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Farmer’s Adaptation to Extreme Weather Events through Farm Management 

and Its Impacts on the Mean and Risk of Rice Yield in China 

 

Abstract:  

We explore how rice farmers adjust their farm management practices in response to 

extreme weather events and determine whether their adjustments affect the mean, risk 

and downside risk of rice yield. Based on a unique data from a survey of 1653 rice 

farmers in China, our econometric analyses show that the severity of drought and 

flood in the study areas significantly increases both the risk and downside risk of rice 

yield. The adopted farm management measures do respond to the serious drought and 

flood and can be considered as adaptation to climate change, an issue often been 

ignored in the previous studies. Then we model adaptation and its impact on rice yield 

on adopters and nonadopters. Based on a moment-based approach, we show that the 

adaptation through farm management measures significantly increases rice yield and 

reduces risk and downside risk of rice yield. The article concludes with policy 

implications. 
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Farmer’s Adaptation to Extreme Weather Events through Farm Management 

and Its Impacts on the Mean and Risk of Rice Yield in China 

 

With the increasingly serious challenge of extreme weather events, how to adapt to 

the challenge has addressed great attention (Howden et al., 2007; IPCC 2014). The 

international community has called for incorporating climate change adaptation into 

national development plans (IPCC 2014; World Bank 2010). This is especially urgent 

for developing country farmers who are expected to bear the brunt of climate 

variability impacts (Seo and Mendelsohn 2008). In China, a national program to adapt 

to climate change was issued at the end of 2013, which highlights the adaptation 

strategy in agriculture and farmers’ adaptive capacity building.  

While a large body of literature on the farmer’s adaptation to climate change has 

emerged (Chen, et al. 2014; Deressa et al. 2009; Seo and Mendelsohn 2008), little 

study has been undertaken to assess the effectiveness of farm management and other 

adaptation practices. Exceptions include Yesuf et al. (2008) and Di Falco et al. (2011). 

These studies treated farmers’ adoptions as adaptation measures  and analyzed the 

impact of adaptation on crop yield. Much studies have also analyzed agricultural risk, 

including the mean-variance investigation of input effects (e.g. Abedullah and Pandey 

2004; Just and Pope 1979) and technology adoption (Foudi and Erdlenbruch 2012). 

However, it remains unclear that whether these adoptions lead to mitigation of the 

impact of extreme weather events.  

Importantly, the influence of adaptation on downside risk exposure (e.g. on the 

probability of crop failure) remains poorly understood. In general, downside risk is 

the risk located in the lower tail of the payoff distribution (Kim et al. 2014). While 

useful information about the risk effects of input adjustments can be obtained from 

understanding their impact on yield variance, analyzing the variance effect alone 
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would not enable one to distinguish between unexpected bad and good events (Di 

Falco and Veronesi 2012). Under the rising risks associated with climate variability, 

this has motivated research on the role of downside risk in risk management in crop 

production (Kim and Chavas 2003).  

Given the severity of extreme weather events and the potential role of farm 

management in mitigating risks, several questions are raised. What are major farm 

management measures that are related to climate change and have been adopted by 

farmers? To what extent can these measures be considered as farmer’s adaptation to 

climate variability? Are there adaptation measures can lead to a win-win benefit by 

lowering crop yield risks and also increasing the mean yield? Answers to these 

questions are critical not only for a better understanding of farmer’s adaptation to 

extreme weather events, but also for providing empirical evidence for policy makers 

in the formulation of their climate change adaptation plan and investment.  

The overall goals of this study are to explore how rice farmers adjust their farm 

management practices to extreme weather events and to determine whether their 

adjustments reduce rice yield loss and risk as well as downside risk in China. Rice is 

the main food staple in China that produced nearly 30% of rice in the world in recent 

years (FAOSTAT, 2011). The rice production loss due to drought and flood has been 

rising over time (NBSC 2012). To the best of our knowledge, there is no empirical 

study that has investigated how farm management adjusted to extreme weather events 

and its effects on both the mean and risk of rice yield in China and the rest Asian 

counties.
1
 To limit the scope of this study, for the extreme weathers, we focus on 

drought and flood events only because they are the most serious weather events faced 

                                                        
1
 Until now, according to our knowledge, Di Falco and Veronesi (2012) is the only economic study that 

attempts to formally measure the impact of farmers’ adaptation to climate change on downside yield 

risk in Ethiopia.  
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in rice production in China. 

To achieve the above goals, we have the following three specific objectives. The 

first is to gain a better understanding on the extreme weather events (drought and 

flood) in rice production and farmer’s responses to these events through adjusting 

their farm management practices. The second objective of this article is to identify 

whether the adoption of farm management measures is actually also responded to 

extreme weather events. Previous empirical studies on adaptation issues generally fail 

to do so. The third objective is to empirically examine the effects of the major farm 

management measures, which have been identified as adaptation to extreme weather 

events, on the mean, risk and downside risk (skewness) of rice yield. We approximate 

downside risk exposure by the third moment of the crop yield distribution. An 

increase in the skewness of yields means a reduction in downside risk (i.e., a decrease 

in the probability of crop failure) (Di Falco and Chavas 2009).  

We model adaptation as a selection process and estimate a simultaneous 

equations model with endogenous switching to account for the heterogeneity in the 

decision to adapt or not, and to capture the differential impact of adaptation on 

adopters and nonadopters. Our results indicate that reseeding and fixing/cleaning 

seedlings are the major farm management practice adapted by rice farmers in response 

to extreme weather events. These farm management measures contribute to a 

significant reduction in risk and downside risk of yield. This implies that farmer’s 

adaptation at the early stage of rice production is important risk management measure. 

The findings of this study have implications to the national adaptation plan and 

farmer’s capacity building program in developing countries. 

The rest of the article proceeds as follows. In the next section, we introduce the 

data that are used in this study. The following section illustrates the occurrence of 
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extreme weather events and farmer’s responses in the studied areas. After explaining 

the conceptual framework for examining the impact of adaptation, we present the 

results on the farm management measures adapted to extreme weather events and 

their impact on rice yield, focusing on the effects on mean, variance as well as 

skewness (or downside risk) of rice yield. The final section concludes. 

Data and Sampling Methods  

Except the secondary data on drought and flood discussed in the next section are from 

official report, all other data used in this study is a subset of data from a large-scale 

household survey on impact of and adaptation to climate change in crop production 

conducted in China in the end of 2012 and the early 2013. Based on regional crop 

production systems and climate situations, the survey covered nine provinces ranged 

from Jilin in the Northeast China to Hebei in the North China, Henan in the Central 

China, Shandong and Jiangsu in the coastal area of the Eastern China, Anhui and 

Jiangxi in the inland area of the Eastern China, Yunnan in Southwest China, and 

Guangdong in the South China. Of which, five provinces surveyed have households 

that produced rice in 2010-2012. While these five provinces may not fully represent 

China’s rice production, they cover double-season dominated indica rice (early rice 

and late rice) production region (Guandong and Jiangxi), single-season dominated 

indica rice (middle rice) production region (Yunnan), single-season indica and japonic 

mixed rice (middle rice) region (Henan), and single-season japonica rice (middle rice ) 

production region (Jiangsu).  

Within each province, we followed three steps to select a set of counties that are 

considered to be a nature experiment on the extreme weather shocks. First, we 

selected all counties that had experienced the most serious drought or flood in one of 

the past three years (2010-2012). According to China’ national standard for natural 
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disaster, the serious of drought or flood is divided into four categories: most serious, 

serious, moderate and small. Second, based on the list of counties identified in the 

step one, we kept only the counties that also experienced a “normal year” in one of the 

past three years. However, the normal year here is a relative term because crop 

production often faces various weather shocks during its growing season in any year. 

It is better interpreted as a year with “average” weather situation in the long run and 

the shocks from the weather is no more than the moderate (the level 3 of natural 

disaster). The last, from the list of counties identified in the step two, three counties in 

each province except for Jiangxi (10 counties) and Guangdong (6 counties) were 

randomly selected for study.
2
 This sampling approach allows us to examine 

differences in the two distinct years (“serious disaster year” and “relatively normal 

year”, from now on we use these two terms for easy of discussion) on farmers’ 

responses to the extreme weather events and the impacts of extreme weather events at 

farm level. At end, we have a sample of 25 counties. 

Townships and villages were further selected before we sampled the households 

for interviews. Within each of 25 counties selected, all townships were ranged by 

conditions of agricultural production infrastructure and divided into three groups. One 

township was randomly selected from each group. The same approach was used to 

select three villages from each township. Last, we randomly selected 10 households 

for face-to-face interview in each sampled village. A total of 2250 households were 

identified in the five studied provinces. In each household, two plots with grain 

production were randomly selected and thus we have 4500 plots. 

While a total of 2250 households were interviewed, some households did not 

plant rice or only one plot was planted for rice, the final sample used in our analysis 

                                                        
2
 Jiangxi and Guangdong had more counties included because we had funding from three projects in 

these two provinces that allowed us to expand our survey samples. 
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includes 1653 households with rice production and 2571 plots from 185 villages in 63 

townships of 23 counties in five provinces. Because farmers in our samples also 

planted double-season rice (early and late season rice), we analyze data by type of rice: 

early season rice, middle season rice (or single-season rice), and later season rice. At 

end, we have a total of 3754 observations
3
. For each observation in each plot, we 

collected data in two time periods, the serious disaster year and the relatively normal 

year in 2010-2012. The time (or year) differs among counties.  

While the survey covers a wide range of information, our analysis uses only the 

following data: 1) the characteristic of households and farm; 2) detailed plot level rice 

production data, especially production input (e.g., land, labor, fertilizer, machinery, 

crop varieties, pesticide, and others) and outputs in both serious disaster year and 

relatively normal year, and soil quality; 3) farmer’s farm management measures that 

may relate to adaptations to the extreme weather events (e.g., drought or flood events) 

at plot level; and 4) availability of government service at villages on fighting extreme 

weather events, which was collected from the village level survey.  

Extreme Weather Events and Rice Farmer’s Responses 

Overall, the frequency of extreme weather events such as drought and flood in studied 

provinces has showed a rising trend. Specifically, drought in Henan and Yunnan has 

become more serious, especially in Yunnan that has witnessed a number of extreme 

drought shocks in recent years. The average annual crop area suffering from drought 

in Yunnan increased from 0.47 million ha in the 1980s to 0.95 million ha in the 2000s, 

with an average growth rate of 3.2% (NBSC 2012). On the other hand, the other three 

provinces, Jiangxi, Guangdong and Jiangsu, have suffered more flooding problem 

though the drought were also often presented (NBSC 2012). 

                                                        
3
 The number of observations is 1349 for early rice, 950 for middle rice, and 1455 for late rice. 
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The household surveys also demonstrate the severity of the drought and flood 

reported by farmers in the study areas. For example, as shown in table 1, percentage 

of samples suffered from drought reached 41% in the serious disaster year (column 1). 

As expected, much less frequency (16%) of drought occurred in relatively normal 

year (column 2). Likewise, the percentage of samples affected by flood increased 

from16% in relatively normal year to 34% in serious disaster year (row 5). In both 

cases of drought and flood, the most frequency of disaster occurred in middle rice (60% 

for drought and 54% for flood) in serious disaster year (column 1). Interestingly, yield 

losses were quite similar when rice production faced the drought (23% to 24%) or 

flood (25% to 24%) in either serious disaster or relatively normal year (columns 3 and 

4). Because these results were reported by farmers, the numbers presented in table 1 

obviously already accounted for farmer’s response to drought and flood.  

In response to the rising trend of extreme weather events, farmers may take 

different measures, including physical and non-physical measures. This study 

specifically focuses on the non-physical measures such as farm management measures 

as they usually are the most convenient ones that farmers can access during crop 

growing season. Based on field survey, the most frequent farm management measures 

used by farmers related to drought and flood are reseeding, fixing and cleaning 

seedlings. On the average, 30% of samples used these measures (table 2). They are 

crucial at the early stage of rice production when facing drought or flood. Importantly, 

the field surveys also revealed that the adoption rate of the above farm management 

measures was generally higher in serious disaster year (33%) than that in relatively 

normal year (26%). While we are not sure to what extent of adopting farm 

management measures was response to the drought and flood, we argue that, the 

differences in adoption of farm management measures between the serious disaster 
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year and the relatively normal year must largely belong to farmer’s adaptation to the 

more serious drought or flood. For example, the increment of 7% (33-26) of the 

adoption of reseeding, fixing and cleaning seedlings represents the adaptation to deal 

with the extreme weather events. Meantime, farmers also adopted other farm 

management measures such as changing the rice varieties in the next season and 

adjusting fertilize use (table 2). But the difference between the serious disaster year 

and the relatively normal year was not significant.  

Recent studies on determinants of adaptation have identified many factors that 

affect farmers’ adaptation decisions to climate change. For example, based on a 

survey in Ethiopia, Deressa et al. (2009) found that the characteristics of household 

and access to extension influence farmer’s adaptation decisions. The empirical studies 

in China found that, in addition to farm characteristics, local government policy 

support against drought and access to government’s technical service against drought 

also have significant effects on farmer’s adaptation (Chen et al. 2014; Wang et al. 

2014). In this study, we also consider these factors when we develop the empirical 

model to examine farmer’s adaptation behaviors and the effectiveness of the 

adaptations in reducing the risk of extreme weather events. For farm management 

measures, we focus on the most common measures that are used by farmers in our 

study areas: reseeding, fixing and cleaning seedlings. For easy of discussion, we still 

call these as farm management measures in the rest of this article.  

Modeling and Estimation Procedure 

We want to evaluate the impacts of farmer’s adaptation to the extreme weather 

events through adjusting farm management practices on the mean yield, risk and 

downside risk of rice yield. To do this, we start with a moment-based approach (see 

Antle 1983), the first three sample moments of the production distribution of each 
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farmer, namely the mean, risk (or variance), and downside risk (skewness) of rice 

yield, are estimated. Then, we incorporate the estimated three moments in an 

econometric model respectively as independent variables, and analyze how farmer’s 

adaptation affects the above three outcomes.  

Econometric Model of Mean Yield, Risk and Downside Risk 

Following Antle (1983) and Antle and Goodger (1984), we rely on a 

moment-based approach that allows a flexible representation of the production risk, 

which has been widely used in agricultural economics to model the implications of 

weather risk and risk management (Kim and Chavas 2003; Koundouri et al. 2006; and 

Di Falco and Chavas 2009). In our study, the rice yield function in log (y) under 

production uncertainty can be defined as: 

(1) uxAfy  ),,( 11   

where A is adaptation with a value of 1 if a farmer adopts the farm management 

measures and 0 otherwise. x is a set of explanatory variables that include: a) 

production inputs (labor, fertilizer, machinery, and others such as irrigation and 

pesticides) specified in log and rice variety tolerant to flood (1 for the flood tolerant 

variety and 0 otherwise); b) farm’s characteristics, including characteristics of 

household head (e.g., gender, age and education), assets of household (land and 

durable consumption assets per capita), soil quality by three categories (low, moderate 

and high quality), and type of rice planted (early rice, middle rice and late rice); c) 

year dummies for 2011 and 2012 to control for the effects of other variables that were 

specifically related to each of the three years (2010, 2011, 2012); and d) province 

dummies to control for the effects of province-specific factors that do not change over 

time. 1 is a vector of parameters to be estimated. u is an error term that captures the 

uncertainty, including weather, faced by farmers and satisfies E(u)=0. 
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After estimating equation (1), we calculate the error term ),,( 11 xAfyu  . 
 

The central moments of the yield can be defined as ),,()( 11 xAfyE  for the 

expected value of yield, ),,(])[( 22

2 xAfuE  for the variance of yield, and 

),,(])[( 33

3 xAfuE  for the skewness of yield (Di Falco and Chavas 2009; Kim and 

Chavas 2003). 

Modeling Adaptation to Extreme Weather Events 

Two econometric challenges arise in estimating the impact of farmer’s adaptation on 

the three outcome variables. They are the endogeneity of the adoption of farm 

management practice (A) and the sample selection bias due to unobserved 

heterogeneity. To deal with sample selection bias problem, we employ an endogenous 

switching regression model to identify the impacts of adjusting farm management 

practices on the mean, variance and skweness of rice yield. In the switching 

regression approach, the farmers are partitioned according to the adoption decision as 

two regimes (e.g., adopters and nonadopters). The farmer will normally choose to take 

adoptions when there is a net benefit by doing so (Abdulai and Huffman 2014). We 

can therefore represent farmer i’s benefit by a latent variable Ai
* 

as:  

(2)   ii DzxgA   ),,,(
*

, ]0[1
*
 ii AA                           

where the variable z is an instrument variable (IV) for A that is going to be an 

explanatory variable in the outcome equations (mean, variance and skewness of rice 

yield) discussed below. Here we use whether farmer can access to government’s 

technical service against drought or flood as IV. It is a dummy variable (1=yes; 0 

otherwise) measured at village level. D includes two dummy variables, the serious 

drought year (1=yes, 0 otherwise) and serious flood year (1=yes, 0 otherwise) measured at 

county level.  denotes a vector of parameters to be estimated. The error term with 
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mean zero and variance
2

 captures measurement errors and factors unobserved. 

Given that farmers choose to either adopt the farm management measures or not 

adopt them, a separate outcome function is specified for adopters and non-adopters as: 

（3a）Regime 1 (Adopters):      ii DxAfQ 111 ),,,(      if  Ai = 1 

（3b）Regime 2 (Nonadopters):   ii DxAfQ 222 ),,,(     if  Ai = 0 

where Q1i and Q2i are the outcome variables (mean of rice yield in log, variance of rice 

in log, and skewness of rice yield) for adopters and nonadopters, respectively. The 

vectors 1 and 2 are parameters to be estimated.  

The three error terms , 1 , 2 in equations (2), (3a) and (3b) are assumed to have 

a trivariate normal distribution, with zero mean and the following covariance matrix:  


















2

2212

12

2

11

21

2













   

where
2

11)(  Var ,
2

22)(  Var , 
2

)(  Var , 1221 ),(  Cov ,

 11 ),( Cov ,and  22 ),( Cov . Note that since Q1i and Q2i are not observed 

simultaneously, the covariance between 1 and 2 is actually not defined. The sample 

selection bias may lead to nonzero covariances between the error terms of the 

selection equation (2) and the outcome equation (3) (Maddala 1983). According to 

Lee (1978), the expected values of the error terms 1 and 2 conditional on the sample 

selection are given as: 

(4) iiii
Dzxg

Dzxg
DzxgEAE 11111

]/),,,([

)]/),,,([
),,,(|(]1|[ 




  


  

(5) iiii
Dzxg

Dzxg
DzxgEAE 22222

]/),,,([1

)]/),,,([
),,,(|(]0|[ 




  


  
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where )( is the standard normal probability density function and )( the standard 

cumulative distribution function. The term of 1 and 2 refers to the inverse Mills ratio 

evaluated at ),,,( Dzxg , which are incorporated into equation (3) to account for 

sample selection bias. A more efficient method to estimate the endogenous switching 

model is full information maximum likelihood (FIML) method (Lokshin and Sajaia 

2004). For an adopter and nonadopter of the farm management measures, the 

expected value of the outcome is calculated respectively as:  

(6) iii DxAfAyE 1111 ),,,()1|(    

(7) iii DxAfAyE 2222 ),,,()0|(    

Accordingly, the expected value of the same adopter had he chosen not to adopt 

the farm management measures, and of the same nonadopter had he chosen to adopt is 

given respectively as: 

(8) iii DxAfAyE 1222 ),,,()1|(    

(9) iii DxAfAyE 2111 ),,,()0|(    

The change in the outcome due to the adoption of farm management measures 

can then be specified as the difference between adoption and nonadoption (Di Falco et 

al. 2011). These changes are termed the average treatment effect on the treated (ATT) 

as the difference between (6) and (8):   

(10) ]1|[]1|[ 21  iiii AyEAyEATT  

iDxAfDxAf 12121 )(),,,(),,,(     

Similarly, we can also calculate the average effect of the treatment on the 

untreated (ATU) for the farmers that actually did not adopt as the difference between 

(9) and (7): 

(11)  ]0|[]0|[ 21  iiii AyEAyEATU  
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iDxAfDxAf 22121 )(),,,(),,,(     

Since sample selection is taken into account through the terms ( 1 , 2 ) of equations 

(10) and (11), ATT and ATU generates unbiased estimates of the effects of adjusting 

farm management practices. 

Econometric Estimation 

Here we present the estimation results of equations (2), (3a) and (3b). 

Estimation of Mean Rice Yield Function 

We begin by estimating the determinants of adoption of farm management measures 

and their impact on the mean rice yield. The results for the selection and mean yield 

equations that are jointly estimated by FIML approach are reported in table 3. The 

first column reports the estimates of the selection function (1). The second and third 

columns present, respectively, the estimated coefficients of mean rice yield functions 

(3a) and (3b) for farmers that did and did not adopt farm management measures. Of 

significant interest in the results of selection function is the effects of the serious flood 

and drought on the adoption decision. Previous studies found that there is no strong 

relationship between climate change variables and farmer’s adaption (e.g., Di Falco et 

al. 2011). Our results show that comparing with the normal year, more farmers tend to 

adjust their farm management practices when they face the serious drought or flood 

(rows 1 and 2, table 3). This result empirically confirms that the adoption of farm 

management measures identified in this study is actually a type of adaptation to 

extreme weather events such as drought and flood. To simplify discussion, therefore, 

we also use the term of adaptation to replace the adoption of farm management 

measures in the rest of this article.  

We also find that the impacts of many inputs and farm’s characteristics on 

farmer’s adaptation are statistically significant (column 1, table 3). The inputs such as 
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labor, fertilizer, other inputs and flood-tolerant variety have significant positive 

effects on the probability of adapting the farm management measures. The estimated 

coefficient for male headed households is negative and statistically significant, 

suggesting that women tend to be more motivated to adjust farm management 

practices related to the extreme events. Both land per capita and durable consumption 

assets per capita have significant and positive effects on adaptation. This result 

confirms the concerns that the poor may be more vulnerable in face of climatic shocks 

(Wang et al. 2014).  

Instrument variable performances well. It has significant and positive effect on 

adaptation. This suggests that farmers in the village with access to government’s 

technical service against drought or flood were found to be more likely to take 

adaptation. To test whether this IV does not directly affect rice yield but has indirect 

effect on rice yield through its effect on adaptation, the rice yield among farmers that 

did not adapt is regressed on the variable of the IV along with all other variables. The 

t test statistic is 1.13, suggesting evidence supporting the validity of the IV.  

The estimates presented in the last two columns of table 3 account for the 

endogenous switching in the mean rice yield function. Both the estimated coefficients 

of the correlation terms j are not statistically significant (bottom row, table 3). j (j 

= 1, 2) reflects the correlation coefficient between the error term of the selection 

equation (2) and the error term of outcome equations (3a) and (3b), respectively 

(Lokshin and Sajaia 2004). Hence the results imply that the hypothesis of absence of 

sample selection bias may not be rejected. 

In yield equations, most of estimated coefficients are statistically significant with 

expected signs. For example, rice yield is lower for both adapters and non-adopters 

when the extreme weather events are presented. In particular, the impact of flood on 



17 

 

the rice yield of nonadopters is larger than that of the adopters. These results suggests 

that the flood events are serious than drought in rice production. Adopters suffer less 

yield loss than non-adopters, indicating the effective impact of adaptation. Exception 

is found for adopters in the serious drought year, the estimated coefficient is not 

statistically significant. This may be due to the fact that rice is generally planted in the 

areas where availability of irrigation water is more ensured. Less case of significant 

coefficients for input variables (rows 3-7, table 3) is consistent with previous findings 

on intensive or excessive use of production inputs in China (e.g., Huang et al., 2008; 

Holst et al. 2013). 

In terms of the farm’s characteristics, most of estimated coefficients are 

statistically significant. The household headed by male, youth and more educated 

people tends to improve rice yield for both adopters and nonadopters (in the middle of 

table 3). The negative impact of land per capita suggests that larger farms generally 

have lower rice yield, a finding similar to many studies in the literature (Abudulai and 

Huffman 2014; Chen et al. 2011). Other variables such as wealthy (durable 

consumption assets per capita) and better soil quality also have positive impact on rice 

yield. The order of yield from early rice to middle rice and late rice is also expected.  

Estimation of risk functions 

The estimation results of farmer’s adaptation and its impact on variance and 

skewness of rice yield are included in tables A2 and A3 in Appendix. Because the 

results on the selection (or adaptation) equation (column 1, tables A2 and A3) are 

similar with those presented in table 3, here we focus our discussion on the estimates 

of the variance and skewness functions. 

The estimated results show that the covariance term j in risk functions for both 

adopters and nonadopters are statistically significant (bottom rows, tables A2 and A3). 
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Unlike the estimates of mean of rice yield presented in table 3, the estimation for both 

the variance and skewness function rejects the hypothesis of absence of sample 

selection bias. This suggests that adaptation would not have the same effect on rice 

yield risk for the nonadopters if they would take the adaptation due to unobserved 

heterogeneity (Abdulai and Huffman 2014).  

Most of estimated coefficients in the variance function are statistically significant 

(Tables A2). The signs of many coefficients reveal some interesting findings. For 

example, the serious flood is found to have statistically positive impact on the 

variance of rice yield for nonadaoptors, but no significant impact for adopters (row 2, 

table 2A). This suggests that the adaptation does mitigate rice yield risk or variance 

when the serious flood occurred. While the impact of the serious drought on the 

variance is positive but not statistically significant. This may be due to the fact that 

rice is produced in the regions with good irrigation infrastructure. The impacts of 

several inputs and farm’s characteristics on the variance of yield also differ (in the 

middle of table 2A).  

On the the skewness of rice yield, we first test normality of the 

error term u with the null hypothesis that the yield distribution is symmetric using a 

Wald statistic. The mean skewness of u is -0.35 and the statistic is statistically 

different from zero with a p-value of 0.000. This implies that the distribution of yield 

is skewed to the left, corresponding to a significant exposure to downside risk. In this 

case, if the skewness increasingly negative, the probability of crop failure would 

increase (Torriani et al. 2007).  

The results of estimated skewness function suggest both of the serious flood and 

drought have significantly negative effects on the skewness of rice yield and thus 

increase the exposure to downside risk for both adopters and nonadopters (rows 1 and 
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2, table A3). We also find that the inputs such as labor and machinery and better soil 

quality have difference effects on the skewness of yield for adopter and nonadoptes 

(in the middle of table A3). The differences in the coefficients of both the variance 

and skewness function between adopters and nonadopters illustrate the presence of 

heterogeneity in the sample. 

Effects of adaptation on mean, variance and skewness of rice yield 

The estimates for the average treatments effects (ATT) and (ATU) on the mean, 

variance and skewness of rice yield are presented in table 4. The results reveal that the 

adaptation significantly increases rice yield (rows 1 and 2). Unlike the mean 

differences presented in table A1, which may confound the impact of farmer’s 

adaptation on yield with the influence of other characteristics, these average treatment 

effect estimates account for selection bias arising from the fact that adopters and 

nonadopters may be systematically different. Specifically, in the counterfactual case 

(8), farmers who actually taken adaptation would have produced about 663 kg/ha (that 

is about 14%) less if they did not adapt (row 1). In the counterfactual case (9) that 

farmers that did not adapt, they would have produced about 74 kg/ha (that is about 2%) 

more if they had adapted (row 2). These findings suggest that adaptation to the 

extreme weather events through farm management measures does increase rice yield. 

Table 4 also present the average treatments effects of adaptation on the variance 

and skewness of rice yield. We find that farm management measures taken by farmers 

in response to extreme weather events significantly decreased both variance (rows 3-4) 

and downside risk of rice yield (rows 5-6). For example, the risk (variance measure) 

faced by farmers who actually adapted would have an increased 0.021 unit (that is 

about 43%) if they did not adapt (row 3). The impact of taking adaptation measures 

on the skweness is similar to its impact on the variance case. The downside risk faced 
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by farmers who actually adapted farm management measures would have an increased 

of 0.302 unit (that is about 69%) if they did not adapt (row 5). These estimates show 

that farmer’s adaptation to extreme weather events hedges against the risk of crop 

failure.  

Conclusions 

Using data from a survey conducted in five provinces in China, this article 

investigated the contribution of the adoption of farm management measures in 

response to the extreme weather events on the mean, variance and downside risk of 

rice yield. The survey results show that more farmers adjust their farm management 

practices (e.g., reseeding, fixing and cleaning seedlings) in the serious drought and 

flood year than in the normal year. The econometric analysis confirms that farmers do 

respond to the extreme weather events by adopting farm management measures. The 

extent of adopting farm management measures is closely correlated with crop input 

levels and varies among households with differences in the characteristics of both 

farmers and their farms. Moreover, improving farmers’ access to government’s 

service against drought and flood facilitates farmers to adjust their farm management 

practices.  

The existing farm management measures can help farmer’s adaptation to the 

extreme weather events. The adaptation through adjusting farm management 

contributes to the increase in the mean of rice yield and the reduction of risks, 

including the variance and downside risk of rice yield.  

The findings from this study have several policy implications. First, currently, 

the plans for enhancing the national adaptation strategies have mainly focused on new 

investment and new technology (IPCC 2014). While these are important, the national 

adaptation plans should also pay attention to the existing farm practices (e.g., the farm 
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management measures in this study) that can reduce climate risks and can be easily 

adopted by farmers. However, our survey shows that, even during serious drought and 

flood years, only one third of farmers are able to use farm management measures to 

cope with the extreme weather events. As the cost of this kind of adaptation is low, 

potential to scale up it to more farmers is high. Second, our results also suggest that 

the government service against drought and flood is of paramount importance in 

facilitating farmer’s adaptation. However, only one fourth of rice farmers in China 

can access to this service. Clearly, there is great room to incorporate climate change 

adaptation service into the public extension system in China. The last but not least, as 

farmers have been suffering the increasing frequency and severity of the extreme 

weather events in many developing countries, we believe that the findings of this 

study also have implications to other countries in terms of national adaptation plan 

and farmer’s crop risk management. 
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Table 1. Percentage of Plots Affected by the Extreme Weather events (drought 

or flood) and Yield Loss Reported by Farmers in 2010-2012 

 

Plots affected by drought or 

flood (%)  

Yield loss when suffered 

from drought or flood (%) 

 

In serious 

disaster year 

In relatively 

normal year  

In serious 

disaster year 

In relatively 

normal year 

Drought 
a
 41  16  

 

24 23 

Early rice 37  15  

 

26  26  

Middle rice 60  22  

 

19  21  

Late rice 49  20  

 

26  22  

Flood
 b
 34  16  

 

25 24 

Early rice 44  25  

 

30  27  

Middle rice 54  19  

 

17  21  

Late rice 22  11  

 

23  20  

Source: Authors’ survey.  

a: A total of 1449 observations in 12 counties.b: A total of 2305 observations in 11 

counties. 
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Table 2. Percentage of Plots with Major Farm Management Measures Adopted 

by Rice Farmers in 2010-2012  

  

Reseeding, fixing or 

cleaning seedlings 

Changing varieties in the 

next season or adjusting 

fertilize use
 

Serious disaster year 33 5 

Relatively normal year 26 4 

Average 30 4.5 

Source: Authors’ survey. 

Note: Sample includes 3754.  
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Table 3. Estimations of Farmer’s Adaptation and Its Impact on Mean Rice Yield 

  Rice yield (log) 

 Selection Adopters Nonadopters 

Serious disaster years    

Drought 0.117** 0.009 -0.124*** 

 (2.218) (0.338) (5.424) 

Flood 0.277*** -0.095*** -0.273*** 

 (6.296) (4.611) (11.745) 

Inputs    

Labor (log) 0.100*** -0.000 0.016 

 (5.189) (0.040) (1.634) 

Fertilizer (log) 0.087*** 0.079*** 0.021 

 (3.166) (4.154) (1.331) 

Machinery (log) 0.001 0.000 0.014*** 

 (0.154) (0.036) (3.839) 

Other inputs (log) 0.031*** 0.010 0.015** 

 (2.640) (1.486) (2.513) 

  Flood-tolerant variety 0.122*** 0.049** 0.015 

 (3.447) (2.469) (0.916) 

Farm’s characteristics    

Male of household head -0.245** 0.147* 0.128* 

 (2.058) (1.648) (1.674) 

Age of household head -0.003 -0.003*** -0.003*** 

 (1.642) (2.960) (3.469) 

Education of household 0.007 0.001 0.008*** 

 (1.326) (0.291) (2.908) 

Land per capita 0.138*** -0.002 -0.028** 

 (5.843) (0.137) (2.130) 

Durable consumption assets per capita 0.001*** 0.001*** 0.001*** 

 (3.648) (3.519) (5.950) 

Moderate soil quality 0.010 0.033 0.098*** 

 (0.203) (1.602) (3.989) 

High soil quality -0.034 0.086*** 0.146*** 

 (0.603) (3.187) (5.287) 

  Middle rice -0.046 0.218*** 0.257*** 

 (0.991) (8.307) (10.848) 

  Late rice -0.050 0.079*** 0.144*** 

 (1.384) (3.661) (7.696) 

D2011 0.174*** 0.220*** 0.131*** 

 (3.324) (5.385) (4.620) 

D2012 0.112** 0.143*** 0.113*** 

 (2.272) (4.491) (5.088) 

Instrument variable    

Access to government’s technical 

service against drought or flood 

0.108*** 

(2.789) 

  

Constant -0.479 8.055*** 8.243*** 

 (1.483) (36.077) (49.539) 

Province dummies Yes Yes Yes 

i   0.382** 

[0.047] 

0.542** 

[0.023] 

j   0.085 

[0.225] 

-0.045 

[0.040] 

Note: Absolute z-values in parentheses and p-value in square brackets. *, ** and *** represent the 

statistically significant at 10%, 5% and 1%, respectively. The sample is 7508 (3754×2 years).  
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Table 4. Impacts of Farm Management Measures on Mean, Risk and Downside Risk 

Exposure of Rice Yield   

Sub-samples 

Decision stage 

 

To adopt Not to adopt Treatment effects 

Average expected rice yield (kg/ha) 

   

Rice plots that adopted 5571 4908 TT= 663*** 

Rice plots that did not adopt 5161 5086 TU= 74*** 

  

   

Average expected variance (risk)  

   

Rice plots that adopted 0.028 0.049 TT= -0.021*** 

Rice plots that did not adopt 0.016 0.035 TU= -0.019*** 

    
Average expected skewness (downside 

risk exposure)     

Rice plots that adopted -0.136 -0.438 TT= 0.302*** 

Rice plots that did not adopt -0.173 -0.487 TU= 0.314*** 

Note: TT represents the effect of the treatment (i.e., adoption) on the treated (i.e., farmers 

that adopted). TU represents the effect of the treatment (i.e., adoption) on the untreated (i.e., 

farmers that did not adopt).  

  



29 

 

Appendix 
 

Table 1A. Descriptive Statistics of Variables by Adopters and Nonadopters of Farm 

Management Measures 

Variables Total Adopters 
Non- 

adopters 
Diff. 

Rice yield (kg/ha) 5631.13  5854.71  5537.50  317.21*** 

Variance of rice yield  0.25  0.15  0.30  -0.15*** 

Skewness of rice yield -0.35  -0.14  -0.44  0.30*** 

Serious flood year (1=yes; 0=no) 0.31  0.36  0.29  0.07*** 

Serious drought year (1=yes; 0=no) 0.19  0.21  0.19  0.02** 

Labor (days/ha) 125.41  138.72  119.83  18.89*** 

Fertilizer (kg/ha) 405.56  413.97  402.03  11.94*** 

Machinery (yuan/ha) 1807.27  1778.93  1819.14  -40.21* 

Other inputs (yuan/ha) 1173.78  1235.09  1148.11  86.98*** 

Flood-tolerant variety (1=yes; 0=no) 0.28  0.32  0.26  0.06*** 

Male of household head (1= male; 0= female) 0.98  0.98  0.98  0.00 

Age of household head (years ) 54.13  53.88  54.23  -0.35 

Education of household head (years ) 6.63  6.78  6.57  0.21*** 

Land per capita (ha) 0.34  0.40  0.32  0.08*** 

Durable consumption assets per capita (1,000 

yuan) 
23.98  26.94  22.73  4.21*** 

High soil quality (1=yes; 0=no) 0.22  0.21  0.23  -0.02 

Moderate soil quality (1=yes; 0=no) 0.66  0.67  0.65  0.02 

Middle rice (1=yes; 0=no) 0.25  0.26  0.25  0.01 

Late rice (1=yes; 0=no) 0.39  0.38  0.39  -0.01 

2012 (1=yes; 0=no) 0.47  0.44  0.49  -0.05*** 

2011 (1=yes; 0=no) 0.30  0.35  0.28  0.07*** 

Access to government’s technical service 

against drought or flood (1=yes; 0=no) 
0.24  0.26  0.23  0.03** 

Note: the total observations are 7508. 
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Table 2A. Estimations of Farmer’s Adaptation and Its Impact on Variance of Rice Yield 

  Variance of rice yield (log) 

 Selection Adopters Nonadopters 

Serious disaster years    

Drought 0.065 0.254 0.167 

 (1.287) (1.202) (1.335) 

Flood 0.214*** -0.225 0.662*** 

 (5.197) (1.351) (6.385) 

Inputs    

Labor (log) 0.076*** -0.236*** 0.130*** 

 (4.430) (3.320) (2.993) 

Fertilizer (log) 0.045* -0.000 -0.032 

 (1.777) (0.004) (0.551) 

Machinery (log) -0.001 -0.021 -0.064*** 

 (0.194) (0.901) (4.573) 

Other inputs (log) 0.030*** -0.156*** 0.025 

 (2.726) (3.225) (0.973) 

  Flood-tolerant variety 0.081** -0.282** 0.046 

 (2.500) (2.130) (0.557) 

Farm’s characteristics    

Male of household head -0.211* 0.537 -0.886*** 

 (1.949) (1.236) (3.122) 

Age of household head -0.002 0.011* 0.001 

 (1.518) (1.693) (0.313) 

Education of household 0.008 -0.045** -0.016 

 (1.599) (2.166) (1.240) 

Land per capita 0.116*** -0.346*** 0.336*** 

 (5.379) (4.079) (5.783) 

Durable consumption assets per capita 0.001*** -0.005*** 0.002*** 

 (4.019) (3.550) (2.627) 

Moderate soil quality 0.019 0.023 -0.281** 

 (0.434) (0.128) (2.524) 

High soil quality -0.055 0.399* -0.538*** 

 (1.068) (1.891) (4.227) 

  Middle rice -0.075* -0.208 -1.034*** 

 (1.745) (1.188) (9.706) 

  Late rice -0.054 -0.199 -0.556*** 

 (1.605) (1.446) (6.654) 

D2011 0.089* -0.890*** -0.946*** 

 (1.839) (4.443) (7.824) 

D2012 0.068 -0.965*** -1.129*** 

 (1.498) (5.286) (10.195) 

Instrument variable    

Access to government’s technical 

service against drought or flood 

0.085*** 

(4.229) 

  

Constant -0.317 -0.512 0.412 

 (1.093) (0.442) (0.494) 

Province dummies Yes Yes Yes 

i   3.810* 

[0.085] 

2.855** 

[0.035] 

j   -0.965*** 

[0.004] 

0.908*** 

[0.006] 

Note: Absolute z-values in parentheses and p-value in square brackets. *, ** and *** represent the 

statistically significant at 10%, 5% and 1%, respectively. The sample is 7508.  
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Table 3A. Estimations of Farmer’s Adaptation and Its Impact on Skewness of Rice Yield 

  Skewness of rice yield 

 Selection Adopters Nonadopters 

Serious disaster years    

Drought 0.115** -0.130*** -0.201** 

 (2.175) (2.724) (2.284) 

Flood 0.278*** -0.347*** -0.781*** 

 (6.327) (4.435) (8.462) 

Inputs    

Labor (log) 0.101*** -0.059* 0.089** 

 (5.233) (1.824) (2.159) 

Fertilizer (log) 0.085*** 0.079* -0.012 

 (3.112) (1.943) (0.207) 

Machinery (log) 0.001 -0.017*** 0.045*** 

 (0.188) (2.967) (3.320) 

Other inputs (log) 0.033*** -0.015 0.028 

 (2.810) (1.106) (1.074) 

  Flood-tolerant variety 0.124*** 0.066 0.043 

 (3.501) (1.155) (0.642) 

Farm’s characteristics    

Male of household head -0.245** 0.326 0.044 

 (2.066) (0.858) (0.169) 

Age of household head -0.003* -0.003 -0.008*** 

 (1.664) (0.757) (2.603) 

Education of household 0.007 0.000 0.006 

 (1.328) (0.045) (0.503) 

Land per capita 0.138*** -0.056 -0.076 

 (5.844) (1.096) (1.365) 

Durable consumption assets per capita 0.001*** 0.001* 0.002*** 

 (3.656) (1.790) (3.106) 

Moderate soil quality 0.010 -0.087** 0.150 

 (0.201) (2.504) (1.451) 

High soil quality  -0.034 -0.120* 0.070 

 (0.602) (1.796) (0.578) 

Middle rice  -0.042 0.408*** 0.589*** 

 (0.897) (3.795) (5.227) 

Late rice  -0.070* 0.262*** 0.466*** 

 (1.927) (3.282) (6.048) 

D2011 0.175*** 0.482*** 0.505*** 

 (3.387) (4.460) (4.079) 

D2012 0.112** 0.324*** 0.422*** 

 (2.285) (3.762) (4.591) 

Instrument variable    

Access to government’s technical 

service against drought or flood 

0.105*** 

(2.854) 

  

Constant -0.421 -0.781 -1.457** 

 (1.297) (1.134) (2.441) 

Province dummies Yes Yes Yes 

i   1.226* 

[0.099] 

2.299** 

[0.040] 

j   0.024** 

[0.027] 

-0.013** 

[0.033] 
Note: Absolute z-values in parentheses and p-value in square brackets. *, ** and *** represent the 

statistically significant at 10%, 5% and 1%, respectively. The sample is 7508. 

 


