
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


AGRICULTURAL 
ECONOMICS 

ELSEVIER Agricultural Economics 25 (2001) 119-130 
www.elsevier.com/locate/agecon 

Optimal weed control under static and dynamic decision rules 

JunJie Wu* 
Department of Agricultural and Resource Economics, Oregon State University, Corvallis, OR 97330, USA 

Received 2 December 1998; received in revised form 7 December 1999; accepted I 0 April 2000 

Abstract 

Dynamic and static weed control decision rules are derived analytically and compared. The dynamic rule leads to increased 
farm profits and greater control of weeds and weed seeds than the static rule, while total herbicide use is unchanged. The 
magnitude of the differences is estimated for atrazine control of foxtail and cocklebur in com production. Incorporating weed 
dynamics into weed control strategies increases farm profits between 1.0 and 1.4%. © 2001 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

Herbicide use has enhanced agricultural productiv­
ity and benefited farmers and consumers. However, 
the intensive application of pesticides, particularly 
herbicides, has created concern about their environ­
mental and health effects. One focus of public debates 
over pesticide policy has been the tradeoff between 
the productivity loss and the potential health and en­
vironmental benefits of reducing pesticide use. These 
cost and environmental concerns have provided farm­
ers with a strong incentive to manage weed efficiently 
(Swinton and King, 1994b). 

Integrated pest management (IPM) is an approach 
that generally includes pest monitoring and economic 
thresholds (Bauer and Mortensen, 1992; Coble and 
Mortensen, 1992; Osteen, 1993). The explicit con­
nection between pesticide rates and pest numbers will 
generally reduce overall pesticide applications while 
maintaining production levels. IPM strategies have 
been developed for successful control of crop dis-
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ease, insect damage, and weed damage (Gianessi and 
Greene, 1985; Ferguson, 1990). Most IPM strategies, 
especially for weed control, are static in that they do 
not consider future costs and benefits of actions taken 
today (e.g. Wiles et al., 1991; Wilkerson et al., 1991; 
Coble and Mortensen, 1992). Static decision models 
are appropriate if current actions do not affect future 
choices. For example, if future insect populations are 
independent of current insect numbers, then static 
insecticide strategies are optimal. But static strategies 
lead to suboptimal outcomes if future pest numbers 
depend on current pest numbers. 

Population dynamics are particularly important for 
weeds because surviving weeds produce seeds that 
add to a soil's seed bank, thereby increasing future 
weed infestations (Fisher and Lee, 1981; Taylor and 
Burt, 1984; Pandey and Medd, 1991; Swinton and 
King, 1994a). Fisher and Lee (1981) examined weed 
and disease infestation in wheat by using a dynamic 
programming model. Taylor and Burt (1984) derived 
the near-optimal management strategies from a par­
tially decomposed stochastic dynamic programming 
model for controlling wild oats in spring field. Their 
near-optimal decision rules depend on density of wild 

0169-5150/01/$- see front matter© 2001 Elsevier Science B.V. All rights reserved. 
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oats seed in the plow layer, soil moisture, and several 
other factors. Swinton and King (1994a) consider a 
2-year period in their dynamic model and show that 
the optimal herbicide use in the first year not only 
depends on yield losses in the first year but also in 
the second year and, as a result, farmers considering 
weed seed dynamics may use more herbicide in the 
first year. Pandey and Medd (1991) conclude that it is 
necessary to consider multi-period effects to improve 
herbicide use decisions based on their simulation 
results. All previous analysis drew their conclusions 
from computer simulations. None examined the im­
pacts of weed seed dynamics on total herbicide use 
and farm income analytically. 

This paper generalizes available simulation-based 
results by deriving both static and dynamic optimal 
weed control decision rules. These decision rules are 
compared to demonstrate more generally how the 
incorporation of weed dynamics changes weed con­
trol strategies. We estimate the magnitude of likely 
changes by solving for optimal atrazine use to con­
trol foxtails and cocklebur infestations on corn. Our 
results show that dynamic weed control strategies 
will increase farm income without increasing total 
herbicide use. 

There are large differences in weed management 
practices between developing and developed coun­
tries. In developed countries such as the US, farmers 
face more stringent environmental regulations on her­
bicide use (e.g. for atrazine, not more than 2.0 lb/acre 
per application, or 2.5lb/acre per year), but they also 
have more herbicide choices and the option to switch 
to an alternative herbicide if one herbicide fails to 
achieve a desired control level. They rely heavily on 
herbicide rates specified on product labels in making 
herbicide decision. Nevertheless, there is still a large 
variation in herbicide application rates among farms 
as shown by the area data collected by the US Depart­
ment of Agriculture. In developing countries, farmers 
typically face few herbicide use regulations, but they 
also have few herbicide choices. They often rely on 
changing application rates to achieve the desired lev­
els of weed control. Since herbicide manufactures 
rarely provide any legal guarantee on herbicide ef­
ficacy, farmers often choose their application rates 
based on their experiences, the herbicide costs, and 
their financial affordability. They also control weeds 
mechanically and manually. 

The objective of this paper is not to derive guide­
lines for herbicide application rates, but instead to 
demonstrate the importance of considering weed seed 
dynamics in making herbicide use decisions. We 
compare the optimal levels of weed control under the 
static and dynamic decision rules and their resulting 
impacts on farm income. We show that farmers would 
control weeds to a lower level (either by increasing 
herbicide use or switching to an alternative pesticide) 
if weed seed dynamics are considered. 

2. The model 

Consider a typical grain farmer whose fields are 
infested with a weed. The farmer applies a herbicide 
to control the weed, with an objective of maximizing 
the present value of profits over a planning horizon 
of T years. The biological cycle of an annual weed 
consists of germination, growth, interference, and 
seed production (Bauer and Mortensen, 1992). A 
proportion of weed seeds in the soil seed bank germi­
nates each spring. The seedlings are subject to several 
mortality factors including frost, drought, and fungal 
infection. The surviving seedlings compete with the 
crop if not controlled. Let S1 denote the number of 
seeds (the 'seed bank') at the beginning ofthe planting 
season in year t, and let m be the proportion of weed 
seeds that germinate and survive in the absence of 
herbicide treatments. The factors that affect m include 
weather, the age distribution of the weed seed pop­
ulation, and the depth at which the seeds are buried 
in soil. 

Weed seedlings can be controlled by herbicide treat­
ments. The most commonly used functional form for 
the herbicide rate response function is the exponential 
(Moffitt et al., 1984; Moffitt, 1986, 1988; Osteen et al., 
1988; Gillmeister et al., 1990; Deen et al., 1993). Let 
H1 be herbicide usage, the number of weeds that sur­
vive to compete with the crop under this functional 
form assumption can be written as W1 = mS1 e-cH,, 
where c is a positive constant that depends on the 
herbicide used and the weed species. In this analy­
sis, we assume that the optimal weed densities are 
achieved by changing herbicide application rates. If 
farmers also change herbicides to achieve the desired 
level of weed control, variable H1 can be interpreted 
as the 'toxicity' of the herbicide used. In this case, the 
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optimal weed density can be achieved by changing 
either the application rate or the herbicide used. 

Surviving mature weeds produce fresh seeds for the 
soil seed bank, which starts the cycle again in the follo­
wing spring. The seed bank density at the beginning 
of next planting season (Sr+l) is equal to the seed 
bank density in year t (S1 ), minus the number of seeds 
lost from weed seedling germination and mortality 
factors (mS1 ), plus the seed reproduction (kW1 ), where 
k is the number of seeds each weed produces. For 
simplicity, we assume that all seeds either germinate 
or are dead forever. 1 Under this assumption, the seed 
bank density at the beginning of next planting season 
can simply be written as Sr+l = kW1 = kmS1 e-cH,. 

Competing biological theories support hyperbolic 
yield loss functions (Cousens, 1985; Wilkerson et al., 
1991; Coble and Mortensen, 1992; Swinton and King, 
1994b). So in this study the yield loss function is 
assumed to take the hyperbolic form 

w 
D ( W) = -1 o---=-0-(a_+_b.,..--W)-' (1) 

where D(W) is the percentage yield loss for a given 
value of W, (1/a) the marginal percentage yield loss 
as weed density approaches zero, and (1/b) is the 
maximum percentage yield loss from weeds (Swinton 
and King, 1994a). By using the damage and weed 
control functions, the yield response function can be 
written as Y1 = Yo1 [1- D(mS1 e-cH,)], where Yo1 is 
the weed-free crop yield. 

In general, germination rate m, herbicide efficacy 
c, and weed-free yield Yo1 are random parameters 
because they are affected by rainfall, temperature, 
and other factors that are not known with certainty. 
The impacts of uncertainty about these parameters on 
herbicide use have been examined by Feder (1979), 
Deen et al. (1993), Swinton and King (1994b), and 
several other studies. In this paper we focus on the 
importance of considering weed seed dynamics in 
herbicide use decisions. We ignore the uncertainty 
in order to derive the dynamic and static herbicide 
decision rules. By comparing these decision rules, we 
are able to demonstrate the importance of considering 

1 This assumption may be more valid for some weed species than 
for others. For green and yellow foxtails, one of the weeds we will 
examine in our numerical example, 53.8% of seeds will emerge. 
For those unemerged seeds, 71.4% die (Swinton and King, !994a). 

weed seed dynamics in herbicide use decisions. Sensi­
tivity analysis is conducted with these parameters in 
order to examine the robustness of our results. 

Assume that the farmer's objective is to maximize 
the present value of profits, then his or her herbicide 
use decision can be represented by 

T 

Max :L:>1 {P1 Yo1 [1- D(mS1 e-cH')] 
H, t=l 

- VrHr -Cor}, 

s.t. Sr+i- S1 = (mke-cH, - l)S1 , 

s1 = s?, 

(2) 

(3) 

(4) 

where p is the discount factor, V1 the herbicide price 
in year t, Co the production cost excluding herbicides, 
and s? is the initial seed bank density. This maximiza­
tion problem is an optimal control problem, in which S 
is the state variable, H the decision variable, Eq. (3) the 
equation of motion, and Eq. (4) is the initial condition. 

The problem can be solved using optimal control 
techniques. The Hamiltonian function for the maxi­
mization problem is 

L 1 = p1 {P1 Yo1 [1- D(mS1 e-cH')]- VrHr- Cod 

+A1(mke-cH, - l)S1 , (5) 

where At :::;0 is the Lagrangian multiplier and can be 
interpreted as the marginal cost of seed bank density. 
The first-order necessary conditions for the maxi­
mization problem are 

aLr = p1 {P Y,o D'(mS e-cH')cmS e-cH,- V} a Hr I t t t I 

-A1cmkSr e-cH, = 0, 

aLr = -pt PrYorD'(mSr e-cH')m e-cH, 
as( 

+A1 (mke-cH, - 1) = -(Ar- Ar-J), 

aLt cH - = (mke- ' - l)Sr = Sr+l- Sr. a Ar 

Eq. (6) can be rewritten as 

(6) 

(7) 

(8) 

(9) 
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The first term on the left-hand side of Eq. (9) is the 
marginal value product of herbicide use, and the sec­
ond term is the marginal value of seed band density 
reduction in year t+ 1 from increased herbicide use 
in year t. Thus, Eq. (9) indicates that the optimal 
herbicide use decision must account for the benefits 
of reducing crop losses in both current and following 
seasons. Given the seed bank density at the beginning 
of a year, a dynamic weed control strategy leads to 
at least as much herbicide use in year t than a static 
strategy. However, this does not necessarily imply that 
a dynamic weed control strategy will result in more 
total herbicide use in the planning horizon because 
dynamic and static weed control strategies may lead 
to different time paths of the weed seed bank density. 

Eq. (7) can be rewritten as 

(10) 

The first term on the left-hand side of Eq. (10) is the 
marginal revenue reduction due to an increase in seed 
bank density in year t, and the second term is the 
increase in the marginal cost of seed bank density in 
year t+ 1 due to an increase in seed bank density in 
year t. Thus, Eq. (10) indicates that seed bank density 
should be controlled at the level at which the sum of 
marginal revenue reduction in year t and the increase 
in the marginal cost of weed seed bank density in 
year t+ 1 equals the marginal cost of weed seed bank 
density in year t-1. 

Multiplying both sides of Eq. (7) by eSt and adding 
it to Eq. (6) gives 0 = ptV1 + eS1A.t-1 or At-1 = 
- p 1 V1 j eS1 . By substituting this result, the damage 
function, and St+l = kW1 = kmS1 e-cH, into Eq. (6) 
and rearranging terms, we get 

(11) 

where 

(12) 

Eq. (11) has a positive solution if and only if d1 ::::_0 
and (2ab-d1 ) 2 -4a2 b2 ::::_0, which together implies 
that d1 ::::_4ab. Under this condition, Eq. (11) has two 
solutions, but only the following one satisfies the 

second-order necessary condition: 2 

* (d1 - 2ab)- J(d1 - 2ab)2 - 4a2b2 (l3) 
wt = 2b2 

As the farmer does not benefit from a lower seed bank 
density at the end of the planning horizon, the farmer 
will keep the weed density at the level that maximizes 
the current year's profit. So, for year T, w; is given by 
Eq. (13) with dT=aePTYoTilOOVr. This result will 
be proved in the next section. 

By substituting the optimal weed density intoS1 = 
kWt-1 and W1 = mS1 e-cH,, we obtain the optimal 
time paths of seed bank density and herbicide use 

s; = kW7_ 1, t= 2, ... ,T, (14) 

Ht = - ~ ln ( Wr* ) = - ~ ln ( wt: ) , 
e mS7 e mkW1_ 1 

t=2, ... ,T (16) 

The total amount of herbicide used in the planning 
horizon is 

Eqs. (12) and (14) indicate if the input and output 
prices are constant in the planning horizon, then op­
timal weed and seed bank densities are constant from 
Years 2 to T -1 because d1 is a constant. The farmer 
adjusts weed and seed bank densities to their optimal 
levels in the first year by applying whatever amount of 
herbicide needed. The farmer will then use (1/e) ln(mk) 
units of herbicide every year until year T -1. This 
quick adjustment to the optimal levels may not be 

2 The other solution to Eq. (II) is W1 = [(d1 - 2ab) + 
J d1 (d1 - 4ab) ]j2b2 , at which the Hamiltonian function (5) is con­
vex (i.e. a2 L, jaH? > 0). 
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achieved in reality because of herbicide use regula­
tions. In this situation, the adjustment to the optimal 
level should be made as quickly as possible. 

3. The consequence of ignoring the multi-season 
effects of herbicide use 

Suppose the farmer ignores the multi-season ef­
fects of herbicide use in weed control decisions. The 
decision problem for year t becomes 

MaxJrr = PrYo1[l- D(mS1 e-cH1 )] 

Ht 

(18) 

The first-order condition for this maximization 
problem is 

(19) 

By substituting Eq. (1) into Eq. (19) and noting that 
Wr = mS1 e-cH1 , we get 

(20) 

where 

0 acP1Yo1 

dt = 100V1 
(21) 

Eq. (20) has a positive solution if and only if df 2: 0 
and (2ab- df)2 - 4a2b2 2: 0, or df 2: 4ab. Under 
this condition, the optimal weed density under the 
static rule is 3 

0 (df- 2ab)- J<df- 2ab)2- 4a2b2 
wr = 2b2 (22) 

The seed bank density and herbicide use under the 
static rule are 

s~ = kw?_ 1, (23) 

0 1 ( wp) H 1 =--In --0 , 
c mS 1 

(24) 

H0 = -~In ( w?) = - ~ ln ( w? ) , 
1 c mS1 c mkW~_ 1 

t = 2, 3, ... , T (25) 

3 Again, the other solution does not satisfy the second-order 
necessary condition for the maximization problem in Eq. (18). 

The total amount of herbicide used in T years is 

TH~ = tH1° = -~ln ( T ~~~ a). 
t=l c m k sl 

(26) 

Now, we compare this set of results with those de­
rived in the last section under the dynamic decision 
rule. To compare the weed density, we define 

(d- 2ab)- .Jd2- 4abd 
W(d) = 2b2 . (27) 

Note that W(d1) = W1 1 = Wr* is the optimal weed 
density under the dynamic decision rule, and W (df) = 
W/ = W? is the optimal weed density under the static 
decision rule. Since W(d) is a decreasing function of 
d (i.e. W'(d)<O), we have 

wt = W(dr) < W(d~) = w?. 1 < t < T. 

Also, because S1=kW1, 

s; < s~. 1 < t < T. 

(28) 

(29) 

Thus, the dynamic decision rule results in greater con­
trol of both weed and seed bank densities than the 
static decision rule. 

To compare total herbicide use under the two 
decision rules, assume that input and output prices are 
constant in the planning horizon. As in the dynamic 
case, the farmer using the static rule would maintain 
weed and seed bank densities, w? and sp' at constant 
(but higher) levels. And in the first year, the farmer 
would adjust weed and seed bank densities to the 
optimal levels by applying the required amount of her­
bicide. Since wp < Wj' HP = -(1/c) ln(WP I sf) < 
Hj = -(1/c)ln(Wj/Sf). That is, farmers using 
the static decision rule would use less herbicide in 
the first year than under the dynamic decision rule. 
For Years 2 to T -1, the two decision rules result in 
identical herbicide rates: 

0 1 (1) * H1 = --ln - = H1 , 
c mk 

t = 2, ... , T- 1. 

In the last year of the planning horizon, the optimal 
weed density converges to the optimal static level. 
However, because the seed bank density is lower at 
the beginning of year T under the dynamic rule, the 
farmer will use less herbicide in year T. The difference 
between herbicide use in these two cases is 



124 J. Wu/ Agricultural Economics 25 (2001) 119-130 

* 0 1 ( w; ) 1 ( w~ ) THT- THT = -;;-ln kT-lSl - ;;-ln kT-lSl 

=-ln ___I_ =0. 1 (wo) 
c w; (30) 

This implies that the additional amount of herbicide 
used in year 1 under the dynamic weed control strategy 
equals the additional amount of herbicide used in year 
T under the static weed control strategy. 

Profit for each year can be estimated for the two 
decision rules from the optimal weed densities and 
herbicide rates. As the present value of profits in the 
planning horizon is maximized under the dynamic 
decision rule, producers will make more profit by 
using this decision rule. The difference between the 
net present values of profits under these two decision 
rules is 

NPVn- NPVs = L/{PrYor[D(W1°)- D(Wt)] 

+ V1(H?- Ht)}, (31) 

where NPVn and NPVs are the net present values of 
profits under the dynamic and static decision rules. 

4. Weed control in Iowa corn production 

In this section we present a numerical example toil­
lustrate the difference between the static and dynamic 
weed control decision rules and their impacts on weed 
control and farm income. The numerical example is 
based on control of two weeds, foxtail and cocklebur, 
for com production in Iowa, USA, where the data 
are available. Foxtail represents grass weeds, and 
cocklebur represents broadleaf weeds. The herbicide 
used to control these weeds is assumed to be atrazine, 

Table I 
Biological and biochemical parameters of foxtail and cocklebur 

Parameter 

!Ia (marginal yield loss (%) as weed density approaches zero) 
lib (yield loss (%) as weed density approaches infinite) 
c (herbicide efficacy) 
k (the number of seeds each weed produces) 
m (% of seeds that germinate and survive) 

• Swinton and King (1994a). 

which has been widely used in the US and most fre­
quently detected in groundwater (Kolpin et al., 1994). 
Atrazine application rates, weed and seed bank den­
sities, and per-acre net returns under the static and 
dynamic decision rules are predicted for the period 
of 1998-2002 by using price and cost projections of 
the Food and Agricultural Policy Research Institute 
(FAPRI). A planning horizon of 5 years is assumed. 

Data needed for this application include biolog­
ical and biochemical parameters a, b, c, k, and m, 
weed-free yield Yo1, com and atrazine prices (P1 and 
V1 ), and discount rate (p1) from 1998 to 2002. Bio­
logical and biochemical parameters used in the sim­
ulations are shown in Table 1. These parameters are 
obtained from several sources. Atrazine efficacy pa­
rameter c for foxtail and cocklebur was estimated 
based on application rates and efficacy percentages 
reported in the 1997 Guide for Herbicide Use in 
Nebraska (Nebraska Cooperative Extension 1998). 
The maximum yield loss is assumed to be 70% for 
both foxtail and cocklebur infestation, which implies 
that parameter b in the yield loss functions equals 
1170. The marginal yield loss as weed density ap­
proaches to zero (i.e. 1/a) and the number of seeds 
each weed produces (k) for foxtail were taken from 
Swinton and King (1994a). 

The projection of com price for 1998-2002 was 
taken from the Food and Agricultural Policy Research 
Institute (FAPRI, 1996). FAPRI projections are based 
on a number of assumptions about the general econ­
omy, domestic and foreign agricultural policies, and 
weather and technologic changes. It is assumed that 
current agricultural policies will continue in the US 
and other trading nations. Average weather conditions 
and historical rates of technological changes will pre­
vail during the projection period. Weed-free yields 
from 1998 to 2002 were estimated by adjusting the 

Foxtail 

0.20" 
70 

0.78 
99" 
6 

Cocklebur 

0.75 
70 

0.93 
50 

8 
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FAPRI yield projections by the percentage yield loss 
due to weeds in Iowa (Bridges and Anderson, 1992). 
Bridges and Anderson (1992) estimate that com loss 
due to weeds in Iowa is 7% under current practices. 
The costs for all other inputs except atrazine in 1993, 
Cor. were estimated by using data collected in the 
Iowa MAX program (US Department of Agriculture, 
1993). The values of Cot from 1998 to 2002 were es­
timated by assuming that it will follow the same trend 
as the variable costs of com production as projected 
by FAPRI. The 1997 price of atrazine was taken from 
Nebraska Cooperative Extension. The atrazine prices 
from 1998 to 2002 were estimated by assuming that 
it will follow the same trend as the pesticide costs as 
projected by FAPRI. The discount rate Pt is set to 
11(1 +rt ), where the interest rate r1 is assumed to be 
8%. 

S. Results and discussion 

Table 2 presents the time paths of atrazine applica­
tion rate, weed and seed bank densities, and per-acre 
net return under the static and dynamic decision 

Table 2 

rules for controlling foxtails and cockleburs in Iowa 
corn production. The dynamic decision rule results in 
lower weed and seed bank densities and a higher net 
present value of profits than the static decision rule. 
Considering weed seed dynamics in foxtail control 
would increase the net present value of profits by 
US$ 1.12/acre in the 5-year period, which represents 
a 1.42% increase over the net present value of profits 
under the static decision rule. The income effect is 
smaller in cocklebur control, where the net present 
value of profits increases by US$ 0.93/acre in the 
5-year period, a 1.02% increase. The small increase 
in profit is consistent with previous findings. For ex­
ample, Cousens et al. (1986) found that compared 
with spraying indiscriminately at the label dose every 
year, the dynamic threshold decision rule lead to only 
a small saving in the control of Avenafatua in Winter 
Wheat; whether this saving is sufficient to cover the 
cost of assessment of weed density is unknown. 

As pointed out by Pandey and Medd (1991), 
variability in herbicide efficacy is one of the domi­
nant sources of risk in weed control. To examine how 
variability in herbicide efficacy affects the relative 
advantage of the dynamic decision rule, sensitivity 

Weed control and per-acre net returns under the static and dynamic decision rules 

Year Static model Dynamic model 

Seeds Weeds Atrazine Net return Seeds Weeds Atrazine Net return 
(number/m2) (plants/m2 ) (lb/acre) (US$/acre) (number/m2 ) (plants/m2) (lb/acre) (US$/acre) 

Foxtail 
1998 600" 6.53 2.19 15.13 600" 5.99 2.30 15.12 
1999 647 6.75 2.24 4.26 593 6.19 2.24 4.59b 

2000 669 6.53 2.33 15.60 613 5.98 2.33 15.94 
2001 646 6.42 2.31 23.48 592 5.88 2.31 23.82 
2002 635 6.16 2.34 37.84 582 6.16 2.22 38.20 

Total 3197 32.39 11.40 96.31 2980 30.20 11.40 97.67 
Present value 78.90 80.02 

Cocklebur 
1998 1oo• 1.45 1.83 16.88 100" 1.33 1.93 16.87 
1999 73 1.50 1.46 7.37 67 1.38 1.46 7.65b 

2000 75 1.45 1.53 18.78 69 1.33 1.53 19.06 
2001 73 1.43 1.51 26.68 67 1.31 1.51 26.97 
2002 71 1.37 1.53 41.11 65 1.37 1.44 41.41 

Total 392 7 7.86 110.83 367 6.72 7.86 111.96 
Present value 91.21 92.14 

a These values denote S~. 
b The net return for 1999 is lower because of lower projected corn price for the year by FAPRI. 
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Table 3 
The sensitivity analysis with the atrazine efficacy parameter 

Year Difference in weed density Difference in atrazine use Difference in per-acre net return 
under static and dynamic rules under static and dynamic rules under dynamic and static rules 

c=0.50 c=0.78 c=l c=0.50 

Foxtail 
1998 0.89 0.55 0.42 -0.18 
1999 0.92 0.56 0.43 0.00 
2000 0.89 0.55 0.42 0.00 
2001 0.88 0.54 0.41 0.00 
2002 0.00 0.00 0.00 0.18 

Present value 

c=0.75 c=0.93 c=l.25 c=0.75 

Cocklebur 
1998 0.15 0.12 0.09 -0.12 
1999 0.16 0.12 0.09 0.00 
2000 0.15 0.12 0.09 0.00 
2001 0.15 0.12 0.09 0.00 
2002 0.00 0.00 0.00 0.12 

Present value 

analysis was conducted with the atrazine efficacy pa­
rameter. The results are shown in Table 3 and Figs. 1 
and 2. Three values of parameter c are simulated for 
controlling each weed. In the baseline simulations 
parameter c is assumed to take the medium value 
(0.78 for foxtail and 0.93 for cocklebur), which cor­
respond to 82 and 87% of efficacy with a 2.2lb of 
application rate. The results clearly show that the 
lower the herbicide efficacy, the larger the difference 
in weed and seed bank densities and per-acre net re­
turn under the static and dynamic decision rules. For 
example, when the atrazine efficacy is reduced from 
89% (1-e- 1x2·2=0.89) to 67%, the difference in net 
present value under the dynamic and static decision 
rules increases from US$ 0.87 to 1.78 in the control 
of foxtails. Thus, it is more advantageous to use the 
dynamic decision rule when the herbicide use efficacy 
is low. 

The intuition behind this result is that the static 
decision rule always results in insufficient control of 
weeds because it does not take into account the bene­
fit of lower seed densities in subsequent years. When 
the herbicide efficacy is lower, the degree of the insuf­
ficient control increases, which results in a larger dif­
ference in weed and seed bank densities and per-acre 
net return under the dynamic and static decision rules. 

c=0.78 c=1 c=0.50 c=0.78 c=1 

-0.11 -0.09 -0.02 -0.01 -0.01 
0.00 0.00 0.53 0.33 0.26 
0.00 0.00 0.54 0.34 0.26 
0.00 0.00 0.54 0.34 0.26 
0.11 0.09 0.57 0.36 0.28 

1.78 1.12 0.87 

c=0.93 c=l.25 c=0.75 c=0.93 c=1.25 

-0.09 -0.07 -0.01 -0.01 -0.01 
0.00 0.00 0.35 0.28 0.21 
0.00 0.00 0.35 0.28 0.21 
0.00 0.00 0.35 0.28 0.21 
0.09 0.07 0.38 0.30 0.22 

1.17 0.93 0.69 

The initial seed bank density (Sf) is a crucial vari­
able in weed management models and varies dramat­
ically across fields (Swinton and King, 1994a). In the 
baseline simulations, the initial seed band density is 
assumed to be 600 seeds/m2 for foxtails and 100 for 
cockleburs. Sensitivity analysis was conducted with 
the initial seed bank densities. As shown by Eqs. (13) 
and (22), changes in the initial seed bank densities do 
not change the optimal weed density under both the 
dynamic and static decision rules. However, a higher 
initial seed bank density increases herbicide use in the 
first year under both the dynamic and static decision 
rules (see Eqs. (15) and (24)). As a result, it reduces 
the per-acre net return under both rules. Without her­
bicide use restrictions, the farmer would control weeds 
to the optimal levels in the first year and use same 
amount of herbicide in the subsequent years. This re­
sult depends on the assumption that seeds live for only 
1 year. Without this assumption, herbicide uses in sub­
sequent years may also be affected. Although the her­
bicide use and per-acre net return in the first year are 
sensitive to the initial weed density under both static 
and dynamic decision rules, the difference in herbi­
cide use and net return (both total and first year) under 
the dynamic and static decision rules are not affected 
by the initial seed bank density at all (see Eqs. (15), 
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Fig. 1. Sensitivity analysis with atrazine efficacy in controlling foxtails. 
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(24), (30) and (31)). Thus, changes in the initial seed 
bank density do not change the relative advantage of 
the dynamic and static decision rules. 

Sensitivity analysis was also conducted with respect 
to changes in the seed germination rate (m) and the 
number of seeds each weed produces (k). As shown 
by Eqs. (13) and (22), changes in m or k do not change 

the optimal weed density under both dynamic and 
static decision rules, but these changes will affect her­
bicide use and farm income (see Eqs. ( 14 )-(17) and 
(23)-(26)). As the initial seed bank density, these pa­
rameters do not affect the relative advantage of the 
dynamic and static decision rules because they do not 
change the difference in herbicide use and net present 
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Fig. 2. Sensitivity analysis with atrazine efficacy in controlling cockleburs. 

value of profits under the dynamic and static decision 
rules. 

dynamic weed control decision rules. The dynamic 
rule leads to increased farm profits and greater con­
trol of weeds than the static rule without increasing 
total herbicide use. The model was applied to control 
of foxtails and cockleburs with atrazine in Iowa corn 
production. The dynamic decision rule increases the 
net present value of profit by 1.02% in the control of 
cockleburs and 1.44% in the control of foxtails. 

6. Concluding remarks 

This paper develops and solves a dynamic optimiza­
tion model to compare outcomes under the static and 
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Potential benefits of adopting the dynamic weed 
control decision rule will depend on the cropping sys­
tems to which it is applied. The benefits are likely to 
be large when it is applied to a high-value crop that 
is more likely to be infested with weeds and is treated 
with large amount of herbicides (i.e. some vegetables 
or nursery crops). However, for those cropping sys­
tems that are less likely to be infested with weeds 
or whose weeds can be successfully controlled with 
non-chemical methods such as crop rotations, poten­
tial benefits of adopting the dynamic decision rule 
would be smaller. 

Sensitivity analysis was conducted with respect to 
herbicide efficacy, the initial seed bank density, the 
germination rate, and the number of seeds each weed 
produces. The results show that the lower the herbicide 
efficacy, the higher the degree of insufficient control 
of weeds under the static decision rule, suggesting that 
it is more advantageous to use the dynamic decision 
rule when the herbicide efficacy is low. Although the 
initial seed band density, the germination rate, and the 
number of seeds each weed produces all affect the rate 
of herbicide use and farm net return, these parameters 
do not change the differences in herbicide use and farm 
net return under the static and dynamic decision rule. 
Thus, they do not change the comparative advantage 
of a dynamic weed control decision rule. 

Much information on weed control strategies has 
been provided to farmers by cooperative extension 
agencies in the US. The suggested treatment strategies 
often take the form of a threshold decision rule: if weed 
density exceeds a threshold, then apply the recom­
mended pesticide dosage, otherwise, do not treat (Mof­
fitt, 1988). Despite promise of economic and environ­
mental benefits associated with the use of the threshold 
decision rule and other integrated pest management 
(IPM), producer adoption remains low for some crops 
(MeN amara et al., 1991; Szmedra et al., 1991 ). Several 
explanations have been suggested, including (a) lack 
of access to accurate information required to integrate 
IPM into current management practices, and (b) per­
ception of increased risk associated with IPM adoption 
(Greene et al., 1985; Musser et al., 1986; McNamara 
et al., 1991). Our results suggest that failure to develop 
successful IPM strategies may be another possible rea­
son. We have shown that the recommended weed con­
trol threshold would be too low if weed seed dynamics 
is ignored. Some suggested strategies may have this 

problem because thresholds are often determined with­
out considering weed seed dynamics and multiple-year 
profit effects (Cousens et al., 1986; Moffitt, 1988). 

The dynamic model presented in this paper ab­
stracts from several important facets of weed control 
decisions. Intraseason decisions about herbicide ap­
plication modes such as pre- or post-emergence are 
not represented in this analysis. Uncertainties about 
weather and input and output prices and farmers' risk 
preferences are ignored. Extensions of this model that 
incorporate these factors would be useful to determine 
the robustness of our results. 
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