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Farmer’s Adaptation to Extreme Weather Events through Farm Management

and Its Impacts on the Mean and Risk of Rice Yield in China

Abstract:

We explore how rice farmers adjust their farm management practices in response to
extreme weather events and determine whether their adjustments affect the mean, risk
and downside risk of rice yield. Based on a unique data from a survey of 1653 rice
farmers in China, our econometric analyses show that the severity of drought and
flood in the study areas significantly increases both the risk and downside risk of rice
yield. The adopted farm management measures do respond to the serious drought and
flood and can be considered as adaptation to climate change, an issue often been
ignored in the previous studies. Then we model adaptation and its impact on rice yield
on adopters and nonadopters. Based on a moment-based approach, we show that the
adaptation through farm management measures significantly increases rice yield and
reduces risk and downside risk of rice yield. The article concludes with policy

implications.
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Farmer’s Adaptation to Extreme Weather Events through Farm Management

and Its Impacts on the Mean and Risk of Rice Yield in China

With the increasingly serious challenge of extreme weather events, how to adapt to
the challenge has addressed great attention (Howden et al., 2007; IPCC 2014). The
international community has called for incorporating climate change adaptation into
national development plans (IPCC 2014; World Bank 2010). This is especially urgent
for developing country farmers who are expected to bear the brunt of climate
variability impacts (Seo and Mendelsohn 2008). In China, a national program to adapt
to climate change was issued at the end of 2013, which highlights the adaptation
strategy in agriculture and farmers’ adaptive capacity building.

While a large body of literature on the farmer’s adaptation to climate change has
emerged (Chen, et al. 2014; Deressa et al. 2009; Seo and Mendelsohn 2008), little
study has been undertaken to assess the effectiveness of farm management and other
adaptation practices. Exceptions include Yesuf et al. (2008) and Di Falco et al. (2011).
These studies treated farmers’ adoptions as adaptation measures and analyzed the
impact of adaptation on crop yield. Much studies have also analyzed agricultural risk,
including the mean-variance investigation of input effects (e.g. Abedullah and Pandey
2004; Just and Pope 1979) and technology adoption (Foudi and Erdlenbruch 2012).
However, it remains unclear that whether these adoptions lead to mitigation of the
impact of extreme weather events.

Importantly, the influence of adaptation on downside risk exposure (e.g. on the
probability of crop failure) remains poorly understood. In general, downside risk is
the risk located in the lower tail of the payoff distribution (Kim et al. 2014). While
useful information about the risk effects of input adjustments can be obtained from

understanding their impact on yield variance, analyzing the variance effect alone
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would not enable one to distinguish between unexpected bad and good events (Di
Falco and Veronesi 2012). Under the rising risks associated with climate variability,
this has motivated research on the role of downside risk in risk management in crop
production (Kim and Chavas 2003).

Given the severity of extreme weather events and the potential role of farm
management in mitigating risks, several questions are raised. What are major farm
management measures that are related to climate change and have been adopted by
farmers? To what extent can these measures be considered as farmer’s adaptation to
climate variability? Are there adaptation measures can lead to a win-win benefit by
lowering crop yield risks and also increasing the mean yield? Answers to these
questions are critical not only for a better understanding of farmer’s adaptation to
extreme weather events, but also for providing empirical evidence for policy makers
in the formulation of their climate change adaptation plan and investment.

The overall goals of this study are to explore how rice farmers adjust their farm
management practices to extreme weather events and to determine whether their
adjustments reduce rice yield loss and risk as well as downside risk in China. Rice is
the main food staple in China that produced nearly 30% of rice in the world in recent
years (FAOSTAT, 2011). The rice production loss due to drought and flood has been
rising over time (NBSC 2012). To the best of our knowledge, there is no empirical
study that has investigated how farm management adjusted to extreme weather events
and its effects on both the mean and risk of rice yield in China and the rest Asian
counties.> To limit the scope of this study, for the extreme weathers, we focus on

drought and flood events only because they are the most serious weather events faced

1 Until now, according to our knowledge, Di Falco and Veronesi (2012) is the only economic study that
attempts to formally measure the impact of farmers’ adaptation to climate change on downside yield

risk in Ethiopia.



in rice production in China.

To achieve the above goals, we have the following three specific objectives. The
first is to gain a better understanding on the extreme weather events (drought and
flood) in rice production and farmer’s responses to these events through adjusting
their farm management practices. The second objective of this article is to identify
whether the adoption of farm management measures is actually also responded to
extreme weather events. Previous empirical studies on adaptation issues generally fail
to do so. The third objective is to empirically examine the effects of the major farm
management measures, which have been identified as adaptation to extreme weather
events, on the mean, risk and downside risk (skewness) of rice yield. We approximate
downside risk exposure by the third moment of the crop yield distribution. An
increase in the skewness of yields means a reduction in downside risk (i.e., a decrease
in the probability of crop failure) (Di Falco and Chavas 2009).

We model adaptation as a selection process and estimate a simultaneous
equations model with endogenous switching to account for the heterogeneity in the
decision to adapt or not, and to capture the differential impact of adaptation on
adopters and nonadopters. Our results indicate that reseeding and fixing/cleaning
seedlings are the major farm management practice adapted by rice farmers in response
to extreme weather events. These farm management measures contribute to a
significant reduction in risk and downside risk of yield. This implies that farmer’s
adaptation at the early stage of rice production is important risk management measure.
The findings of this study have implications to the national adaptation plan and
farmer’s capacity building program in developing countries.

The rest of the article proceeds as follows. In the next section, we introduce the

data that are used in this study. The following section illustrates the occurrence of



extreme weather events and farmer’s responses in the studied areas. After explaining
the conceptual framework for examining the impact of adaptation, we present the
results on the farm management measures adapted to extreme weather events and
their impact on rice yield, focusing on the effects on mean, variance as well as
skewness (or downside risk) of rice yield. The final section concludes.
Data and Sampling Methods
Except the secondary data on drought and flood discussed in the next section are from
official report, all other data used in this study is a subset of data from a large-scale
household survey on impact of and adaptation to climate change in crop production
conducted in China in the end of 2012 and the early 2013. Based on regional crop
production systems and climate situations, the survey covered nine provinces ranged
from Jilin in the Northeast China to Hebei in the North China, Henan in the Central
China, Shandong and Jiangsu in the coastal area of the Eastern China, Anhui and
Jiangxi in the inland area of the Eastern China, Yunnan in Southwest China, and
Guangdong in the South China. Of which, five provinces surveyed have households
that produced rice in 2010-2012. While these five provinces may not fully represent
China’s rice production, they cover double-season dominated indica rice (early rice
and late rice) production region (Guandong and Jiangxi), single-season dominated
indica rice (middle rice) production region (Yunnan), single-season indica and japonic
mixed rice (middle rice) region (Henan), and single-season japonica rice (middle rice )
production region (Jiangsu).

Within each province, we followed three steps to select a set of counties that are
considered to be a nature experiment on the extreme weather shocks. First, we
selected all counties that had experienced the most serious drought or flood in one of

the past three years (2010-2012). According to China’ national standard for natural



disaster, the serious of drought or flood is divided into four categories: most serious,
serious, moderate and small. Second, based on the list of counties identified in the
step one, we kept only the counties that also experienced a “normal year” in one of the
past three years. However, the normal year here is a relative term because crop
production often faces various weather shocks during its growing season in any year.
It is better interpreted as a year with “average” weather situation in the long run and
the shocks from the weather is no more than the moderate (the level 3 of natural
disaster). The last, from the list of counties identified in the step two, three counties in
each province except for Jiangxi (10 counties) and Guangdong (6 counties) were
randomly selected for study.? This sampling approach allows us to examine
differences in the two distinct years (“serious disaster year” and “relatively normal
year”, from now on we use these two terms for easy of discussion) on farmers’
responses to the extreme weather events and the impacts of extreme weather events at
farm level. At end, we have a sample of 25 counties.

Townships and villages were further selected before we sampled the households
for interviews. Within each of 25 counties selected, all townships were ranged by
conditions of agricultural production infrastructure and divided into three groups. One
township was randomly selected from each group. The same approach was used to
select three villages from each township. Last, we randomly selected 10 households
for face-to-face interview in each sampled village. A total of 2250 households were
identified in the five studied provinces. In each household, two plots with grain
production were randomly selected and thus we have 4500 plots.

While a total of 2250 households were interviewed, some households did not

plant rice or only one plot was planted for rice, the final sample used in our analysis

2 Jiangxi and Guangdong had more counties included because we had funding from three projects in
these two provinces that allowed us to expand our survey samples.
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includes 1653 households with rice production and 2571 plots from 185 villages in 63
townships of 23 counties in five provinces. Because farmers in our samples also
planted double-season rice (early and late season rice), we analyze data by type of rice:
early season rice, middle season rice (or single-season rice), and later season rice. At
end, we have a total of 3754 observations®. For each observation in each plot, we
collected data in two time periods, the serious disaster year and the relatively normal
year in 2010-2012. The time (or year) differs among counties.

While the survey covers a wide range of information, our analysis uses only the
following data: 1) the characteristic of households and farm; 2) detailed plot level rice
production data, especially production input (e.g., land, labor, fertilizer, machinery,
crop varieties, pesticide, and others) and outputs in both serious disaster year and
relatively normal year, and soil quality; 3) farmer’s farm management measures that
may relate to adaptations to the extreme weather events (e.g., drought or flood events)
at plot level; and 4) availability of government service at villages on fighting extreme
weather events, which was collected from the village level survey.

Extreme Weather Events and Rice Farmer’s Responses

Overall, the frequency of extreme weather events such as drought and flood in studied
provinces has showed a rising trend. Specifically, drought in Henan and Yunnan has
become more serious, especially in Yunnan that has witnessed a number of extreme
drought shocks in recent years. The average annual crop area suffering from drought
in Yunnan increased from 0.47 million ha in the 1980s to 0.95 million ha in the 2000s,
with an average growth rate of 3.2% (NBSC 2012). On the other hand, the other three
provinces, Jiangxi, Guangdong and Jiangsu, have suffered more flooding problem

though the drought were also often presented (NBSC 2012).

® The number of observations is 1349 for early rice, 950 for middle rice, and 1455 for late rice.
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The household surveys also demonstrate the severity of the drought and flood
reported by farmers in the study areas. For example, as shown in table 1, percentage
of samples suffered from drought reached 41% in the serious disaster year (column 1).
As expected, much less frequency (16%) of drought occurred in relatively normal
year (column 2). Likewise, the percentage of samples affected by flood increased
from16% in relatively normal year to 34% in serious disaster year (row 5). In both
cases of drought and flood, the most frequency of disaster occurred in middle rice (60%
for drought and 54% for flood) in serious disaster year (column 1). Interestingly, yield
losses were quite similar when rice production faced the drought (23% to 24%) or
flood (25% to 24%) in either serious disaster or relatively normal year (columns 3 and
4). Because these results were reported by farmers, the numbers presented in table 1
obviously already accounted for farmer’s response to drought and flood.

In response to the rising trend of extreme weather events, farmers may take
different measures, including physical and non-physical measures. This study
specifically focuses on the non-physical measures such as farm management measures
as they usually are the most convenient ones that farmers can access during crop
growing season. Based on field survey, the most frequent farm management measures
used by farmers related to drought and flood are reseeding, fixing and cleaning
seedlings. On the average, 30% of samples used these measures (table 2). They are
crucial at the early stage of rice production when facing drought or flood. Importantly,
the field surveys also revealed that the adoption rate of the above farm management
measures was generally higher in serious disaster year (33%) than that in relatively
normal year (26%). While we are not sure to what extent of adopting farm
management measures was response to the drought and flood, we argue that, the

differences in adoption of farm management measures between the serious disaster



year and the relatively normal year must largely belong to farmer’s adaptation to the
more serious drought or flood. For example, the increment of 7% (33-26) of the
adoption of reseeding, fixing and cleaning seedlings represents the adaptation to deal
with the extreme weather events. Meantime, farmers also adopted other farm
management measures such as changing the rice varieties in the next season and
adjusting fertilize use (table 2). But the difference between the serious disaster year
and the relatively normal year was not significant.

Recent studies on determinants of adaptation have identified many factors that
affect farmers’ adaptation decisions to climate change. For example, based on a
survey in Ethiopia, Deressa et al. (2009) found that the characteristics of household
and access to extension influence farmer’s adaptation decisions. The empirical studies
in China found that, in addition to farm characteristics, local government policy
support against drought and access to government’s technical service against drought
also have significant effects on farmer’s adaptation (Chen et al. 2014; Wang et al.
2014). In this study, we also consider these factors when we develop the empirical
model to examine farmer’s adaptation behaviors and the effectiveness of the
adaptations in reducing the risk of extreme weather events. For farm management
measures, we focus on the most common measures that are used by farmers in our
study areas: reseeding, fixing and cleaning seedlings. For easy of discussion, we still
call these as farm management measures in the rest of this article.

Modeling and Estimation Procedure

We want to evaluate the impacts of farmer’s adaptation to the extreme weather
events through adjusting farm management practices on the mean yield, risk and
downside risk of rice yield. To do this, we start with a moment-based approach (see

Antle 1983), the first three sample moments of the production distribution of each
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farmer, namely the mean, risk (or variance), and downside risk (skewness) of rice
yield, are estimated. Then, we incorporate the estimated three moments in an
econometric model respectively as independent variables, and analyze how farmer’s
adaptation affects the above three outcomes.
Econometric Model of Mean Yield, Risk and Downside Risk

Following Antle (1983) and Antle and Goodger (1984), we rely on a
moment-based approach that allows a flexible representation of the production risk,
which has been widely used in agricultural economics to model the implications of
weather risk and risk management (Kim and Chavas 2003; Koundouri et al. 2006; and
Di Falco and Chavas 2009). In our study, the rice yield function in log (y) under
production uncertainty can be defined as:

1) y=f(AXx6)+u

where A is adaptation with a value of 1 if a farmer adopts the farm management
measures and 0 otherwise. x is a set of explanatory variables that include: a)
production inputs (labor, fertilizer, machinery, and others such as irrigation and
pesticides) specified in log and rice variety tolerant to flood (1 for the flood tolerant
variety and O otherwise); b) farm’s characteristics, including characteristics of
household head (e.g., gender, age and education), assets of household (land and
durable consumption assets per capita), soil quality by three categories (low, moderate
and high quality), and type of rice planted (early rice, middle rice and late rice); c)
year dummies for 2011 and 2012 to control for the effects of other variables that were
specifically related to each of the three years (2010, 2011, 2012); and d) province
dummies to control for the effects of province-specific factors that do not change over

time. 6, is a vector of parameters to be estimated. u is an error term that captures the

uncertainty, including weather, faced by farmers and satisfies E(u)=0.
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After estimating equation (1), we calculate the error term u=y—-f, (A Xx,6,) .
The central moments of the yield can be defined as E(y) = f,(A, x,6,) for the
expected value of yield, E[(u)’]= f,(A x,86,) for the variance of yield, and
E[(u)’]= f,(A x,8,) for the skewness of yield (Di Falco and Chavas 2009; Kim and

Chavas 2003).

Modeling Adaptation to Extreme Weather Events

Two econometric challenges arise in estimating the impact of farmer’s adaptation on
the three outcome variables. They are the endogeneity of the adoption of farm
management practice (A) and the sample selection bias due to unobserved
heterogeneity. To deal with sample selection bias problem, we employ an endogenous
switching regression model to identify the impacts of adjusting farm management
practices on the mean, variance and skweness of rice yield. In the switching
regression approach, the farmers are partitioned according to the adoption decision as
two regimes (e.g., adopters and nonadopters). The farmer will normally choose to take
adoptions when there is a net benefit by doing so (Abdulai and Huffman 2014). We

can therefore represent farmer i’s benefit by a latent variable A;" as:

@ A =g(xzDy)+n, A=1A>0]
where the variable z is an instrument variable (IV) for A that is going to be an
explanatory variable in the outcome equations (mean, variance and skewness of rice
yield) discussed below. Here we use whether farmer can access to government’s
technical service against drought or flood as IV. It is a dummy variable (1=yes; 0
otherwise) measured at village level. D includes two dummy variables, the serious
drought year (1=yes, 0 otherwise) and serious flood year (1=yes, 0 otherwise) measured at

county level. y denotes a vector of parameters to be estimated. The error term# with
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mean zero and variance 0,72 captures measurement errors and factors unobserved.
Given that farmers choose to either adopt the farm management measures or not
adopt them, a separate outcome function is specified for adopters and non-adopters as:
(3a) Regime 1 (Adopters): Q,=f(AXx,D,B)+¢g, if A=1
(3b) Regime 2 (Nonadopters):  Q,,=f(Ax,D,,)+¢, if A=0
where Qs and Q; are the outcome variables (mean of rice yield in log, variance of rice

in log, and skewness of rice yield) for adopters and nonadopters, respectively. The

vectors S, and £, are parameters to be estimated.
The three error termsz, &, , &, in equations (2), (3a) and (3b) are assumed to have

a trivariate normal distribution, with zero mean and the following covariance matrix:

2

O',I O-nl 6’72

2
L= 0, O Op

2

Oy, Oy Oy

whereVar () = o;”,\Var(s,) = ,°, Var(y) =o,?,Cov(e,&,) = 0y,
Cov(g,n7) = 0y,,and  Cov(e,,7) = o, . Note that since Qi and Qi are not observed

simultaneously, the covariance between ¢, and &, is actually not defined. The sample

selection bias may lead to nonzero covariances between the error terms of the

selection equation (2) and the outcome equation (3) (Maddala 1983). According to
Lee (1978), the expected values of the error terms &, and &, conditional on the sample

selection are given as:

Ag(x,2.D.7)/0)] _
" ®d[g(x,2,D,y)/ o]

(4)Ele; | A=1]=E(g |n>-09(x,2,D,7) =0, o1,

Aoxz0NIoN _

(®) El&,i | A =0]1=E(sy |7 <-9(x,2,D,7) = -0, 1-®[g(x,z,D,7)/c]
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where ¢(-) is the standard normal probability density function and ®(-) the standard
cumulative distribution function. The term of A,and 4, refers to the inverse Mills ratio
evaluated at g(x,z,D, »), which are incorporated into equation (3) to account for
sample selection bias. A more efficient method to estimate the endogenous switching
model is full information maximum likelihood (FIML) method (Lokshin and Sajaia

2004). For an adopter and nonadopter of the farm management measures, the

expected value of the outcome is calculated respectively as:
B)E(yy |A=D)=f(Ax,D,A)+ o1,k

(MNE( A =0)=f(AXD,B,)+0,,4
Accordingly, the expected value of the same adopter had he chosen not to adopt
the farm management measures, and of the same nonadopter had he chosen to adopt is

given respectively as:

@) E(yx | A =1)=f(AXD,f,)+0,,4

(9 E(yy | A =0)= f(AX.D,A)+0y,4

The change in the outcome due to the adoption of farm management measures
can then be specified as the difference between adoption and nonadoption (Di Falco et

al. 2011). These changes are termed the average treatment effect on the treated (ATT)

as the difference between (6) and (8):
(10) ATT =E[y,; | A =1]-Ely, A =1]
= f(Ax,D,B8)—- T (AX,D,f,)+ (o, —0,,) A
Similarly, we can also calculate the average effect of the treatment on the
untreated (ATU) for the farmers that actually did not adopt as the difference between
(9) and (7):

(11) ATU =E[y, | A =01-E[y,|A =0]
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=f(AxD,B)-f(AXD,p)+ ((7177 - O-zn);izi
Since sample selection is taken into account through the terms (4, 4, ) of equations

(10) and (11), ATT and ATU generates unbiased estimates of the effects of adjusting
farm management practices.
Econometric Estimation
Here we present the estimation results of equations (2), (3a) and (3b).
Estimation of Mean Rice Yield Function
We begin by estimating the determinants of adoption of farm management measures
and their impact on the mean rice yield. The results for the selection and mean yield
equations that are jointly estimated by FIML approach are reported in table 3. The
first column reports the estimates of the selection function (1). The second and third
columns present, respectively, the estimated coefficients of mean rice yield functions
(3a) and (3b) for farmers that did and did not adopt farm management measures. Of
significant interest in the results of selection function is the effects of the serious flood
and drought on the adoption decision. Previous studies found that there is no strong
relationship between climate change variables and farmer’s adaption (e.g., Di Falco et
al. 2011). Our results show that comparing with the normal year, more farmers tend to
adjust their farm management practices when they face the serious drought or flood
(rows 1 and 2, table 3). This result empirically confirms that the adoption of farm
management measures identified in this study is actually a type of adaptation to
extreme weather events such as drought and flood. To simplify discussion, therefore,
we also use the term of adaptation to replace the adoption of farm management
measures in the rest of this article.

We also find that the impacts of many inputs and farm’s characteristics on

farmer’s adaptation are statistically significant (column 1, table 3). The inputs such as
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labor, fertilizer, other inputs and flood-tolerant variety have significant positive
effects on the probability of adapting the farm management measures. The estimated
coefficient for male headed households is negative and statistically significant,
suggesting that women tend to be more motivated to adjust farm management
practices related to the extreme events. Both land per capita and durable consumption
assets per capita have significant and positive effects on adaptation. This result
confirms the concerns that the poor may be more vulnerable in face of climatic shocks
(Wang et al. 2014).

Instrument variable performances well. It has significant and positive effect on
adaptation. This suggests that farmers in the village with access to government’s
technical service against drought or flood were found to be more likely to take
adaptation. To test whether this IV does not directly affect rice yield but has indirect
effect on rice yield through its effect on adaptation, the rice yield among farmers that
did not adapt is regressed on the variable of the IV along with all other variables. The
t test statistic is 1.13, suggesting evidence supporting the validity of the IV.

The estimates presented in the last two columns of table 3 account for the
endogenous switching in the mean rice yield function. Both the estimated coefficients

of the correlation terms p; are not statistically significant (bottom row, table 3). p; (i

=1, 2) reflects the correlation coefficient between the error term of the selection
equation (2) and the error term of outcome equations (3a) and (3b), respectively
(Lokshin and Sajaia 2004). Hence the results imply that the hypothesis of absence of
sample selection bias may not be rejected.

In yield equations, most of estimated coefficients are statistically significant with
expected signs. For example, rice yield is lower for both adapters and non-adopters

when the extreme weather events are presented. In particular, the impact of flood on
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the rice yield of nonadopters is larger than that of the adopters. These results suggests
that the flood events are serious than drought in rice production. Adopters suffer less
yield loss than non-adopters, indicating the effective impact of adaptation. Exception
is found for adopters in the serious drought year, the estimated coefficient is not
statistically significant. This may be due to the fact that rice is generally planted in the
areas where availability of irrigation water is more ensured. Less case of significant
coefficients for input variables (rows 3-7, table 3) is consistent with previous findings
on intensive or excessive use of production inputs in China (e.g., Huang et al., 2008;
Holst et al. 2013).

In terms of the farm’s characteristics, most of estimated coefficients are
statistically significant. The household headed by male, youth and more educated
people tends to improve rice yield for both adopters and nonadopters (in the middle of
table 3). The negative impact of land per capita suggests that larger farms generally
have lower rice yield, a finding similar to many studies in the literature (Abudulai and
Huffman 2014; Chen et al. 2011). Other variables such as wealthy (durable
consumption assets per capita) and better soil quality also have positive impact on rice
yield. The order of yield from early rice to middle rice and late rice is also expected.
Estimation of risk functions

The estimation results of farmer’s adaptation and its impact on variance and
skewness of rice yield are included in tables A2 and A3 in Appendix. Because the
results on the selection (or adaptation) equation (column 1, tables A2 and A3) are
similar with those presented in table 3, here we focus our discussion on the estimates
of the variance and skewness functions.

The estimated results show that the covariance term p; in risk functions for both

adopters and nonadopters are statistically significant (bottom rows, tables A2 and A3).
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Unlike the estimates of mean of rice yield presented in table 3, the estimation for both
the variance and skewness function rejects the hypothesis of absence of sample
selection bias. This suggests that adaptation would not have the same effect on rice
yield risk for the nonadopters if they would take the adaptation due to unobserved
heterogeneity (Abdulai and Huffman 2014).

Most of estimated coefficients in the variance function are statistically significant
(Tables A2). The signs of many coefficients reveal some interesting findings. For
example, the serious flood is found to have statistically positive impact on the
variance of rice yield for nonadaoptors, but no significant impact for adopters (row 2,
table 2A). This suggests that the adaptation does mitigate rice yield risk or variance
when the serious flood occurred. While the impact of the serious drought on the
variance is positive but not statistically significant. This may be due to the fact that
rice is produced in the regions with good irrigation infrastructure. The impacts of
several inputs and farm’s characteristics on the variance of yield also differ (in the
middle of table 2A).

On the the skewness of rice yield, we first test normality of the
error term u with the null hypothesis that the yield distribution is symmetric using a
Wald statistic. The mean skewness of u is -0.35 and the statistic is statistically
different from zero with a p-value of 0.000. This implies that the distribution of yield
is skewed to the left, corresponding to a significant exposure to downside risk. In this
case, if the skewness increasingly negative, the probability of crop failure would
increase (Torriani et al. 2007).

The results of estimated skewness function suggest both of the serious flood and
drought have significantly negative effects on the skewness of rice yield and thus

increase the exposure to downside risk for both adopters and nonadopters (rows 1 and
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2, table A3). We also find that the inputs such as labor and machinery and better soil
quality have difference effects on the skewness of yield for adopter and nonadoptes
(in the middle of table A3). The differences in the coefficients of both the variance
and skewness function between adopters and nonadopters illustrate the presence of
heterogeneity in the sample.
Effects of adaptation on mean, variance and skewness of rice yield

The estimates for the average treatments effects (ATT) and (ATU) on the mean,
variance and skewness of rice yield are presented in table 4. The results reveal that the
adaptation significantly increases rice yield (rows 1 and 2). Unlike the mean
differences presented in table A1, which may confound the impact of farmer’s
adaptation on yield with the influence of other characteristics, these average treatment
effect estimates account for selection bias arising from the fact that adopters and
nonadopters may be systematically different. Specifically, in the counterfactual case
(8), farmers who actually taken adaptation would have produced about 663 kg/ha (that
is about 14%) less if they did not adapt (row 1). In the counterfactual case (9) that
farmers that did not adapt, they would have produced about 74 kg/ha (that is about 2%)
more if they had adapted (row 2). These findings suggest that adaptation to the
extreme weather events through farm management measures does increase rice yield.

Table 4 also present the average treatments effects of adaptation on the variance
and skewness of rice yield. We find that farm management measures taken by farmers
in response to extreme weather events significantly decreased both variance (rows 3-4)
and downside risk of rice yield (rows 5-6). For example, the risk (variance measure)
faced by farmers who actually adapted would have an increased 0.021 unit (that is
about 43%) if they did not adapt (row 3). The impact of taking adaptation measures

on the skweness is similar to its impact on the variance case. The downside risk faced
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by farmers who actually adapted farm management measures would have an increased
of 0.302 unit (that is about 69%) if they did not adapt (row 5). These estimates show
that farmer’s adaptation to extreme weather events hedges against the risk of crop
failure.
Conclusions

Using data from a survey conducted in five provinces in China, this article
investigated the contribution of the adoption of farm management measures in
response to the extreme weather events on the mean, variance and downside risk of
rice yield. The survey results show that more farmers adjust their farm management
practices (e.g., reseeding, fixing and cleaning seedlings) in the serious drought and
flood year than in the normal year. The econometric analysis confirms that farmers do
respond to the extreme weather events by adopting farm management measures. The
extent of adopting farm management measures is closely correlated with crop input
levels and varies among households with differences in the characteristics of both
farmers and their farms. Moreover, improving farmers’ access to government’s
service against drought and flood facilitates farmers to adjust their farm management
practices.

The existing farm management measures can help farmer’s adaptation to the
extreme weather events. The adaptation through adjusting farm management
contributes to the increase in the mean of rice yield and the reduction of risks,
including the variance and downside risk of rice yield.

The findings from this study have several policy implications. First, currently,
the plans for enhancing the national adaptation strategies have mainly focused on new
investment and new technology (IPCC 2014). While these are important, the national

adaptation plans should also pay attention to the existing farm practices (e.g., the farm
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management measures in this study) that can reduce climate risks and can be easily
adopted by farmers. However, our survey shows that, even during serious drought and
flood years, only one third of farmers are able to use farm management measures to
cope with the extreme weather events. As the cost of this kind of adaptation is low,
potential to scale up it to more farmers is high. Second, our results also suggest that
the government service against drought and flood is of paramount importance in
facilitating farmer’s adaptation. However, only one fourth of rice farmers in China
can access to this service. Clearly, there is great room to incorporate climate change
adaptation service into the public extension system in China. The last but not least, as
farmers have been suffering the increasing frequency and severity of the extreme
weather events in many developing countries, we believe that the findings of this
study also have implications to other countries in terms of national adaptation plan

and farmer’s crop risk management.
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Table 1. Percentage of Plots Affected by the Extreme Weather events (drought

or flood) and Yield Loss Reported by Farmers in 2010-2012

Plots affected by drought or Yield loss when suffered
flood (%) from drought or flood (%)
In serious In relatively In serious In relatively
disaster year normal year disaster year  normal year
Drought @ 41 16 24 23
Early rice 37 15 26 26
Middle rice 60 22 19 21
Late rice 49 20 26 22
Flood " 34 16 25 24
Early rice 44 25 30 27
Middle rice 54 19 17 21
Late rice 22 11 23 20

Source: Authors’ survey.
a: A total of 1449 observations in 12 counties.b: A total of 2305 observations in 11

counties.
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Table 2. Percentage of Plots with Major Farm Management Measures Adopted

by Rice Farmers in 2010-2012

Reseeding, fixing or Changing varieties in the
cleaning seedlings next season or adjusting
fertilize use
Serious disaster year 33 5
Relatively normal year 26 4
Average 30 4.5

Source: Authors’ survey.

Note: Sample includes 3754.
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Table 3. Estimations of Farmer’s Adaptation and Its Impact on Mean Rice Yield

Rice yield (log)

Selection Adopters Nonadopters
Serious disaster years
Drought 0.117** 0.009 -0.124%***
(2.218) (0.338) (5.424)
Flood 0.277*** -0.095*** -0.273***
(6.296) (4.611) (11.745)
Inputs
Labor (log) 0.100*** -0.000 0.016
(5.189) (0.040) (1.634)
Fertilizer (log) 0.087*** 0.079*** 0.021
(3.166) (4.154) (1.331)
Machinery (log) 0.001 0.000 0.014%***
(0.154) (0.036) (3.839)
Other inputs (log) 0.031*** 0.010 0.015**
(2.640) (1.486) (2.513)
Flood-tolerant variety 0.122*** 0.049** 0.015
(3.447) (2.469) (0.916)
Farm’s characteristics
Male of household head -0.245** 0.147* 0.128*
(2.058) (1.648) (1.674)
Age of household head -0.003 -0.003*** -0.003***
(1.642) (2.960) (3.469)
Education of household 0.007 0.001 0.008***
(1.326) (0.291) (2.908)
Land per capita 0.138*** -0.002 -0.028**
(5.843) (0.137) (2.130)
Durable consumption assets per capita 0.001*** 0.001*** 0.001***
(3.648) (3.519) (5.950)
Moderate soil quality 0.010 0.033 0.098***
(0.203) (1.602) (3.989)
High soil quality -0.034 0.086*** 0.146***
(0.603) (3.187) (5.287)
Middle rice -0.046 0.218*** 0.257***
(0.991) (8.307) (10.848)
Late rice -0.050 0.079*** 0.144***
(1.384) (3.661) (7.696)
D2011 0.174*** 0.220*** 0.131***
(3.324) (5.385) (4.620)
D2012 0.112** 0.143*** 0.113***
(2.272) (4.491) (5.088)
Instrument variable
Access to government’s technical 0.108***
service against drought or flood (2.789)
Constant -0.479 8.055*** 8.243***
(1.483) (36.077) (49.539)
Province dummies Yes Yes Yes
o 0.382** 0.542**
[0.047] [0.023]
P 0.085 -0.045
[0.225] [0.040]

Note: Absolute z-values in parentheses and p-value in square brackets. *, ** and *** represent the
statistically significant at 10%, 5% and 1%, respectively. The sample is 7508 (3754x2 years).
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Table 4. Impacts of Farm Management Measures on Mean, Risk and Downside Risk

Exposure of Rice Yield

Decision stage
Sub-samples

Toadopt Nottoadopt  Treatment effects

Average expected rice yield (kg/ha)
Rice plots that adopted 5571 4908 TT=663***

Rice plots that did not adopt 5161 5086 TU= 74%**

Average expected variance (risk)
Rice plots that adopted 0.028 0.049 TT=-0.021***

Rice plots that did not adopt 0.016 0.035 TU=-0.019***

Average expected skewness (downside
risk exposure)
Rice plots that adopted -0.136 -0.438 TT=0.302***

Rice plots that did not adopt -0.173 -0.487 TU= 0.314***

Note: TT represents the effect of the treatment (i.e., adoption) on the treated (i.e., farmers
that adopted). TU represents the effect of the treatment (i.e., adoption) on the untreated (i.e.,

farmers that did not adopt).
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Appendix

Table 1A. Descriptive Statistics of Variables by Adopters and Nonadopters of Farm

Management Measures

Non-

Variables Total Adopters Diff.
adopters
Rice yield (kg/ha) 5631.13 5854.71  5537.50 317.21***
Variance of rice yield 0.25 0.15 0.30 -0.15%**
Skewness of rice yield -0.35 -0.14 -0.44 0.30***
Serious flood year (1=yes; 0=no) 0.31 0.36 0.29 0.07***
Serious drought year (1=yes; 0=no) 0.19 0.21 0.19 0.02**
Labor (days/ha) 125.41 138.72 119.83  18.89***
Fertilizer (kg/ha) 405.56 413.97 402.03  11.94***
Machinery (yuan/ha) 1807.27 1778.93  1819.14  -40.21*
Other inputs (yuan/ha) 1173.78  1235.09 1148.11 86.98***
Flood-tolerant variety (1=yes; 0=no) 0.28 0.32 0.26 0.06***
Male of household head (1= male; 0= female)  0.98 0.98 0.98 0.00
Age of household head (years ) 54.13 53.88 54.23 -0.35
Education of household head (years ) 6.63 6.78 6.57 0.21%**
Land per capita (ha) 0.34 0.40 0.32 0.08***
5uu;r?)ble consumption assets per capita (1,000 23.98 26.94 2973 4 9 *x
High soil quality (1=yes; 0=no) 0.22 0.21 0.23 -0.02
Moderate soil quality (1=yes; 0=no) 0.66 0.67 0.65 0.02
Middle rice (1=yes; 0=no) 0.25 0.26 0.25 0.01
Late rice (1=yes; 0=no) 0.39 0.38 0.39 -0.01
2012 (1=yes; 0=no) 0.47 0.44 0.49 -0.05***
2011 (1=yes; 0=no) 0.30 0.35 0.28 0.07***
Access to government’s technical service 0.24 026 023 0.03%*

against drought or flood (1=yes; 0=no)

Note: the total observations are 7508.
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Table 2A. Estimations of Farmer’s Adaptation and Its Impact on Variance of Rice Yield

Variance of rice yield (log)

Selection Adopters Nonadopters
Serious disaster years
Drought 0.065 0.254 0.167
(1.287) (1.202) (1.335)
Flood 0.214*** -0.225 0.662***
(5.197) (1.351) (6.385)
Inputs
Labor (log) 0.076*** -0.236*** 0.130***
(4.430) (3.320) (2.993)
Fertilizer (log) 0.045* -0.000 -0.032
1.777) (0.004) (0.551)
Machinery (log) -0.001 -0.021 -0.064***
(0.194) (0.901) (4.573)
Other inputs (log) 0.030*** -0.156*** 0.025
(2.726) (3.225) (0.973)
Flood-tolerant variety 0.081** -0.282** 0.046
(2.500) (2.130) (0.557)
Farm’s characteristics
Male of household head -0.211* 0.537 -0.886***
(1.949) (1.236) (3.122)
Age of household head -0.002 0.011* 0.001
(1.518) (1.693) (0.313)
Education of household 0.008 -0.045** -0.016
(1.599) (2.166) (1.240)
Land per capita 0.116*** -0.346*** 0.336***
(5.379) (4.079) (5.783)
Durable consumption assets per capita 0.001*** -0.005*** 0.002***
(4.019) (3.550) (2.627)
Moderate soil quality 0.019 0.023 -0.281**
(0.434) (0.128) (2.524)
High soil quality -0.055 0.399* -0.538***
(1.068) (1.891) (4.227)
Middle rice -0.075* -0.208 -1.034***
(1.745) (1.188) (9.706)
Late rice -0.054 -0.199 -0.556***
(1.605) (1.446) (6.654)
D2011 0.089* -0.890*** -0.946***
(1.839) (4.443) (7.824)
D2012 0.068 -0.965*** -1.129%**
(1.498) (5.286) (10.195)
Instrument variable
Access to government’s technical 0.085***
service against drought or flood (4.229)
Constant -0.317 -0.512 0.412
(1.093) (0.442) (0.494)
Province dummies Yes Yes Yes
o 3.810* 2.855**
[0.085] [0.035]
P -0.965*** 0.908***
[0.004] [0.006]

Note: Absolute z-values in parentheses and p-value in square brackets. *, ** and *** represent the
statistically significant at 10%, 5% and 1%, respectively. The sample is 7508.
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Table 3A. Estimations of Farmer’s Adaptation and Its Impact on Skewness of Rice Yield

Skewness of rice yield

Selection Adopters Nonadopters
Serious disaster years
Drought 0.115** -0.130*** -0.201**
(2.175) (2.724) (2.284)
Flood 0.278*** -0.347%** -0.781***
(6.327) (4.435) (8.462)
Inputs
Labor (log) 0.101*** -0.059* 0.089**
(5.233) (1.824) (2.159)
Fertilizer (log) 0.085*** 0.079* -0.012
(3.112) (1.943) (0.207)
Machinery (log) 0.001 -0.017*** 0.045%**
(0.188) (2.967) (3.320)
Other inputs (log) 0.033*** -0.015 0.028
(2.810) (1.106) (1.074)
Flood-tolerant variety 0.124*** 0.066 0.043
(3.501) (1.155) (0.642)
Farm’s characteristics
Male of household head -0.245** 0.326 0.044
(2.066) (0.858) (0.169)
Age of household head -0.003* -0.003 -0.008***
(1.664) (0.757) (2.603)
Education of household 0.007 0.000 0.006
(1.328) (0.045) (0.503)
Land per capita 0.138*** -0.056 -0.076
(5.844) (1.096) (1.365)
Durable consumption assets per capita 0.001*** 0.001* 0.002***
(3.656) (1.790) (3.106)
Moderate soil quality 0.010 -0.087** 0.150
(0.201) (2.504) (1.451)
High soil quality -0.034 -0.120* 0.070
(0.602) (1.796) (0.578)
Middle rice -0.042 0.408*** 0.589***
(0.897) (3.795) (5.227)
Late rice -0.070* 0.262*** 0.466***
(1.927) (3.282) (6.048)
D2011 0.175*** 0.482*** 0.505***
(3.387) (4.460) (4.079)
D2012 0.112** 0.324*** 0.422%**
(2.285) (3.762) (4.591)
Instrument variable
Access to government’s technical 0.105***
service against drought or flood (2.854)
Constant -0.421 -0.781 -1.457**
(1.297) (1.134) (2.441)
Province dummies Yes Yes Yes
o, 1.226* 2.299**
[0.099] [0.040]
i 0.024** -0.013**
[0.027] [0.033]

Note: Absolute z-values in parentheses and p-value in square brackets. *, ** and *** represent the
statistically significant at 10%, 5% and 1%, respectively. The sample is 7508.
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