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Impacts of Climate Change and Extreme Weather on U.S. Agricultural Productivity 

Growth 

Sun Ling Wang, Eldon Ball, Richard Nehring, Ryan Williams, and Truong Chau 

Economic Research Service, USDA 

Abstract 

We employ state panel data for the period 1961-2004 to identify the role of climate change on 

U.S. agricultural productivity growth using a stochastic production frontier method. We examine 

the patterns of productivity changes and weather variations across regions and over time. Climate 

variables are measured using temperature humidity index (THI) load and Oury index at both 

their means and the degree of deviation from their historical norm (shocks). We also incorporate 

irrigation ratio and local public goods—R&D, extension, and road infrastructure—to capture the 

effects of specific state characteristics and to check for the robustness of the estimates of climate 

variables’ impacts. Results indicate that higher THI load can drive farm production from its best 

performance using given inputs and best technology. On the other hand, a higher Oury index, 

irrigation ratio, local R&D, Extension, and road density can drive state overall farm production 

closer to the production frontier. In addition, weather “shock” variables seem to have more 

consistent and robust impacts in explaining technical inefficiency than do level variables.  

Key words: U.S. agricultural productivity, technical inefficiency, stochastic frontier, climate 

change, THI load, Oury index
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Impacts of Adverse Weather on U.S. Agricultural Productivity Growth 

 

According to USDA’s U.S. agricultural productivity statistics, farm output was more than 2.5 

times its 1948 level in 2011. With little growth in input use, total factor productivity (TFP) 

accounted for nearly all the farm output growth during that period. However, in the past four 

decades the frequency of adverse weather events has increased (Parry et al. 2007; Hatfield et al., 

2014). Measured productivity growth fluctuated dramatically from time to time, reflecting a drop 

or slower growth in agricultural output. On the other hand, increasing global food demand and 

slowing growth in crop yields have led to soaring food prices in recent years, and have raised 

concerns about global food security. As one of the world’s largest producers and consumers of 

agricultural commodities, sustainable agricultural productivity growth in the U.S. is critical to 

both domestic and global food security. 

While research investment in agricultural science and farm input improvement is the major 

driver behind long-run productivity growth in the U.S., extreme weather can affect output growth, 

input use, and thus TFP estimates considerably. Unexpected drought, flooding, or heat stress 

could either cause declines in crop and livestock production, or raise production cost by adding 

more labor, energy (for cooling or heating systems), or intermediate goods due to weeds, 

diseases, insect pests, etc. These changes can drive farmer’s performance from the production 

frontier and at least temporarily increase technical inefficiency.  

Literature has shown that higher variance in climate conditions lead to lower average crop yields 

and greater yield variability (McCarl, Villaviencio, and Wu, 2008; Semenov and Porter, 1995; 
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Ferris et al., 1998; among others). While moderate warming could benefit crop and pasture 

yields in temperate regions, further temperature increase could reduce crop yields in all regions 

(Carter et al., 1996; Tubiello and Rosenzweig, 2008; among others). On the other hand, weather 

extremes could also cause disease outbreaks patterns and impact agricultural production (Yu and 

Babcock, 1992; Anyamba et al., 2014). In livestock studies, evidence indicates that when 

animals’ thermal environment is altered due to climate change it could affect animal health and 

reproduction. The feed conversion rate could also be affected (St-Pierre, Cobanov and Schnitkey, 

2003; Morrison 1983; Fuquay, 1981). Mukherjee, Bravo-Ureta, and Vries (2012) and Key and 

Sneeringer (2014) indicate that an increase in temperature humidity index (THI) could help to 

explain the technical inefficiency based on a stochastic frontier estimate. Yet, most of these 

studies are focused on a single sector or commodity, i.e. either crops or livestock. When 

addressing the impacts of climate change on overall farm sector production or productivity 

growth, many studies rely on simulation methods. There is a lack of empirical study on how 

climate changes affect sector-wide productivity.  

While projecting how climate change could affect agricultural production and food availability 

could provide useful information for current policy decisions, it can benefit from a better 

understanding on how climate changes affected farm production and productivity growth in the 

past. Empirical studies can rely on either time series data or cross-sectional data. The latter could 

contain information regarding geospatial differences. Yet, the statistical results may be biased if 

regionally specific characteristics are not taken into account, such as irrigation areas (Schlenker, 

Hanemann and Fisher, 2005). The advantage of time series study is that it captures the impacts of 

climate change and the farmers’ adaption to these changes over time. Yet, it could fail to capture 
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varied effects across regions. Panel data, on the other hand, can preserve both desired features 

and avoid their weaknesses.  

Therefore, the purposes of this study is three-fold: first, we examine how climate changes in the 

U.S., based on historical and cross-regional weather data; second, we examine how climate 

change and extreme weather affect agricultural productivity growth through their impacts on 

technical inefficiency; third, we compare the effects of different climate variables in explaining 

technical inefficiency using both level and shock (the degree of deviation from its historical 

norm) climate indexes. To achieve these goals, we employ state panel data for the period 1961-

2004. We construct implicit quantities for agricultural outputs and inputs. We construct climate 

indexes that can capture the climate’s impacts on livestock (THI load) and crops (Oury index). In 

addition to the level of the indexes we also construct climate shock variables that capture 

deviation from climate norms and represent a degree of extreme weather. This study is the first 

to analyze the impacts of both heat stress and temperature-adjusted precipitation weather 

variations on technical inefficiency for aggregate production at the state level. The results could 

shed light on how climate change and extreme weather affects U.S. agricultural productivity 

growth. 

Measurement of technical inefficiency 

Leibenstein (1966) first used the term “x-efficiency” to represent the effectiveness when a given 

set of inputs are used to produce outputs. A firm is said to be technical-efficient if it can produce 

the maximum output possible given the best technology and resources it employs. If the firm 

cannot achieve its best performance then x-inefficiency occurs. In general, the concept of 
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technical efficiency refers to producers’ choices to allocate resources to obtain the maximum 

possible output from given inputs, or to produce a certain level of outputs using the minimum 

possible inputs. 

Although researchers have used climate variables along with other input variables or policy 

variables in a production function to test for those impacts on crop yield, livestock production, or 

productivity growth directly (Zhang and Carter, 1997; Compas and Che, 2006; among others), 

the use of inputs could be endogenous on climate variable. There are a few studies that have 

modeled weather impacts as factors that affect productivity (or production) through its impacts 

on technical inefficiency (Key and Sneering, 2014; among others). By employing a stochastic 

production frontier approach, climate variables are incorporated as determinants of a one-sided 

error that drive farm production from its production frontier.  

Following Aigner, Lovell, and Schmidt (1977), Meeusen and van den Brocck (1977), Bassete 

and Coelli (1995), and Key and Sneering (2014) we form the stochastic frontier production 

model as: 

 ln(qii)=f(xit, ß)+vit-uit   (1) 

where qit is the aggregate output quantity of state i at time t, and f(xit, ß) is the maximum quantity 

that can be produced with a vector of quantity of inputs xi at time t, ß is a vector of  unknown 

parameters to be estimated. Production can deviate from this deterministic frontier because of 

exogenous factors, such as adverse weather events. The deviations (εit) from the frontier are 

composed of a two-sided random error (vit) and a one-side error term (uit>=0).     is assumed to 
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be normally and independently distributed, with zero mean and constant variance   
    uit is 

assumed to be half-normally and independently distributed, with a truncation at zero of the 

normal distribution with mean zitγ, variance   
   The technical inefficiency effects uit is assumed 

to be affected by a vector of exogenous variables zit, such as climate variables and specific 

regional characteristics that could affect the ability of adapting the best technology at time t 

given its inputs level. γ is a vector of parameters to be estimated. If uit =0, then state i is at the 

production frontier and is technical efficient. If uit >0 then state i is deviated from the frontier, 

and is technical inefficient while vit  is a random error and could be positive or negative.  

Production can deviate from this deterministic frontier because of exogenous factors, such as 

adverse weather events. vi, could be positive or negative, or because of productive inefficiency ui, 

which reduces output (ui≥0). 

Once technical inefficiency is estimated, technical efficiency (TE) can be computed as:  

TEit=exp(-uit)     (2) 

In this study the stochastic frontier production function to be estimated is  

         ∑     
 
           +∑     

 
    ∑     

 
               (3) 

and y is an implicit quantity of state total output, x’s are inputs, including labor, capital, land, and 

intermediate goods, t is a time trend, Dj’s are state dummy variables (j=1…47), and Dn’s are time 

dummy variables (m=1..43) to capture cross-state, time-invariant, unobserved heterogeneity. 

Equation (3) can be viewed as a linearized form of the Cobb-Douglas production function. 
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Following Battese and Coelli (1995) and Alvarez et al. (2006) we estimate an inefficiency 

variance regression model simultaneously with equation (3), i.e. 

ln    
     ∑       

 
                    

           (4)  

z’s include climate variables—THI load (for livestock) and aridity index (for crops, we apply 

Oury index in this study), in their mean or  “shock” (the unit of standard deviation from its 

historical norm) estimate. We also include local public goods or infrastructure variables, such as 

irrigation ratio, R&D stock, extension, and road density variables in separate models to test for 

the robustness of the impacts of our climate variables. The stochastic frontier is estimated by a 

maximum likelihood (ML) procedure.  

Data Sources and Measurement 

In our study we employ agricultural output, as well as inputs of labor, capital, land, and 

intermediate goods at state level to form the stochastic frontier production function. To identify 

the impacts of climate changes on technical inefficiency changes we construct climate variables 

that can capture either the influences on crops or livestock production. In addition, we have 

incorporated some local public goods variables, such as irrigation ratio, R&D, extension, and 

roads infrastructure to test for the robustness of our estimates of the impact of climate changes.   

Agricultural outputs and inputs  

We construct state-specific aggregates of output and capital, labor, intermediate goods, and land 

inputs as implicit quantities based on the Törnqvist indexes approach over detailed output and 
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input information. Indexe of output are formed by aggregating over agricultural goods and 

services using revenue-share weights based on shadow prices. The changing demographic 

characteristics of the agricultural labor force are used to construct a quality-adjusted index of 

labor input. Similarly, much asset-specific detail underlies the measure of capital input. The 

construction of a measure of capital input begins with estimating the stock of capital for each 

component of capital input. For depreciable assets, the capital stocks are the cumulation of past 

investments adjusted for discards of worn-out assets and loss of efficiency of assets over their 

service life. Indexes of capital input are then formed by aggregating over the various capital 

assets using cost-share weights based on asset-specific rental prices. The land stock is adjusted 

by quality differences across counties and states.  

Törnqvist indexes of energy consumption are calculated for each state by weighting the growth 

rates of petroleum fuels, natural gas, and electricity by their shares in the overall value of energy 

inputs. Fertilizers and pesticides are also important intermediate inputs, but their data require 

adjustment since these inputs have undergone significant changes in input quality. We estimate 

price indexes for fertilizers and pesticides using hedonic methods. The corresponding quantity 

indexes are formed implicitly by taking the ratio of the value of each aggregate to its hedonic 

price index. A Törnqvist index of intermediate input is calculated for each state by weighing the 

growth rates of each category of intermediate inputs by its value share in the overall value of 

intermediate inputs.  

Finally, following Caves, Christensen, and Diewert (1982), we construct output and input 

measures that have spatial as well as temporal integrity. The result is panel data that can be used 

for both cross section and time series analysis. A full description of the underlying data sources 
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and aggregation procedures can be found in Ball et al. (1999) and on the USDA-ERS (2013) 

website. 

Climate variables 

Since our purpose is to evaluate an overall impact of climate changes on the agricultural sector 

we need to consider climate variables that have strong relationships with livestock or crops. 

However, there is no single measurement that can capture the weather impacts on both livestock 

and crops as livestock production is more related to animals’ year-around thermal environment, 

while crop production is more affected by precipitation and temperature during the growing 

seasons. To suit our purpose we construct two different weather indexes—temperature-humidity 

index (THI), a combined measure of temperature and relative humidity, and Oury index, an 

aridity index that combines temperature and precipitation information, at both its year mean level 

and its deviation from the norm based on historical weather data drawn from the Parameter-

elevation Regressions on Independent Slopes Model (PRISM, 2013). Since PRISM extrapolates 

between weather stations to generate climate estimates for each 4km grid cell in the U.S. (see 

http://www.prism.oregonstate.edu/ for details) we are able to link county level weather 

information and agricultural production to construct climate variables that could explain climate 

variations across regions and over time. 

Livestock scientists have found that livestock productivity is related to climate through a THI 

measure (Thom 1958, St-Pierre, Cobanov and Schnitkey 2003; Zimbelman, et. al. 2009). THI 

can be measured using the following equation:  

THI=(dry bulb temperature 
o
C) + (0.36*dew point temperature 

o
C) + 41.2             (5) 

http://www.prism.oregonstate.edu/
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When animal stress is above a certain THI threshold, productivity can decline. Following St-

Pierre, Cobanov and Schnitkey (2003) and Key and Sneeringer (2014) we generate a minimum 

and maximum THI for each month and location based on minimum and maximum temperatures 

(dry bulb temperatures) and the dew point information from PRISM. Following engineering 

research, St-Pierre, Cobanov and Schnitkey (2003) and Key and Sneeringer (2014) estimate a 

THI load, which refers to the number of hours that the location has a THI above the threshold. 

To estimate the THI load, we employ a method proposed by St-Pierre, Cobanov and Schnitkey 

(2003) to estimate a Sine curve between the maximum and minimum THI over a 24-hour period. 

We then estimate the number of hours above threshold and the degree to which THI is over the 

threshold (See Key and Sneering (2014) appendix for details).  

We employ a threshold of 70 (dairy) to capture the possible impacts for all livestock, although 

poultry could have a higher threshold of 78 (St-Pierre, Cobanov and Schnitkey, 2003). The THI 

was calculated first by month then weighted by the number of days in each month. Next the 

monthly calculations were summed to the year, and finally, yearly totals were aggregated by 

state, based on an animal unit’s weighting scheme. Weights used in the THI estimates are the 

county-level animal unit counts from the 2002 NASS Census of Agriculture (Census of 

Agriculture 2002). Unique PRISM cell data were spatially intersected with counties so that every 

THI value was associated with a county, and could therefore be weighted by the animal counts in 

the final estimates. 

“Weather” is a critical factor influencing the production of crops. While precipitation and 

temperature are mostly considered in previous studies due to lack information on other factors, 

such as sunshine and wind velocity, Oury (1965) recommended the use of aridity index in 
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identifying the relationship between crop production and weather. Oury argued that it is hard to 

define a meaningful relationship between crop production and weather based only on one 

weather factor since they are interrelated. The proposed aridity index, which is termed the Oury 

index, is defined (Oury, 1965; Zhang and Carter, 1997) as: 

   
  

      
                    (6) 

where W represents the aridity index (Oury idex), s is the month (s=1…12), P is the total 

precipitation for month s in millimeters; and Ts is the mean temperature for month s in degrees 

centigrade. The Oury index can be viewed as rainfall normalized with respect to temperature. We 

draw data from monthly PRISM, weighted by a set of cropland density at county level to 

construct a state level Oury index. The cropland weights were developed by summing the 

cropland pixels from the National Land Cover Database 2006 (NLCD 2006) by the same extent 

and cell size as the PRISM climate grids (roughly 4 km), giving a one- for- one match of the 

Oury index value to its corresponding cropland pixel count. The NLCD cropland pixels are 

composed of the combination of NLCD classes 81 (pasture/hay) and 82 (cultivated crops), with 

the notion that pasture/hay is a potentially convertible land cover to cultivated crops. The 

cropland area in the weight data is therefore a representation of current and potential cultivated 

cropland. 

While all months of the year were considered for the THI measures, only the growing season 

months—April through August (an approximation of the growing season)—were considered for 

the Oury aridity index. Both THI and Oury measures were generated for a 30-year normal 
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spanning from 1941 to 1970 as well as measures for individual years from 1961 to 2004 (our 

study period).  

Irrigation variable 

We construct an irrigation ratio variable to capture the positive impact of irrigation systems on 

crop production. The crop land area and irrigation land area are available at census years 

(USDA-NASS, 2013) at the state level. We employ a cubic spline technique to interpolate the 

information between census years. The expanded irrigation areas and crop land areas are used to 

construct a panel of irrigated ratio across states and over time.  

Local public goods  

To capture specific state level characteristics that could also have impacts on the state’s technical 

inefficiency (Rada, Buccola, and Fuglie, 2010) we draw data on R&D stock, extension, and 

roads from Wang et al. (2012). Wang et al. (2012) used a trapezoidal-weight pattern proposed by 

Huffman and Evenson (2006) to construct R&D stocks from R&D expenditures. The annual 

agricultural research expenditure data and the research price index used to deflate expenditures 

are provided by Huffman (2009).  Our extension variable is a measure of extension capacity 

calculated as total full time equivalent (FTE) extension staff divided by the land areas. Data on 

FTEs by state were drawn from the Salary Analysis of the Cooperative Extension Service from 

the Human Resource Division at the USDA. Road infrastructure is a road density index 

constructed using total road miles excluding local (e.g. city street) miles for each state divided by 

total land area.  

Patterns of state productivity growth and climate changes 
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Table 1 provides a summary table of state level TFP growth during 1960-2004 (USDA, 2013), as 

well as the mean and standard deviation of the normal THI index and Oury index over the 

historical period 1941-1970. In general, TFP growth varied across USDA’s production regions 

and within the region. Still, some regions seem to have an overall higher TFP growth, such as 

Northeast, Corn Belt, and Delta regions, than others during the study period. Given the variances 

in geo-climate condition and natural resources states tend to have notable differences in their 

composition of livestock and crop production. For example, states within the Northeast region 

tend to have a higher ratio in livestock production while the Corn Belt and Pacific regions tend to 

produce more crops than livestock. Usually, a higher THI indicates more intensive heat stress 

and can hinder livestock productivity growth. On the other hand, a lower Oury index indicates 

much drier condition that could lower crop production. If the Oury index is lower than 20, it 

indicates drought conditions, and if the Oury index is less than 10, it is implied as “desertlike” 

(Carter and Zhang, 1997).  

(Insert table 1 here) 

While the relative level of THI and Oury index could result in geospatial differences in technical 

inefficiency, an unexpected climate “shock”, such as extreme weather, could cause more of an 

impact than its level variation as farmers may have expected the climate changes based on past 

experience. Farmers could have already invested in appropriate facilities, such as irrigation 

systems or cooling systems, in areas with low Oury index or high THI load. Yet, it is the 

unexpected weather changes that result in either a waste of inputs when crops cannot be 

harvested due to an extreme weather event or a decrease in livestock production due to 

unexpected heat stress. According to table 1, some regions may have much higher variation in 
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their Oury index than in their THI index, such as the Mountain and Pacific regions. If famers 

expect dramatic variation from year to year in advance, they may have already invested in 

irrigation facility to damper the impacts of climate changes on farm production.  

TFP growth usually moves closely with output growth. In 1983 and 1995, the dramatic impacts 

from adverse weather events caused significant drops in both output and TFP (figure 1). In figure 

2 we map the normal Oury index, based on 1941-1970 data, and Oury indexes in 1983, and 1995 

at state level. We find that Oury index varied for many states in 1983 and 1995. While the shocks 

(figure 3) from its norm show a different picture regarding climate changes.  

(Insert Figure 1, Figure 2, and Figure 3 here) 

Figure 4 presents the normal THI load, as well as the THI indexes in 1983 and 1995 across state. 

When compared with the Oury index, however, it has less variation over time. Yet, if we look at 

the maps of shock indexes in different years (figure 5) we may find that there are noticeable 

differences over the years. 

(Insert Figure 4 and Figure 5 here) 

If bad weather is expected and farmers invested in facilities to reduce the potential damage from 

adverse weather condition, then the impacts of extreme weather on farm production could 

decline. Figure 6 shows irrigation ratio changes over time. In general, pacific regions and 

mountainous regions have more intensive irrigation systems than other regions. 

 

Impact of climate change on technical inefficiency 
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We present the empirical results on how climate variables as well as irrigation ratios and other 

local public goods affect overall technical inefficiency in table 2 and table 3. The climate 

variables incorporated in table 2 are THI mean and Oury mean variables. The climate variables 

incorporated in table 3 are THI shock and Oury shock variables, which are measured as units of 

standard deviation from their normal means. Model 2 and 4 take into account other local public 

goods variables to capture state characteristics and test for the robustness of the impacts of 

climate variables on overall state technical inefficiency.  

(Insert Table 2 and Table 3 here) 

Results of the stochastic frontier inefficiency estimation indicate that higher THI load can drive 

farm production from its best performance. However, a higher Oury index, irrigation ratio, local 

R&D, Extension, and road density could drive state overall farm production to its best 

performance using given inputs and the best technology. The signs of the coefficients are as 

expected. The estimates of impacts of the weather indexes on state technical inefficiency seem to 

be robust. While the signs of THI load are both positive in Moel1 and 2, the estimate without 

incorporating local public goods (Model 1) is not statistical significant. Yet, using “shock” 

variable in Model 3 and 4, the stronger THI load shock lead to technical inefficiency 

significantly no matter whether the local public goods variables are incorporated or not. The 

coefficient estimates of climate variables from Model 3 and 4 are also much closer than those 

from Model 1 and 2. It seems using weather shocks variables can provide much robust results 

than using the level variables.  Interestingly, while the magnitude for the impacts of means and 

shocks of climate variables are quite different, they are more similar for other local variables.  
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Since R&D, Extension, and Road density variables are all in natural log (Ln) form, it indicates 

that a one percent increase in road density and extension capacity may have higher impacts on 

improving technical inefficiency than R&D. It implies that while public R&D stock could 

contribute significantly to long-run technical changes by pushing up the production frontier, its 

impact on inefficiency improvement could be less than other public goods. On the other hand, 

the Extension activity and intensified road infrastructure can help to disseminate knowledge, 

reduce transportation cost, and therefore improve technical inefficiency further.  

 

Summary and Conclusions  

We examine the patterns of productivity changes and climate changes across regions and over 

time. We employ a state panel data for the period of 1960-2004 to identify the role of climate 

changes on U.S. agricultural productivity growth by employing a stochastic frontier production 

frontier method. Climate variables are measured using the THI load and Oury index at both their 

means and the degree of deviation from the historical norm (1941-1970) at the state level. We 

also incorporate the irrigation ratio and the measures of local public goods—R&D, extension, 

and road infrastructure—to capture the effects of specific state characteristics and to check for 

the robustness of the estimates of climate variables’ impacts. 

The state production data and weather information show noticeable variations across and within 

production regions. Yet, some regions seem to have faster overall TFP growth rate, such as the 

Northeast, Corn Belt, and Delta regions, than others during the study period. Results indicate that 
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higher THI load can drive farm production away from its best performance. However, the higher 

Oury index, irrigation ratio, local R&D, Extension, and road density can drive state overall farm 

production closer to its best performance using given inputs and the best technology. Although 

the relative level of THI and Oury index could result in geospatial differences in technical 

inefficiency, the unexpected climate “shock”, such as extreme weather, seems to have more 

robust impacts than its level variation. It could be because farmers expect some degree of 

weather variations based on past experience and have made preparations. Therefore, it is the 

unexpected climate changes (shocks) that result in either waste, an increase use of input, or a 

drop in production.  

While most studies evaluating the impacts of climate change are focused on a specific crop or 

livestock commodities, it is also important to identify the impact climate change has on overall 

productivity growth through its impacts on technical inefficiency. The results could help us 

further understand the sources and differences of productivity growth at the state level.
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Figure 1 U.S. agricultural TFP growth moved closely with output growth (1948-2011) 

 

Data source: USDA and authors’ calculation 
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Figure 2. Oury index comparison, the norm (1941-1970), 1983, and 1995 
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Figure 3.  The climate shocks comparison using Oury Index: 1983 vs. 1995 
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Figure 4. THI load comparison, the norm, 1983, and 1995 
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Figure 5.  The climate shocks comparisons using THI load Index: 1983 vs. 1995 
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Figure 6. Irrigation ratio at census year
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Table 1  State characteristics on productivity growth and climate indexes  

 

Data source: Authors’ calculation  

Production 

Region
State

TFP Annual 

growth (%)

livestock/crop ratio 

(1960-2004)
THI_mean_Norm THI_stdv_norm Oury_mean_norm Oury_stdv_norm

Northeast Connecticut 2.20 1.04 1055.67 369.43 34.96 21.85

Delaware 1.80 2.65 4852.78 434.19 27.60 15.90

Maine 1.90 0.67 334.10 288.76 35.54 21.02

Maryland 1.83 1.68 3854.23 1219.64 27.85 16.52

Massachusetts 2.29 1.28 837.76 507.73 34.82 22.52

New Hampshire 2.00 1.09 400.82 400.96 34.91 20.69

New Jersey 1.67 1.47 3036.90 1343.49 30.95 19.14

New York 1.48 2.28 631.08 425.65 33.22 19.19

Pennsylvania 1.81 1.55 2132.22 1176.03 34.03 20.20

Rhode Island 2.48 0.57 1082.13 223.34 33.45 24.66

Vermont 1.62 1.22 460.23 431.81 34.84 18.42

Lake States Michigan 2.41 0.68 1337.86 565.03 29.15 18.46

Minnesota 1.86 0.98 1316.14 541.74 30.48 16.84

Wisconsin 1.59 1.77 1278.79 554.74 32.64 17.61

Corn Belt Illinois 1.96 0.65 4700.84 2053.02 29.33 19.38

Indiana 2.28 0.47 3333.96 1300.01 31.05 20.07

Iowa 1.87 0.72 2464.54 683.11 31.38 18.19

Missouri 1.62 1.10 6959.88 824.95 29.46 19.86

Ohio 2.16 0.73 2483.27 756.51 30.19 18.40

Northern PlainsKansas 1.05 1.03 7067.55 1509.53 23.00 17.48

Nebraska 1.60 0.93 4244.28 920.75 25.68 17.53

North Dakota 1.90 1.47 1135.88 362.00 24.17 16.20

South Dakota 1.51 0.96 2385.50 887.56 24.89 16.98

Appalachian Kentucky 1.61 0.88 6493.57 1190.49 27.85 15.95

North Carolina 1.84 1.33 6815.53 2358.49 26.89 13.18

Tennessee 1.13 0.88 7085.80 1830.86 26.26 15.92

Virginia 1.53 3.29 3616.45 1769.74 26.63 13.68

West Virginia 1.29 1.91 2409.00 1605.48 31.13 16.45

Southeast Alabama 1.32 2.43 12354.32 2545.32 25.34 16.03

Florida 1.44 0.33 20328.13 1819.72 26.73 13.90

Georgia 1.91 1.56 12544.53 2573.72 23.97 13.49

South Carolina 1.61 0.73 11534.97 1927.22 24.26 12.62

Delta Arkansas 1.93 0.79 9604.32 2283.24 25.33 19.22

Louisiana 1.93 0.68 16369.98 656.32 24.58 16.22

Mississippi 1.98 1.03 14649.88 1650.05 23.81 16.65

Southern PlainsOklahoma 0.58 1.54 12017.31 1660.94 22.00 18.92

Texas 1.14 1.31 14224.99 3888.87 15.41 14.57

Mountain Arizona 1.53 1.14 15465.14 3681.95 2.37 4.08

Colorado 1.10 1.58 1537.62 785.93 17.21 13.61

Idaho 2.01 1.03 927.67 726.82 12.23 13.29

Montana 1.38 0.69 235.59 384.94 18.53 15.18

Nevada 1.24 0.30 1259.17 722.29 7.12 9.04

New Mexico 1.44 0.46 5982.29 2428.52 10.05 10.54

Utah 1.55 1.88 860.60 790.21 10.46 11.34

Wyoming 0.66 1.75 195.48 409.08 17.70 16.09

Pacific California 1.66 0.48 7412.25 6012.63 3.61 8.93

Oregon 2.58 0.50 355.74 490.08 12.26 15.34

Washington 1.73 0.43 465.32 731.14 9.47 12.08
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Table 2 Technical inefficiency determinants (I) 
  

Dependent variable: lnơ
2

u, it Coefficients  standard deviation p>│z│ 

Model 1 

   THI load 0.00002 0.00002 0.191 

Oury index -0.02566 0.00598 0.000 

Irrigation ratio -1.61679 0.55987 0.004 

Constant  -4.51806 0.17359 0.000 

Model 2       

THI load 0.00006 0.00002 0.001 

Oury index -0.02005 0.00656 0.002 

Irrigation ratio -2.87403 0.83239 0.001 

R&D -0.38697 0.13491 0.004 

Extension -0.62426 0.16819 0.000 

Road -0.87694 0.23835 0.000 

Constant  -2.42410 2.12695 0.254 

Note: R&D, Extension, and Road are in natural log term. 

 

Table 3 Technical inefficiency determinants (II) 
  

Dependent variable: lnơ
2

u, it Coefficients  standard deviation p>│z│ 

Model 3       

THI load shock 0.308766 0.0572208 0.000 

Oury index shock -0.1831757 0.0852158 0.032 

Irrigation ratio -1.421067 0.7353514 0.053 

Constatnt -5.271049 0.210577 0.000 

Model 4        

THI load shock 0.3071805 0.0585066 0.000 

Oury index shock -0.182993 0.0849239 0.031 

Irrigation ratio -2.219217 0.7363569 0.003 

R&D -0.3317824 0.1238919 0.007 

Extension -0.4784294 0.1775977 0.007 

Road -0.798406 0.2115199 0.000 

Constant  -2.773977 1.831444 0.130 

Note: R&D, Extension, and Road are in natural log term. 

 


