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Abstract

We conduct tests for the presence of low-dimensional chaotic structure in the futures prices of four important agricultural
commodities. Though there is strong evidence of non-linear dependence, the evidence suggests that there is no long-lasting
chaotic structure. The dimension estimates for the commodity futures series are generally much higher than would be for low
dimension chaotic series. Our test results indicate that autoregressive conditional heteroskedasticity (ARCH)-type processes,
with controls for seasonality and contract-maturity effects, explain much of the non-linearity in the data. We make a case that
employing seasonally adjusted price series is important in obtaining robust results via some of the existing tests for chaotic
structure. Finally, maximum likelihood methodologies, that are robust to the non-linear dynamics, lend strong support to the

Samuelson hypothesis of maturity effects in futures price changes.

© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well documented that a variety of deterministic
non-linear relationships can produce highly complex
time paths capable of passing most standard tests of
randomness (see Brock, 1986, for a survey). Such
random-looking but deterministic series have been
dubbed ‘chaotic’ or ‘strange’ in the literature (e.g.
Devaney, 1986; Guckenheimer and Holmes, 1986).
Chaotic dynamics may explain a richer array of time
series behaviour. For instance, sudden/large move-
ments in commodity prices, exchange rates, equity
prices and other financial or economic time series
will not be properly captured by linear, or even most
non-linear models, while chaotic models may be
suitable in explaining such behaviour. Direct appli-
cation of chaotic structures to economic theory has

* Corresponding author. Tel.: +1-503-283-7465;
fax: +1-503-978-8041.
E-mail address: chatrath@up.edu (A. Chatrath).

been initiated only in the last 20 years (Stutzer, 1980;
Benhabib and Day, 1981, 1982), with researchers
such as Brock and Sayers (1988) employing relatively
new techniques to test the null hypothesis of chaos in
a number of macroeconomic series (such as the US
unemployment rate).! The evidence of chaos in eco-
nomic time series such as GNP and unemployment
has thus far been weak (Brock and Sayers, 1988).
On the other hand, the few studies on commodity
price structure have generally found evidence con-
sistent with low dimension chaos: Lichtenberg and
Ujihara (1988) apply a non-linear cobweb model to
US crude oil prices; Frank and Stengos (1989) es-
timate the correlation dimension and Kolmogorov
entropy for gold and silver spot prices; Blank (1991)
estimates the Lyapunov exponent for soybean futures;
DeCoster et al. (1992) apply correlation dimension to

! For a more complete review of the applications of chaos to
economic theory, see Baumol and Benhabib (1989).
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daily sugar, silver, copper and coffee futures prices;
Yang and Brorsen (1993) employ correlation dimen-
sion and the Brock, Dechert and Scheinkman (BDS)
test on several futures markets, including soybean,
corn and wheat.

Such evidence in favour of chaos in agricultural
commodity markets is noteworthy. First, the search
for predictable patterns in commodity markets is of
obvious importance to farm policy. Given that many
disparate domestic and international factors affect
commodity prices, and that information on such fac-
tors is sadly lacking, the accurate structural modelling
of such variables could be considered impossible. The
evidence on chaos offers some scope for modelling
price behaviour by simply employing the time se-
ries of prices, which are now readily available—even
on an hourly basis. Furthermore, it has long been
speculated that trading strategies based on technical
analysis will be more successful if the time series
are non-linear or even chaotic (Bohan, 1981; Brush,
1986; Pruitt and White, 1988, 1989; Clyde and Osler,
1997). Similarly, many studies demonstrate that com-
mon technical rules, inherently non-linear in nature,
produce superior outcomes relative to trading rules
based on linear models (LaBaron, 1991; Brock et al.,
1992; Taylor, 1994; Blume et al., 1994; Chang and
Osler, 1995). Clyde and Osler (1997) make a more di-
rect link between chaotic systems and the viability of
technical trading. They demonstrate that well-known
technical patterns in prices (e.g. head-over-shoulder)
will be more useful in short-term trading strategies
when the underlying price series are chaotic.

Why do commodity prices exhibit stronger evi-
dence of chaos? Baumol and Benhabib (1989) have
suggested that disaggregated variables, such as com-
modity prices or production levels, that are inherently
subject to resource constraints are generally better
candidates for chaotic structure. Evidence of chaos
in commodity prices may, in this case, explain why
commodity markets, more than others, continue to
attract large numbers of technical traders. However,
do alternate explanations exist for the differences in
the evidence across commodity prices and aggre-
gated economic time series? The prior studies on the
structure of commodity prices were conducted with
fairly coarse tests for chaos and/or suffered from
short data spans. In addition, most of these studies
have also failed to control for seasonal variations in

commodity prices. This failure may be especially
important given the evidence that seasonality and
non-linearity may be closely related. For instance,
Deaton and Laroque (1992) demonstrate that com-
modity prices spend long periods in the ‘doldrums’,
showing little movement but high autocorrelation, but
frequently break out in violent fashion. The authors
suggest that the standard rational-expectations model
for commodity prices is capable of explaining such
behaviour. Importantly, the authors suggest that the
non-linearity in price patterns is related to the in-
herently seasonal inventory changes. Chambers and
Bailey (1996) also show that ‘periodic disturbances’
in commodity prices (namely harvest-related shocks)
can exist in rational-expectations equilibria. Their
study further highlights the potential of (and the the-
oretical grounds for) incorporating controls for such
shocks to enhance the capacity of models to account
for observed fluctuations in commodity prices.

In this paper, we provide new evidence on the struc-
ture of commodity prices. We examine the non-linear
dynamics and their explanations for four important
commodity contracts: soybean, corn, wheat and cot-
ton from the late 1960s to the mid-1990s. Testing for
chaotic structure in commodity prices is a meaning-
ful exercise for several reasons. Chaos would imply
that while prices are deterministic, long-range predic-
tion based on technical or statistical forecasting tech-
niques becomes treacherous, as initial measurement
errors will multiply exponentially.? We address this
issue in greater detail in the next section.

The four commodities selected for this research
play a dominant role in the US agriculture sector. The
US is by far the world’s largest producer of corn and
soybean. Corn is the leading US crop in terms of dollar
value and acreage under cultivation, and roughly 20%
of US production is exported. The US is the fourth
largest producer of wheat and the second largest pro-
ducer and consumer of cotton, behind China, and the
largest cotton exporter (for further details, see Foreign
Agriculture Service (FAS) and the National Agricul-
tural Statistical Service (NASS) of the US Department

2 Definitions of ‘chaos’ structure are often based on the mag-
nification of initial measurement errors. For instance, a popular
definition requires that the largest Lyapunov exponent be posi-
tive (e.g. Brock et al., 1993), where the Lyapunov exponent is a
measure of the speed of multiplication in forecast errors of initial
measurement error.
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of Agriculture). The prices of these commodities are
subject to a great deal of seasonality. Generally, prices
rise from the harvest lows to late spring, reflecting
carrying costs and dwindling supplies. Of course,
prices are also affected by weather patterns, the avail-
ability of substitute grains and products, and export
demand—which may depend on factors varying from
foreign production to the size of foreign livestock
herds.

Our paper is distinguishable from the previous
studies on chaos in commodity futures markets in
that: (i) relatively long price histories are examined;3
(ii) unlike prior papers, the data are subject to adjust-
ments for seasonalities and maturity effects that may
otherwise lead to an erroneous conclusion of deter-
ministic structure; (iii) a wide range of autoregressive
conditional heteroskedasticity (ARCH)-type models
are considered as explanations for the non-linearities;
(iv) alternate statistical techniques are employed to
test the null hypothesis of chaotic structure. Like
most prior studies, we present strong evidence that
commodity futures prices display non-linear depen-
dencies. Unlike these earlier studies, however, we find
evidence that is clearly inconsistent with long-lasting
chaotic structure. This difference may be attributed
to differences in sample size and methodology. We
make a case that employing seasonally adjusted price
series may be critical to obtaining robust results with
the existing tests for chaotic structure. We identify
some commonly known ARCH-type processes that
satisfactorily explain the non-linearities in the data.
The exponential GARCH model of Nelson (1991)
is found to generally perform the best in account-
ing for the non-linear dynamics in the commodities
analysed.

The next section motivates the tests for chaos and
further discusses the implications of chaotic struc-
ture in commodity prices. Simulated chaotic data is
employed to highlight some important properties of
chaos. Section 3 describes the procedures employed
to test the null hypothesis of chaos. Section 4 presents

3 Yang and Brorsen (1993) examine the non-linear dynamics
in daily futures prices for various commodity futures over the
1979-1988 interval. Blank (1991) examines only 2 years of data
for soybean futures (the November 1986 contract). DeCoster et al.
(1992) cover an interval more comparable to ours, from October
1972 to March 1989, for silver, copper, sugar and coffee contracts.

the test results for the five commodities. Section 5
closes with a summary of the results.

2. Chaos: concepts and implications for
commodity markets

Since the concepts of chaos are well developed in
the literature, our descriptions are brief relative to
some papers that we refer to here. There are sev-
eral definitions of chaos in use. A definition similar
to the following is commonly found in the literature
(Devaney, 1986; Brock, 1986; Deneckere and Pelikan,
1986; Brock and Dechert, 1988; Brock and Sayers,
1988; Brock et al., 1993): the series a; has a chaotic
explanation if there exists a system (h, F, xg) where
a; = h(x;), x; + 1 = F(x;), xo is the initial condition
at t = 0, and where & maps the n-dimensional phase
space, R" to R' and F maps R" to R". It is also required
that all trajectories, x;, lie on an attractor, A, and that
nearby trajectories diverge so that the system never
reaches an equilibrium or even exactly repeats its path.

The above definition restated: the time series a;
(e.g. daily returns for cotton futures) is said to have
a chaotic explanation if there is some state vector x;
that evolves deterministically, x; + 1 = F(x;), and
there is some function A(x) so that a; = h(x;) for all
t. If one knew (h, F) and could measure x; without er-
ror, one could forecast x;4; and, thus, a;y; perfectly.
In this respect, chaos is the opposite of the process
that is instantaneously unpredictable. With respect
to the divergence property and attractor, A: in order
that F generates random-looking behaviour (which
is deterministic), nearby trajectories must diverge
exponentially. Moreover, in order that F generates
deterministic behaviour, locally diverging trajectories
must eventually fold back on themselves. The attrac-
tor A may be thought of as a subset of the phase
space towards which sufficiently close trajectories are
asymptotically attracted (Brock and Sayers, 1988).

Chaotic time paths will have the following proper-
ties that should be of special interest to commodity
market observers:* (i) the universality of certain
routes (such as the period doubling of trajectories)
that are independent of the details of the map; (ii)

4 See Brock et al. (1993) for a more complete description of
the properties.
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time paths that are extremely sensitive to microscopic
changes in initial conditions, this property is often
termed sensitive dependence upon initial condition or
SDIC;’ (iii) time series that appear stochastic even
though they are generated by deterministic systems,
i.e. the empirical spectrum and autocovariance func-
tions of chaotic series are the same as those generated
by random variables, implying that chaotic series will
not be identified as such by most standard techniques
(such as spectral analysis or autocovariance functions).

The above properties of chaos are probably better
appreciated in the framework of a chaotic function.
Here, we briefly illustrate some of these properties
in the framework of the logistic equation, a function
commonly employed to demonstrate the chaos phe-
nomenon (Baumol and Benhabib, 1989; Hsieh, 1991).
Consider the non-linear equation (logistic function)
with a single parameter, w:

xr = FQx) = wx; (1 — x;) N

Fig. 1 graphs the relationship (x;41, x;) for w =
3.750, xo = 0.10.5 Ttis apparent that the (x; 41, x;) 0s-
cillations form a distinctive phase diagram (the bound-
ing parabolic curve). As the oscillations expand, they
encounter and bounce off the phase curve, moving
closer to an apparent equilibrium on the negative slope
of the phase curve. However, the convergence towards
any equilibrium in that vicinity can only be tempo-
rary, since the slope of the phase curve (9x;+1/0x; =
w(l —2x;)) is less than —1. Fig. 1 also illustrates the
property of period doubling of trajectories in chaotic
systems and demonstrates the concept of low dimen-
sion: the chaotic map of x;4; against x; gives us a
series of points in the phase curve. Even in the limit,
these points would only form a one-dimensional set—
acurve. If the x; 11 and x; relationship was random, the
points would be scattered about the two-dimensional
phase space.

3 This property follows from the requirement that local trajec-
tories must diverge; if they were to converge, the system would
be stable to disturbance and non-chaotic.

6 The selection of w > 3 was not arbitrary. At w < 3, the series
would converge to a single value. At w = 3, the series fluctuates
between two values (or equilibria). The number of solutions con-
tinues to double (not infinitely) as w is increased beyond 3, pro-
ducing a time path that is oscillatory (see Baumol and Benhabib,
1989).

To illustrate the important property of SDIC, we
graph in Figs. 2 and 3 the time paths (x;,# = 1,..., 60)
for the logistic equation with w = 3.750, xo = 0.10,
and w = 3.750, xop = 0.103, respectively. It is im-
mediately apparent that the logistic equation has pro-
duced fairly complex time paths. Note that a change
(an ‘error’) of only 0.003 introduced in xp has caused
the time path to be vastly different after only a few
time periods. For the first 11 periods, the time path in
Fig. 2 looks almost identical to that in Fig. 3. However,
the paths diverge substantially after = 11. While we
employ the logistic equation to demonstrate a chaotic
time path here, the same sort of behaviour (where er-
rors magnify exponentially) holds for a wide set of
chaotic relations.

These illustrations allow us to suggest that the pres-
ence of chaos will hamper the success of technical
traders and long-range forecasting models. Of course,
one could forecast x; perfectly if one could measure
w and xp with infinite accuracy. As such measure-
ment is not practical, both basic forecasting devices—
extrapolation and estimation of structural forecasting
models—become highly questionable in chaotic sys-
tems (see also Baumol and Benhabib, 1989).

A similar comment may be made with respect to the
implications of chaos for policy makers (market regu-
lators). If a price series is chaotic, regulators must have
some knowledge of F and % to effect meaningful and
non-transitory changes in price patterns. Then too, it
is not obvious that regulators will succeed in promot-
ing their agenda. Without highly accurate information
of F and A, and the current state xy, chaos would im-
ply that regulators cannot extrapolate past behaviour
to assess future movements. In effect, they would only
be guessing as to the need for regulation. In other
words, the sensible technical analyst and policy maker
ought to be indifferent to whether or not the non-linear
structure is chaotic, unless of course, she had detailed
knowledge of the underlying chaotic structure.

It should be noted, however, that chaotic systems
may provide some advantage to forecasting/technical
analysis in the very short run (perhaps a few days when
dealing with chaotic daily data). As indicated earlier,
a deterministic chaotic system is, in some respects,
polar to an instantaneously unpredictable system. For
instance, Clyde and Osler (1997) simulate a chaotic se-
ries and demonstrate that the head-over-shoulder trad-
ing rule will be more consistent at generating profits
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(relative to random trading) when applied to a known
chaotic system. However, the results of Clyde and
Osler also indicate that this consistency declines dra-
matically, so that the frequency of ‘hits’ employing the
trading rule is not distinguishable from that of a ran-
dom strategy after just a few trading periods (days).”

3. Testing for chaos

The known tests for chaos attempt to determine
from observed time series data whether & and F
are genuinely random. Three tests are employed
here: the correlation dimension of Grassberger and
Procaccia (1983) and Takens (1984), the BDS statis-
tic of Brock et al. (1987) and a measure of entropy
termed Kolmogorov—-Sinai invariant, also known as
Kolmogorov entropy. Among this group, Kolmogorov
entropy probably represents the most direct test for

71t is also noteworthy that short-term forecasting techniques,
such as locally weighted regressions, are known to perform better
for chaotic than for random data (Hsieh, 1991).

chaos, measuring whether nearby trajectories sepa-
rate as required by chaotic structure. However, this
and other tests of SDIC (Lyapunov exponent) are
known to provide relatively fragile results (Brock and
Sayers, 1988), creating a need for alternate tests for
chaos.® We briefly outline the construction of the
tests, but do not address their properties at length, as
they are well established (Brock et al., 1987, 1993).

3.1. Correlation dimension

Consider the stationary time series x;, ¢t =

1,...,T.2 Oneimbeds x; in an M-dimensional space
by forming M-vectors, xtM = {Xt, Xf1s - -+ » XetM—~1}>

starting at each date. One employs the stack of these

8 Furthermore, there may be structural changes in the prices that
lead to the failure to detect chaos despite the presence of short-run
chaotic dynamics. For this reason, the failure to detect chaotic
structure will be interpreted as a lack of long-lasting or long-term
chaotic structure rather than as a complete lack of chaos.

9 It is known that non-stationary processes can generate low
dimensions even when not chaotic (Brock and Sayers, 1988). To
rule out non-stationarity as a ‘cause’ for low dimension, one may
difference the original series if it contains a unit root.
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vectors to carry out the analysis. If the true system is
n-dimensional, provided M > 2n + 1, the M-histories
can help recreate the dynamics of the underlying sys-
tem, if they exist (Takens, 1984). One can measure
the spatial correlations among the M-vectors by calcu-
lating the correlation integral. For a given embedding
dimension M and a distance &, the correlation integral
is given by:

the number of (i, j) for which
IxM — x| <e

T2

CM(e) = lim
=00

@

where [I-l is the distance induced by the norm.!°

For small values, one has CY¥(g) ~ &P where D
is the dimension of the system (see Grassberger and
Procaccia, 1983). The correlation dimension in em-
bedding dimension M is given by:

InCM (e
DM (e) = lim lim { n—()} 3)
e—>0T—o00 Ine
and the correlation dimension itself is given by:
- D= lim DM “
M—oc0

If the value of DM stabilises at some value (D) as M
increases, then D is the correlation dimension. If DM
continues to increase with M, then the system can be
regarded as stochastic since, for practical purposes,
there is no difference between a high-dimensional sys-
tem and randomness. Furthermore, one’s computa-
tions can only be of finite resolution and data sets are
of limited length, limiting the embedding level. On the
other hand, if a stable low value of D is obtained
(substantially lower than 10), there is evidence that the
system is deterministic.!!

A problem associated with the implementation of
Egs. (3) and (4) is that, with the limited length of the
sample, it will almost always be possible to select a

10 Tn practice, T is limited by the length of the data which in
turn places limitations on the range of the values of ¢ and M to
be considered.

11 Grassberger and Procaccia (1983) determine the correlation
dimension of the logistic map at 1.00 £ 0.02, the Henon map at
1.22 £+ 0.01, and the Mackey Glass equation at 7.5 £ 0.15. For
further discussion, see Brock et al. (1993).

sufficiently small ¢ so that any two points will not
lie within ¢ of each other (Ramsey and Yuan, 1987).
A popular approach to overcome this difficulty is to
instead estimate the statistic:

seM — nCM(e) —In CM(ei—)
© In(e;) — In(si—1)

for various levels of M (Brock and Sayers, 1988). The
SCM statistic is a local estimate of the slope of the
CM versus ¢ function. Following Frank and Stengos
(1989), we take the average of the three highest values
of SCM for each embedding dimension.

There are at least two ways to consider the SCM
estimates. First, the original data may be subjected
to shuffling, thus destroying any chaotic structure
that exists. If chaotic, the original series should
provide markedly smaller SCM estimates than its
shuffled counterpart (Scheinkman and LeBaron,
1989).12  Second, along with the requirement (for
chaos) that SCM stabilises at some low level as we
increase M, we also require that linear transforma-
tions of the data leave its dimensionality unchanged
(Brock, 1986). For instance, we would have ev-
idence against chaos if AR errors provide SCM
levels that are dissimilar to those from the original
series.

&)

3.2. BDS statistic

Brock et al. (1987) employ the correlation inte-
gral to obtain a statistical test that has been shown
to have strong power in detecting various types of
non-linearity as well as deterministic chaos.

BDS show that if x; is i.i.d. with a non-degenerate
distribution:

CM(E)—>C1(8)M, as T — oo 6)

for fixed M and ¢. Employing this property, BDS show
that the statistic:

ﬁ[CM(E)—Cl(e)M]

M
W (g) — T

(N

where o™, the standard deviation of [-], has a lim-
iting standard normal distribution under the null
hypothesis of ii.d. WY is termed the BDS statistic.

12 As discussed earlier, chaotic behaviour is associated with lower
dimension than found in randomness.
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Non-linearity is established if W™ is significant for
a stationary series void of linear dependence. The
absence of chaos is suggested if it is demonstrated
that the non-linear structure arises from a known
non-deterministic system. For instance, if one obtains
significant BDS statistics for a stationary data series,
but fails to obtain significant BDS statistics for the
standardised residuals from an ARCH model, it can be
said that the ARCH process explains the non-linearity
in the data. This would preclude low dimension
chaos.

Brock et al. (1993) examine the finite sample dis-
tribution of the BDS statistic and find the asymptotic
distribution will well approximate the distribution of
the statistic when: the sample has 500 or more obser-
vations; the embedding dimension is selected to be 5
or lower; ¢ is selected to be between 0.5 and 2 standard
deviations of the data. The authors also find that the
asymptotic distribution does not approximate the BDS
statistic very well when applied to the standardised
residuals of ARCH-type models (also see Brock et al.,
1987). This is noteworthy as financial and commod-
ity price movements are often found to have ARCH
processes. The authors suggest bootstrapping the null
distribution to obtain the critical values for the statistic
when applying it to standardised residuals from these
models.

3.3. Kolmogorov entropy

Kolmogorov entropy quantifies the concept of
SDIC. Consider the two trajectories in Figs. 2 and 3.
Initially, the two time paths are indistinguishable to
the casual observer. As time passes, however, the tra-
jectories diverge. Kolmogorov entropy (K) measures
the speed with which this takes place.

Grassberger and Procaccia (1983) devise a measure
for K which is more implementable than earlier mea-
sures of entropy. This measure is given by:

M
ot fmtm o (Sais) ®

If a time series is non-complex and completely pre-
dictable, K, — 0. If the time series is completely
random, K, — oo. That is, the lower the value of
K>, the more predictable the system. For chaotic sys-
tems, one would expect 0 < K < o0, at least in
principle.

4. Evidence from commodity futures markets

We employ daily prices of nearby (expiring) futures
contracts for soybeans (CBOT), corn (CBOT), wheat
(CBOT), and cotton #2 (NYCE).!3 These commodi-
ties were selected for study because of their relatively
long futures price histories. See Table 1 for the in-
tervals studied. To obtain a spliced, continuous price
series for each commodity, we follow common prac-
tice in tracking a particular contract until the last day
of the pre-expiration month, at which point the series
switch to the next nearby contract. Daily returns are
obtained by taking the relative log of prices as in, R; =
(In(P;/P;—1)) x 100, where P; represents the closing
price (2:15 p.m. US Central Time for soybeans, corn,
and wheat, and 3:00 p.m. for cotton) on day !4

Table 1 presents diagnostics for the four R; series.
The series are stationary according to the augmented
Dickey Fuller (ADF) statistics. The series are found to
suffer from linear and non-linear dependencies as in-
dicated by the Q(12) and 02(12) statistics. ARCH ef-
fects are strongly suggested by Engle’s (1982) ARCH
X2 statistic. Thus, as expected, there are clear indi-
cations that non-linear dynamics are generating the
commodity price series. Whether these dynamics are
chaotic in origin is the question that we turn to next.

To eliminate the possibility that linear structure or
seasonalities may be responsible for the rejection of
chaos by the tests employed below, we first estimate an
autoregressive model for each of the four commodities
with controls for possible seasonal effects, as in:

p 12
Ro=Y BiRii+ Y viMy+u ©)
i=1 j=1

where the Mj; represent month-of-the-year dummy
variables. The lag length for each series is selected
based on the Akaike (1974) criterion.’> The resid-
ual term (u;) represents the price movements that are
purged of linear relationships and seasonal influences.

13 The data are obtained from the Futures Industry Institute,
Washington, DC.

14 We do not employ smoothing models to detrend the data, as
we feel that the imposed trend reversions may erroneously be
interpreted as structure (see Nelson and Plosser, 1982).

15 The theoretical grounds for controlling for seasonality in ex-
plaining other aspects of commodity price behaviour are provided
in Deaton and Laroque (1992) and Chambers and Bailey (1996),
among others.
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Diagnostics on the returns (R;) for soybean, corn, wheat and cotton

131

Soybean

Corn

Wheat

Cotton

Interval

Observed

Mean

Standard deviation
ADF

ADK(T)

0(12)

0%(12)

ARCH(6)

11 December 1969 to
30 March 1995

6395

0.013

1.576

—-9.4612

—-9.5142

58.5702

3066.330%

864.630°

11 December 1969 to
30 March 1995

6376

0.011
1.373

—9.159%
—9.197%

52.520*

712.740%
637.480%

2 April 1968 to
30 March 1995
6802

0.011

1.554

—8.960%
—8.9892
53.410%
773.570%
312.080%

23 August 1972 to
30 March 1995
5680

0.030

1.451

—33.4802
—33.5042

45.5402

954.0407

374.2602

ADF, ADF(T) represent the augmented Dickey Fuller tests (Dickey and Fuller, 1981) for unit roots with and without trend, respectively.
The Q(12) and Q3(12) statistics represent the Ljung-Box (Q) statistics for autocorrelation of the R; and R,2 series, respectively. The
ARCH(6) statistic is the Engle (1982) test for ARCH (of order 6).

2 Represents significance at the 1% level.

Table 2

Linear structure and seasonality of the returns (R;) for soybean, corn, wheat and cotton

RHS variable Soybean Corn Wheat Cotton

Ri—1 0.080% (6.43) 0.066% (5.24) 0.024° (1.99) 0.0502 (3.64)
R > - —0.045% (-3.61) —0.0632 (—5.20) —0.048% (—3.81)
R, _3 - - —0.017 (—1.40) —0.003 (—0.27)
Ri_4 - - - —0.015 (—1.13)
January 0.051 (0.76) 0.009 (0.15) —0.063 (—0.98) —0.031 (—0.47)
February 0.007 (0.10) —0.067 (—1.09) —0.104 (—1.53) 0.108 (1.56)
March 0.137° (2.10) 0.146* (2.56) —0.118° (—1.85) 0.053 (0.76)
April 0.058 (0.84) 0.024 (0.48) —0.062 (—0.94) 0.181% (2.66)
May 0.142° (2.07) 0.109°¢ (1.83) —0.125° (—1.92) —0.052 (—0.77)
June —0.031 (—0.45) 0.015 (0.26) —0.007 (—0.11) 0.037 (0.56)
July —0.043 (—0.64) —-0.1862 (—3.12) 0.112° (1.73) —0.230? (—2.80)
August —0.113° (—1.69) —0.062 (—1.08) 0.100 (1.58) —0.028 (—0.44)
September —0.044 (—0.64) 0.037 (0.60) 0.2382 (3.61) 0.007 (0.11)
October —0.037 (—0.55) —0.031 (—0.54) 0.045 (0.71) —0.008 (—0.13)
November 0.081 (1.18) 0.008 (0.14) 0.035 (0.52) 0.043 (0.63)
December —0.064 (—0.95) 0.117° (1.99) 0.082 (1.25) 0.200? (2.94)
R? 0.010 0.010 0.009 0.008

Q(6) 6.480 4.500 6.070 0.180

0(12) 15.620 13.030 17.230 18.160

Coefficients and residual diagnostics from OLS regressions of returns on prior returns and 12 month-of-year dummies. The Q(6) and Q(12)
statistics are Ljung-Box (Q) statistics for residual autocorrelation. Statistics in brackets are #-values.
2 Represent significance at the 1% level.
b Represent significance at the 5% level.

¢ Represent significance at the 10% level.

Table 2 reports the results from the OLS regressions.
There is evidence of seasonal effects in each of the
four returns.!® There is also significant linear structure

16 To further examine the significance of the seasonality, we ran

the above model with a constant and without the January dummy.
The hypothesis that all the dummy variable coefficients are equal

to zero is rejected at the 5% level for each of the commodities.

4.1. Correlation dimension estimates

in the returns, up to two lags for corn, wheat and
cotton. The Durbin-4 and Q statistics indicate that the
residuals are free of linear structure.

Table 3 reports the correlation dimension (SCM )
estimates for various components of the four returns
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Table 3
Correlation dimension estimates
Series Embedding dimension (m)

5 10 15 20
Logistic? 1.02 1.00 1.03 1.06
Logistic AR(1) 0.96 1.06 1.09 1.07
Logistic (AR(1), S) 0.97 1.06 1.08 1.06
Soybean returns 3.53 6.04 7.82 9.07
Soybean AR(1) 3.77 6.62 8.66 10.60
Soybean (AR(1), S) 3.98 7.07 9.34 12.80
Soybean shuffled 391 7.71 10.46 15.80
Corn returns 3.80 591 8.05 10.26
Corn AR(2) 4.03 7.28 10.56 14.87
Corn (AR(2), S) 4.12 7.35 10.77 17.33
Corn shuffled 3.70 7.32 11.89 18.10
Wheat returns 3.73 6.79 9.16 11.07
Wheat AR(3) 4.36 8.19 10.81 12.06
Wheat (AR(3), S) 4.55 8.27 11.38 15.14
Wheat shuffled 4.11 8.31 13.08 18.11
Cotton returns 4.08 7.82 11.80 13.00
Cotton AR(4) 4.29 8.07 12.84 22.92
Cotton (AR4), S) 4.24 8.12 13.62 25.40
Cotton shuffled 4.18 8.82 13.83 27.16

AR(p) are autoregressive (order p) residuals, (AR(p), S) are residu-
als from autoregressive models that correct for seasonal (monthly)
effects.

2w = 3.750, n = 2000.

series as well as the logistic series developed earlier.
We report results for embedding dimensions up to 20
in order to check for saturation.!” An absence of satu-
ration provides evidence against chaotic structure. For
instance, the SCM estimates for the logistic map stay
close to 1.00, even as we increase the embedding di-
mension. Moreover, the estimates for the logistic series
do not change meaningfully after AR transformation
or seasonal adjustment. Thus, as should be expected,
the SCM estimates are not inconsistent with chaos for
the logistic series.

For the four-commodity series, on the other hand,
the SCM estimates provide evidence against chaotic
structure. For instance, if one examines the estimates
for the corn returns alone, one might (erroneously)
make a case for low dimension chaos: the SCM statis-
tics seem to ‘settle’ close to 10. However, the estimates
are substantially higher for the AR(2) series. Thus, the
correlation dimension estimates suggest that there is

17 Yang and Brorsen (1993), who also calculate correlation di-
mension for various commodity futures, compute SCM only up
to M =8.

no chaos in corn prices. Similar patterns are found for
the other three commodities.

It is notable, however, that the SCM estimates for
the AR(p) series are generally smaller than the esti-
mates of the series with seasonal correction (AR(p), S).
For instance, the estimates for the AR(2) corn series
are smaller than for the (AR(2), S) series. Moreover,
note that the estimates for the (AR(2), S) corn series
are not very different from the estimates from the ran-
dom (shuffled) corn series. Thus, the correlation di-
mension estimates are found to be sensitive to controls
for seasonal effects. This has important implications
for future tests for chaos employing SCcM,

4.2. BDS test results

Table 4 reports the BDS statistics for the (AR(®), S)
series corresponding to each of the four commodities
and for standardised residuals (s/A%) from three types
of ARCH model with their respective variance equa-
tions:

GARCH(1, 1): by = + aje?_ + Bl
+ B TTM, (10)
&r—1

Er—1
+ o )
hi1 (hz—l

+ Bi1logh;—1 + B2 TTM;
(11)

E-GARCH : log(h;) = o + o

Comp GARCH(1,1):

hi=qr +a(e? | — gi—1) + B1(hi—1 — gi—1)
+ B2 TTM;,
gr=w+p(gi—1 — ©) + P> — hi—1) (12)

where the return equation which provides &; is
the same as in Eq. (9), and TTM represents
time-to-maturity (in days) of the futures contract.!®

18 The return equations from the ARCH systems provide coef-
ficients similar to those in Table 2. We also estimated another
familiar model, GARCH in mean (GARCHM). The BDS statis-
tics from the GARCHM and GARCH(1, 1) models were found
to be very similar so, in the interest of brevity, we do not pro-
vide the former. The GARCH model is due to Bollerslev (1986),
the exponential model (EGARCH) is from Nelson (1991) and the
asymmetric component ARCH model is a variation of the thresh-
old GARCH model of Rabemananjara and Zakoian (1993).
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Table 4
BDS statistics for (AR(p), S) residuals and standardised residuals
from three ARCH models

Standard deviation ~Embedding dimension

2 3 4 5
Panel A: soybean
(AR(1), S) errors
0.5 25.58¢2 33.502 41.442 52.802
1.0 27.232 34.032 39.70° 46.102
1.5 26.90% 32.928 37.302 42,132
2.0 25.502 30.872 34.232 36.80°
GARCH(1, 1) standard errors
0.5 1.88° 2.05% 2212 2.78?
1.0 0.91 0.87 1.11 1.60°
1.5 0.17 0.03 0.36 0.80
2.0 0.01 -0.15 0.27 0.54
EGARCH(1, 1) standard errors
0.5 0.79 0.76 0.78 1.32
1.0 —0.00 —-0.11 0.04 0.47
1.5 —-0.25 -0.37 —-0.10 —0.35
2.0 0.01 0.01 0.40 0.78
AGARCH(1, 1) standard errors
0.5 1.752 2.562 3.722 5.62%
1.0 —0.02 0.42 1.38° 2.912
1.5 —1.81 —1.90 —-1.19 —-0.09
2.0 —2.45 —2.97 —2.63 —2.00
Panel B: corn
(AR(2), S) errors
0.5 22.442 30.072 38.072 49.18*
1.0 23.36% 29.502 34.022 38.982
1.5 23.382 28.75% 31.592 34.16%
2.0 21.932 25.732 29.962 33.57*
GARCH(1, 1) standard errors
0.5 —0.08 0.68 0.72 1.18
1.0 —0.11 0.65 0.64 1.00
1.5 0.01 0.63 0.49 0.78
2.0 0.52 0.79 0.80 0.97
EGARCH(1, 1) standard errors
0.5 —-0.22 0.61 0.52 0.83
1.0 0.12 0.94 0.87 1.11
1.5 0.68 1.52 1.40 1.57
2.0 1.67 2.40 2.31 2.45¢
AGARCH(1,1) standard errors
0.5 0.36 0.69 1.01¢ 1412
1.0 0.48 1.10° 1.10° 1.342
1.5 0.61 0.99¢ 1.01° 1.15°
2.0 0.91 1.23¢ 1.09¢ 1.23°
Panel C: wheat
(AR(2), S) errors
0.5 16.272 20.322 23.032 26.16%
1.0 18.992 22.88% 25.192 27.77*
1.5 21.282 25.332 27.36% 29.392

Table 4 (Continued)

Standard deviation Embedding dimension

2 3 4 5

2.0 21.052 25.07* 27.00% 28.60%
GARCH(1, 1) standard errors

0.5 4.75% 5.30% 5212 5.722

1.0 4.612 4,732 4372 4.66%

1.5 4.29% 4,142 3.60% 3.682

2.0 3.922 3.64% 3.042 2.892
EGARCH(1, 1) standard errors

0.5 2.83° 2.88° 2.29° 2200

1.0 2.89¢ 2.67¢ 1.89¢ 1.78¢

1.5 2.94¢ 2.54 1.73 1.61

2.0 3.05¢ 2.64 1.86 1.66
AGARCH(1, 1) standard errors

0.5 3.352 3.982 4.50° 5.622

1.0 2.96% 3.252 3.64% 4.842

1.5 2.17% 2.26% 2.582 3.782

2.0 1.24 1.12¢ 1.19¢ 2.112

Panel D: cotton

(AR(4), S) errors

0.5 16.60% 19.812 21.86% 25.27*

1.0 16.582 20.002 22.36% 25.342

1.5 15.292 18.232 20.652 23.05%

2.0 14.582 17.05° 19.222 21.20*
GARCH(1, 1) standard errors

0.5 3.872 3.112 2.228 2.572

1.0 2.60° 1.95° 1.39¢ 1.63°

1.5 1.64 0.93 0.52 0.66

2.0 1.00 0.18 —0.12 —0.06
EGARCH(1, 1) standard errors

0.5 3.372 2.45¢ 1.51 1.71¢

1.0 241 1.62 0.92 1.00

1.5 1.74 0.92 0.42 0.50

2.0 143 0.65 0.34 0.44
AGARCH(I, 1) standard errors

0.5 4.742 7.062 10.902 17.102

1.0 1.682 2.052 2.502 3.322

1.5 —-0.20 —0.28 —0.15 0.07

2.0 0.16 —0.34 —0.56 —0.70

BDS statistics are evaluated against critical values obtained from
Monte Carlo simulation (see Appendix A).

2 Represent significance at the 1% level.

b Represent significance at the 5% level.

¢ Represent significance at the 10% level.

The time-to-maturity variable is intended to control
for any maturity effects in the series (Samuelson,
1965). The BDS statistics are evaluated against critical
values obtained by bootstrapping the null distribution
for each of the GARCH models (see Appendix A).



134 A. Chatrath et al./Agricultural Economics 27 (2002) 123137

The estimates from the above variance equations are
discussed later in the paper.

The BDS statistics strongly reject the null hypoth-
esis of no non-linearity in the (AR(p), S) errors for
each of the commodity futures. This evidence, that
the commodity futures have non-linear dependencies,
is consistent with the findings in Table 1, and in Yang
and Brorsen (1993), among others. The BDS statistics
for the standardised residuals from the ARCH-type
models, however, indicate that the source of the
non-linearity in at least two of the four commodities
is not chaos. For instance, for the soybean contract,
the BDS statistics are dramatically lower (relative
to those for the (AR(p), S) errors) for all the stan-
dardised residuals, and are consistently insignificant
for the EGARCH model. For the corn contract, the
GARCH(1, 1) model seems to satisfactorily capture
the non-linear dependence in the data: the BDS statis-
tics for the standardised residuals from this model are
consistently insignificant. On the other hand, for the
wheat and cotton contacts, the BDS statistics show
persisting non-linearities even after the corrections
for ARCH effects. Nonetheless, even for these two
commodities, the BDS statistics for the ARCH resid-
uals are much smaller (albeit significant) than those
for the (AR(p), S) residuals.

On the whole, the BDS test results further support
the notion that the non-linear dependence in commod-
ity futures is explained by dynamics other than chaos.
Certainly, for soybean and corn contracts the evidence
is compelling that the non-linear dependencies in com-
modity futures arise from ARCH-type effects, rather
than from complex, chaotic structures. Finally, it is
also noteworthy that the EGARCH model performed
reasonably well for each contract, even though it failed
to completely explain the non-linearities in the major-
ity of contracts.

4.3. Entropy estimates

Fig. 4 plots the Kolmogorov entropy estimates (em-
bedding dimension 15-32) for the logistic map (w =
3.750, xo = 0.10) as well as the (AR(p), S) soybean,
wheat, corn and cotton series. The entropy estimates
for a twice-shuffled wheat return series are also pre-
sented for comparison. The estimates for the logistic
map and the shuffled series provide the benchmarks
for a known chaotic and a generally random series.

The entropy estimates for the (AR(p), S) soybean,
corn and wheat series show little signs of ‘settling
down’ as those for the logistic map do. They behave
much more like the entropy estimates for the shuffled
series: a general rise in the K> statistic as one increases
the embedding dimension. The entropy estimates for
(AR(p), S) cotton series, however, are not as convinc-
ing. In general, the plots in Fig. 4 reaffirm the corre-
lation dimension and BDS test results: there is little
evidence of low dimension chaos in commodity
futures prices.

4.4. ARCH and maturity effects in futures markets

It is apparent from the BDS statistics presented
in Table 4 that the EGARCH model effectively ex-
plains the non-linearities in the soybean contract. In
the corn contract, the GARCH(1, 1) model, along
with the EGARCH model, performs well. Using these
results, we can re-examine the Samuelson hypothe-
sis on the relationship between contract maturity and
variance employing the appropriately modelled vari-
ance structure. The Samuelson hypothesis implies that
the volatility in futures price changes increases as a
contract’s delivery date approaches. If the Samuelson
hypothesis is valid, proper valuation of futures and fu-
tures options would require that the term-structure of
the volatility be estimated (see Bessembinder et al.,
1996).

Table 5 reports the maximum likelihood results for
soybean and cotton, the two contracts for which we
have succeeded in isolating the appropriate non-linear
model. In the interest of brevity, we do not present
the results from the mean equations. The results indi-
cate strong ARCH effects and, in the case of soybean,
significant asymmetries in the variance structure. The
Samuelson hypothesis is clearly supported for both
the contracts: the time-to-maturity (TTM) variable is
negative and significant in both equations. As we ap-
proach maturity (as TTM falls), the conditional vari-
ance (log(k;) for soybean and A, for corn) increases.
However, it is notable that while TTM is found to
be significant in the variance equation, this variable
does not play a large role as a ‘control variable’ in
the tests for chaos: the BDS statistics remained almost
unchanged when we employed standardised residu-
als from models without TTM. In other words, the
correlation-integration based tests for chaos are not as
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Fig. 4. Kolmogorov entropy estimates.

Table 5
Estimates of ARCH dynamics in soybean and corn futures

Soybean (log(h;)) Corn (k)
Constant —0.0633% (—8.98) Constant 0.10722 (22.47)
le/hl;—1 0.0770? (16.17)
(elh)i—1 0.0426 (8.39) &—1 0.06172 (19.81)
log(h—1) 0.8254* (646.59) he—y 0.9111% (239.02)
TT™M —0.00142 (-7.39) TT™M —0.0026* (26.91)
Log-likelihood —10791.98 Log-likelihood —10238.38
x? 2244.022 x? 1585.062

Statistics in brackets are r-values. TTM is time-to-maturity in days. The x? statistics based on comparison with the corresponding OLS

model.
2 Represents significance at the 1% level.

sensitive to controls for TTM as they are to controls
for seasonality.

5. Conclusion

The evidence of chaos in economic time series such
as GNP and unemployment has thus far been weak.
On the other hand, the few studies of commodity
prices have generally found evidence consistent with

low dimension chaos. Why is the evidence of chaos
stronger in commodity prices? Could the relatively
short data spans in earlier studies on commodities and
the lack of controls for seasonal patterns account for
the differences in the evidence between commodity
prices and aggregated economic time series?
Employing over 25 years of data, we conduct a
battery of tests for the presence of low-dimensional
chaotic structure in four important commodity futures
prices. Daily returns data from the nearby contracts
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are subjected to correlation dimension tests, BDS tests
and tests for entropy. While we find strong evidence of
non-linear dependence in the data, the evidence is not
consistent with long-lasting chaotic structure. Our test
results indicate that various ARCH processes explain
the non-linearities in at least two of the contracts. We
also make a case that employing seasonally adjusted
price series is important to obtaining robust results via
the existing tests for chaotic structure.

For the soybean and corn contract, we isolate ap-
propriate ARCH models and examine the Samuel-
son hypothesis of a maturity effect in futures prices.
The EGARCH results for soybean futures and the
GARCH(1, 1) results for corn futures provide evidence
in favour of the Samuelson hypothesis: volatility in
futures returns increases as one approaches maturity.
However, the tests for chaos were found to be less sen-
sitive to controls for time-to-maturity than to controls
for seasonality.
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Appendix A

Simulated critical values for the BDS test statistic

Embedding elo
diversion

0.5 1.0 1.5 2.0

GARCH(1, 1) (97.5% critical values)

2 1.62 1.53 1.42 1.25
3 1.76 1.63 1.45 1.44
4 2.35 221 2.16 1.97
5 242 2.28 2.25 2.10

Exponential GARCH (97.5% critical values)
2 2.75 254 210 1.83
3 330  3.07 242 238
4 3.48 3.31 266 256
5 3.66 347 297 2.61

Appendix A. (Continued)

Embedding elo
diversion

0.5 1.0 1.5 2.0

Asymmetric component GARCH
(2.5% critical values)

2 -286 —229 -—-1.78 -1.74
3 —-3.51 —-2.89 —-249 -226
4 -3.64 —-3.01 -—-2.81 -2.55
5 -3.67 —3.12 -3.08 -2.64
Asymmetric component GARCH

(97.5% critical values)

2 1.40 1.13 1.02 0.80
3 1.47 1.27 1.17 0.93
4 1.62 1.28 1.22 1.00
5 1.82 1.40 1.31 1.07

Simulated values based on Monte Carlo simula-
tions of 2000 observations each. Two-hundred and
fifty replications of the GARCH model (¢; = 0.10,
B1 = 0.80), the EGARCH model (¢; = 0.05, oy =
0.05, B1 = 0.80), and the asymmetric component
model (¢; = 0.05, 8 = 0.10, p = 0.80, ¢ = 0.05)
were generated. BDS statistics for four embedding di-
mensions and ¢ = 0.5, 1, 1.5 and 2 standard devia-
tions of the data were then computed for the 250 x 3
simulated series.
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