDS statistics show 
persisting non-linearities even after the corrections 
for ARCH effects. Nonetheless, even for these two 
commodities, the BDS statistics for the ARCH resid
uals are much smaller (albeit significant) than those 
for the (AR(p ), S) residuals. 

On the whole, the BDS test results further support 
the notion that the non-linear dependence in commod
ity futures is explained by dynamics other than chaos. 
Certainly, for soybean and com contracts the evidence 
is compelling that the non-linear dependencies in com
modity futures arise from ARCH-type effects, rather 
than from complex, chaotic structures. Finally, it is 
also noteworthy that the EGARCH model performed 
reasonably well for each contract, even though it failed 
to completely explain the non-linearities in the major
ity of contracts. 

4.3. Entropy estimates 

Fig. 4 plots the Kolmogorov entropy estimates (em
bedding dimension 15-32) for the logistic map (w = 
3.750, xo = 0.10) as well as the (AR(p), S) soybean, 
wheat, com and cotton series. The entropy estimates 
for a twice-shuffled wheat return series are also pre
sented for comparison. The estimates for the logistic 
map and the shuffled series provide the benchmarks 
for a known chaotic and a generally random series. 

The entropy estimates for the (AR(p ), S) soybean, 
com and wheat series show little signs of 'settling 
down' as those for the logistic map do. They behave 
much more like the entropy estimates for the shuffled 
series: a general rise in the K2 statistic as one increases 
the embedding dimension. The entropy estimates for 
(AR(p ), S) cotton series, however, are not as convinc
ing. In general, the plots in Fig. 4 reaffirm the corre
lation dimension and BDS test results: there is little 
evidence of low dimension chaos in commodity 
futures prices. 

4.4. ARCH and maturity effects in futures markets 

It is apparent from the BDS statistics presented 
in Table 4 that the EGARCH model effectively ex
plains the non-linearities in the soybean contract. In 
the com contract, the GARCH(l, 1) model, along 
with the EGARCH model, performs well. Using these 
results, we can re-examine the Samuelson hypothe
sis on the relationship between contract maturity and 
variance employing the appropriately modelled vari
ance structure. The Samuelson hypothesis implies that 
the volatility in futures price changes increases as a 
contract's delivery date approaches. If the Samuelson 
hypothesis is valid, proper valuation of futures and fu
tures options would require that the term-structure of 
the volatility be estimated (see Bessembinder et al.; 
1996). 

Table 5 reports the maximum likelihood results for 
soybean and cotton, the two contracts for which we 
have succeeded in isolating the appropriate non-linear 
model. In the interest of brevity, we do not present 
the results from the mean equations. The results indi
cate strong ARCH effects and, in the case of soybean, 
significant asymmetries in the variance structure. The 
Samuelson hypothesis is clearly supported for both 
the contracts: the time-to-maturity (TIM) variable is 
negative and significant in both equations. As we ap
proach maturity (as TIM falls), the conditional vari
ance (log(ht) for soybean and ht for corn) increases. 
However, it is notable that while TIM is found to 
be significant in the variance equation, this variable 
does not play a large role as a 'control variable' in 
the tests for chaos: the BDS statistics remained almost 
unchanged when we employed standardised residu
als from models without TTM. In other words, the 
correlation-integration based tests for chaos are not as 



A. Chatrath et al. I Agricultural Economics 27 (2002) 123-137 135 

~ 
77 

7 I 
---~ _,/ /-1 

0.9 

0.8 

0.7 

0.6 

~- .. -- ~~~ 
'-----·--w==--...--n~~z~ 

0.5 

0.4 

...------. ·--. ----- ~ • .. 
0.3 

0.2 

0.1 

0 
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Embedding dimension 

Fig. 4. Kolmogorov entropy estimates. 

Table 5 
Estimates of ARCH dynamics in soybean and corn futures 

Constant 
lslhl,_J 
(s/hlr-1 
log(hr-!l 
TTM 
Log-likelihood 
xz 

Soybean (1og(h, )) 

-0.0633" ( -8.98) 
0.0770" (16.17) 
0.0426• (8.39) 
0.8254• (646.59) 

-0.0014" (-7.39) 
-10791.98 

2244.02a 

Constant 

cr-1 
hr-1 
TTM 
Log-likelihood 
xz 

Corn (h,) 

0.1072" (22.47) 

0.0617" (19.81) 
0.9111 a (239.02) 

-0.0026. (26.91) 
-10238.38 

1585.06a 

Statistics in brackets are t-values. TTM is time-to-maturity in days. The x2 statistics based on comparison with the corresponding OLS 
model. 

a Represents significance at the I% level. 

sensitive to controls for TTM as they are to controls 
for seasonality. 

5. Conclusion 

The evidence of chaos in economic time series such 
as GNP and unemployment has thus far been weak. 
On the other hand, the few studies of commodity 
prices have generally found evidence consistent with 

low dimension chaos. Why is the evidence of chaos 
stronger in commodity prices? Could the relatively 
short data spans in earlier studies on commodities and 
the lack of controls for seasonal patterns account for 
the differences in the evidence between commodity 
prices and aggregated economic time series? 

Employing over 25 years of data, we conduct a 
battery of tests for the presence of low-dimensional 
chaotic structure in four important commodity futures 
prices. Daily returns data from the nearby contracts 
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are subjected to correlation dimension tests, BDS tests 
and tests for entropy. While we find strong evidence of 
non-linear dependence in the data, the evidence is not 
consistent with long-lasting chaotic structure. Our test 
results indicate that various ARCH processes explain 
the non-linearities in at least two of the contracts. We 
also make a case that employing seasonally adjusted 
price series is important to obtaining robust results via 
the existing tests for chaotic structure. 

For the soybean and corn contract, we isolate ap
propriate ARCH models and examine the Samuel
son hypothesis of a maturity effect in futures prices. 
The EGARCH results for soybean futures and the 
GARCH( 1, 1) results for corn futures provide evidence 
in favour of the Samuelson hypothesis: volatility in 
futures returns increases as one approaches maturity. 
However, the tests for chaos were found to be less sen
sitive to controls for time-to-maturity than to controls 
for seasonality. 
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Appendix A 

Simulated critical values for the BDS test statistic 

Embedding s/a 
diversion 

0.5 1.0 1.5 2.0 

GARCH(l, 1) (97.5% critical values) 
2 1.62 1.53 1.42 1.25 
3 1.76 1.63 1.45 1.44 
4 2.35 2.21 2.16 1.97 
5 2.42 2.28 2.25 2.10 

Exponential GARCH (97.5% critical values) 
2 2.75 2.54 2.10 
3 3.30 3.07 2.42 
4 3.48 3.31 2.66 
5 3.66 3.47 2.97 

1.83 
2.38 
2.56 
2.61 

Appendix A. (Continued) 

Embedding s/a 
diversion 

0.5 1.0 1.5 2.0 

Asymmetric component GARCH 
(2.5% critical values) 
2 -2.86 -2.29 -1.78 -1.74 
3 -3.51 -2.89 -2.49 -2.26 
4 -3.64 -3.01 -2.81 -2.55 
5 -3.67 -3.12 -3.08 -2.64 

Asymmetric component GARCH 
(97.5% critical values) 
2 1.40 1.13 1.02 0.80 
3 1.47 1.27 1.17 0.93 
4 1.62 1.28 1.22 1.00 
5 1.82 1.40 1.31 1.07 

Simulated values based on Monte Carlo simula
tions of 2000 observations each. Two-hundred and 
fifty replications of the GARCH model (ar = 0.10, 
fh = 0.80), the EGARCH model (ar = 0.05, a2 = 
0.05, fh = 0.80), and the asymmetric component 
model (ar = 0.05, f3 = 0.10, p = 0.80, ¢ = 0.05) 
were generated. BDS statistics for four embedding di
mensions and s = 0.5, 1, 1.5 and 2 standard devia
tions of the data were then computed for the 250 x 3 
simulated series. 
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