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Abstract 

Measuring soil quality is extremely difficult, yet it has clear economic importance. In particular, there is a great deal of 
empirical interest in the dynamics of soil quality evolution when land managers respond to policies and other incentives. 
Yet current methodologies for measuring changes in agricultural land quality are largely static and rely heavily either on 
incomplete measures such as proxy variables, or ad hoc indexes of selected soil characteristics. Moreover, much empirical 
work relies on static econometric techniques or simulation models. In this paper, we develop a means to infer soil quality 
changes from input and output data using a dynamic production function model. Using data from field experiments, we estimate 
the model in a way that allows the recovery of a dynamic measure of soil quality whose evolution depends on variations 
in management practices. Our methodology and findings will help provide firmer empirical foundations for analyses of the 
economic implications of land degradation and the soil quality implications of agricultural policies. © 2001 Elsevier Science 
B.V. All rights reserved. 

JEL classification: Q24; C33 
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1. Introduction 

The possibility of long-term soil productivity degra­
dation has potentially significant implications for eco­
nomic welfare. An understanding of soil productivity 
dynamics thus has economic value, both as a tool for 
agricultural decision-making, and as an input to ex 
ante and ex post analyses of the benefits and costs of 

* Conesponding author. Tel.: + 1-608-262-6390; 
fax: + 1-608-262-4376. 
E-mail address: coxhead@facstaff.wisc.edu (I. Coxhead). 

interventions, such as agricultural policies or R&D 
investments, that alter the value of crops, the uses 
of land, or cultivation practices. It is thus somewhat 
surprising that there is little empirical evidence on 
the dynamics of soil productivity that is both rigorous 
and usable for the purposes of economic and policy 
analysis. Repeated calls from soil scientists and oth­
ers for empirical examinations of the dynamics of soil 
quality "in the context of land management strategies, 
interactions, and tradeoffs" have not been effectively 
addressed (Karlen et al., 1997; Jaenicke and Lengnick, 
1999); nor has clear evidence from economists 
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of long-term soil productivity decline in some of 
the developing world's most agriculture-dependent 
economies (Byerlee, 1994; Cassman and Pingali, 
1995; Ali and Byerlee, 2000) stimulated major ad­
vances on the underlying dynamics of soil quality. 

Three types of problems have inhibited empirical 
research. First is the inherent observability issue. Any 
attempt to obtain a direct measure of soil quality 
confronts the choice of either arbitrarily selecting a 
single indicator such as soil depth (e.g., Burt, 1981), 
or the construction of an ad hoc index of indicators 
(e.g., Rhoton and Lindbo, 1997). Both approaches 
have been criticized for lacking rigorous foundation 
and reproducibility across heterogeneous soil condi­
tions (e.g., Karlen et al., 1997). Second, data on the 
attributes of soils and on conditioning factors such 
as management techniques are difficult and expen­
sive to collect, especially in the time series or panel 
format required for dynamic analysis. Third, there 
has been a tendency to rely on the use of elaborate 
but static simulation packages, such as EPIC, even 
by those with access to data suitable to dynamic 
analyses. 1 

In this paper, we introduce a parsimonious method 
to explain current soil productivity in terms of past 
management choices, and to predict its evolution 
under future choices. The core of the method is a dy­
namic structural model whose recursive properties are 
exploited to recover an indirect, but general, measure 
of soil productivity based on yields. As a result, the 
structure of the model enables explicit analysis of the 
relationship between soil productivity and key control 
variables, and offers an empirical method for estimat-

1 The EPIC model is a widely used modeling platform for 
simulating the interaction of the soil-climate-plant-management 
processes in agricultural production (Putman and Dyke, 1987). 
However, the parameters which drive the model are not esti­
mated using dynamic statistical methods like those presented in 
this paper. Thus, these types of models cannot provide reliable 
predictions of how variations in management processes are likely 
to shape outcomes of interest. Instead, EPIC and other such 
simulation models offer scenarios for exploring the interaction 
of the many processes at work in these models. Future research 
efforts might well be aimed at trying to extend the dynamic 
framework developed in this paper in order to capture some of 
the richer detail of models like EPIC, and at the same time do so 
in a way that allows the underlying parameters to be estimated 
statistically. 

ing the parameters that govern these relationships. 2 

Our goal here is to explore this technical relationship 
between soil productivity and key control variables. 
As such, we do not present a behavioral model that 
utilizes this technical relationship. Rather, by provid­
ing quantitative measures of a key state variable, soil 
productivity, our methods and findings have value 
as intermediate inputs to assessments of the causes 
and economic consequences of long-term declines in 
the quality of farmland used for intensive staple crop 
cultivation. 

We use data from field experiments in which the 
primary intent was to study the effects of rotations and 
fertilizer application on yields, particularly of corn. 
Our models exploit these data to present a careful ex­
amination of how variations in rotation and fertilizer 
use affect the dynamics of soil productivity and crop 
yields. These models, depending on the type of field 
experiments undertaken, could also be used to explore 
the effects of other farm management practices on the 
dynamics of soil productivity or on other soil quality 
attributes. A novel feature of our approach is that it 
permits an explicit analysis of the recovery path of 
soil quality under alternative management regimes. 

Although the central contribution of this paper is 
the dynamic econometric model, we preface its pre­
sentation with a more standard approach to analyzing 
yield response to nitrogen fertilizer and rotations, 
namely a random coefficients model (RCM). Next, we 
introduce and estimate the dynamic structural model 
using non-linear least-squares. Both models give sta­
tistically significant estimates of key parameters with 
expected signs, and confirm previously documented 
findings. We then use estimates from the models to 
evaluate the speed at which soil quality returns to base 

2 Soil and other natural scientists may find the proposed method 
unsettling, because the soil quality measure is recovered without 
making explicit use of measures of the physical, chemical, and 
biological properties of soils. In that sense, the measure is a 
complement to rather than a substitute for a unified, cross-cutting 
scientific model of soil quality. However, our approach is more 
coherent than previous soil quality measures. These commonly 
involve either the use of soil quality proxies, such as topsoil depth, 
organic matter content or water absorption potential (Burt, 1981; 
Walker, 1982; van Kooten eta!., 1990; Rhoton and Lindbo, 1997), 
or the construction of a multivariate soil quality "index" using 
a battery of quantitative and qualitative indicator variables with 
unstated or arbitrary weights (Pierce et a!., 1983; Smith et a!., 
1993; Karlen et a!., 1997). 
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Fig. 1. Net N uptake (lb/acre) by crop, accounting for carryover from previous year. N fertilizer is applied only to corn. Figures in 
parentheses (e.g., N=l50) indicate previous year's N application levels. 

levels under alternative management regimes follow­
ing a period of intensive grain cultivation. Finally, 
we discuss some applications and implications of our 
research for economic and policy analysis. 

2. The data 

We use data from a long-term study of yields of 
economically important crops under a legume-cereal 
rotation at the University of Wisconsin's Lancaster 
Research Station. Since this experiment began in 
1967, seven different crop rotations have been applied 
on 21 crop sequence plots with replicate plots. The 
rotations tested include continuous corn (CCCCC), 
corn-soybeans-corn-oats-alfalfa (CSCOM), corn­
corn-corn-alfalfa-alfalfa ( CCCMM), corn-soy bean 
(CS), corn-alfalfa (CM) and continuous alfalfa (MM­
MMM), and the usable data set spans from 1972 to 
1995 (see Vanotti and Bundy, 1994; Kim et al., 2000, 
for further details). 

Nitrogen fertilizer (N) is applied only to corn plots 
and at four distinct levels on sub-plots (0, 50, 100, and 
200 lb/acre were applied from 1977 to 1995). Thus, 
two features of the experimental design shape the 

subsequent econometric specifications. First, rotation 
and N fertilizer use are the only variations in man­
agement practices (although new seed varieties were 
tried in different years), so our study focuses on how 
these practices affect the dynamics of soil quality 
and corn yields. 3 Second, since N is applied only 
to corn, measures of rotation and N use are strongly 
collinear. We resolve this problem by combining 
rotation choices and N levels into a single index of N 
uptake and carryover. 

Construction of this index uses estimates of N up­
take and carryover from the same data set (Vanotti and 
Bundy, 1994, 1995; Vanotti et al., 1995). In the case 
of legumes, nitrogen uptake is negative since these are 
N-fixing crops; the index also nets out N carryover 
from previous fertilizer applications (see Kim et al., 
2000, for details). By construction, if no crops were 
planted on a given plot, the rotation-fertilizer index 
for that plot and year would be zero. Fig. 1 shows 
the average amount of N uptake after taking account 
of both the uptake effects of rotations and carryover 

3 Because tillage practices, liming, phosphates, and other 
management practices were uniformly administered during the 
experiment across all of the plots, no explicit estimates of their 
effects on soil quality can be recovered from the estimation. 
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from previous fertilizer applications. We use these 
cardinal estimates to construct, in effect, an ordinal 
ranking of rotation and fertilizer applications with its 
highest value in a rotation of corn and no fertilizer, 
its lowest value in rotation with alfalfa. The measure 
thus reflects a strictly negative relation between N ap­
plication levels and the amount of N uptake by corn. 

3. A random coefficients model 

We first examine the short- and long-term effects 
of crop rotations and N use on corn yields using an 
RCM (Swamy, 1970; Hsiao, 1986). This approach is 
designed for use when the parameters of the estimated 
relationship may vary over time or space. Previous 
applications to agricultural production have used the 
RCM approach to obtain improved estimators in the 
presence of unobserved sources of variation such as 
rainfall or pests (e.g., Smith and Umali, 1985). How­
ever, the RCM is also a powerful and parsimonious 
technique to control for known fixed effects like past 
crop rotations that might have plot-specific impacts. 

3.1. The RCM model 

Let y; be a vector of time-series observations on 
corn yields for plot i, N; a vector of time-series 
observations on the level of N fertilizer application 
for plot i, X; a matrix of time-series observations of 
exogenous variables, (3 1 a vector of parameters, and 
e; a vector of uncorrelated random variables with zero 
mean and variance-covariance matrix Ee;ej = uJIT. 

The RCM specification for corn-yield response is: 

y; = /3o;N; + X;J3 1 + e;, i = 1, ... , n, (1) 

(2) 

where /3o; is a random coefficient that varies accord­
ing to (2). Z; and "' in (2) are vectors of known 
and unknown constants, respectively, and rJi is an 
unobservable random variable with zero mean and 
variance-covariance matrix Ery; 17; =A.; and E17; 17} = 
0. We assume that e; and 17i are uncorrelated. In this 
specification, plot-specific variability in the marginal 
effect of N fertilizer on yield, i.e., the heterogeneous 
yield response resulting from soil quality differences, 
is measured by the random coefficient /3o;. Thus val­
ues of variables in Z; affect the marginal productivity 

of nitrogen fertilizer. Since the same information en­
ters both the vector Z; and the matrix X;, we now 
discuss the composition of each in turn.The matrix 
X; includes variables representing the short-term and 
long-term effects of alternative crop rotations. Based 
on the N uptake information discussed above, we 
develop three rotation indexes for each year t and each 
plot i. R1, the current value of the index, equals the N 
uptake of the current period's crop plus theN fertil­
izer carryover. R5, a 5-year moving summation of R1, 

provides a measure of the short-term rotation history. 
Rc, the cumulative summation of R1, is constructed to 
capture the long-term history. The vector X; contains a 
constant term plus R1, R5, and Rc, the mean (absolute) 
deviation over T years for July growing degree days 
(Gdev), the mean (absolute) deviation over T years 
for July precipitation (Precdev), 4 dummy variables 
for different corn varieties (D1-Dl0, D12) used in the 
experiments, and a dummy variable (Dummy1988) 
for the year 1988, which was unusually dry. 

Z; represents plot-specific characteristics. It con­
sists of a constant and ZR], the mean value of R1, and 
ZRj, the mean value of R5 (both means are calculated 
in time t over all previous periods). Z; thus charac­
terizes plot-specific information in terms of initial 
differentials or those that might arise as a function of 
past crop choices. 

Combining Eqs. (1) and (2), the full specification is 
given by 

(3) 

where W; = N;Z;, u; = N;17;+e; and Eu;u; = 0; = 
N;A.;N; + u?~T. The BLUE of (3 1 and"' in (3) is the 
GLS estimator, 

Details of the derivation of this estimator are presented 
in Kim et al. (1997). 

4 For corn production, growing conditions for the month of July 
are critical since that is the month during which most pollination 
occurs (Hansen, 1991). 
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3.2. RCM estimation results 

The GLS estimates of (3 1 and 'Y are shown in 
Table 1. The coefficients associated with rotation his­
tory (R1, R5 and Rc) are all statistically significant at 
the 1% level and have the signs indicated by produc­
tion theory. In particular, negative signs of the R1 

coefficients indicate that if anN-demanding crop such 
as corn is planted at time t, then a decrease in corn yield 
can be expected at times t+i (i>O), as well. In addition, 
the effects of the rotation at timet on yields at time t+i 
diminish as i increases, as shown by the declining size 
of the R1 coefficients. These estimates offer an initial 
view of the dynamic effects of rotations on yields. 

The negative coefficient estimates for the devia­
tions of growing degree days (Gdev) and precipitation 
(Precdev) imply quadratic and concave relationships 
between corn yields and weather conditions, as ex­
pected. The coefficients for dummy variables for corn 

Table 1 
Estimation of RCM for the com production• 

Parameter Coefficient S.E. 

Constant 121.037 2.390*** 
RI -7.503 0.547*** 
Rs -2.204 0.524*** 
Rc -0.999 0.185*** 
Gdev (deviation from the mean) -0.321 0.0342*** 
Precdev (deviation from the mean) -4.767 0.895*** 
Dummy! -6.692 3.275** 
Dummy2 62.121 3.578*** 
Dummy3 19.527 5.106*** 
Dummy4 92.091 5.566*** 
Dummy5 29.357 3.502*** 
Dummy6 45.207 3.530*** 
Dummy? 10.442 3.342*** 
Dummy8 21.445 2.298*** 
Dummy9 0.373 4.452 
Dummy10 -15.152 3.128** 
Dummy12 35.655 4.855*** 
Dummy1988 -50.893 3.642*** 
Ziden (constant) 0.0245 0.011** 
ZRI 0.125 0.258 
zR5 -0.0224 0.057 

•Note: adjusted R2=0.965, number of observations=1880. 
Dummy1988 was included in order to account for extremely dry 
weather conditions in 1988. The otber dummies account for differ­
ent corn varieties in tbe sample design. Corn output is measured 
in bushels/acre and N in lb/acre. 

**Significance at 5%. 
***Significance at 1%. 

varieties increase with a few exceptions as relatively 
new corn varieties are applied (the omitted dummy 
is 11, the second oldest variety). Only the estimated 
coefficients for ZRf and ZRT are not statistically 
significant. 

By substituting .Y into Eq. (2), we can recover the 
random coefficient f3oi, which provides information 
about the marginal productivity effects of N fertil­
izer on yields, conditional on crop and plot-specific 
effects. By constructing a 90% confidence interval 
around the mean estimates, we summarize the results 
obtained from the estimates of the first and second 
moments of marginal productivity of N fertilizer by 
rotation in Fig. 2. As shown, the expected value of 
the marginal contribution of N fertilizer has the high­
est value in the case of a continuous corn rotation, 
and the marginal contribution of N to yield declines 
as N-fixing crops such as alfalfa are introduced in 
the rotation. The marginal product of N fertilizer 
turns out to be statistically significant at 10% and 5% 
level for the continuous corn and CSCOM rotation, 
respectively. Under a continuous alfalfa rotation, the 
marginal yield effect of N is statistically insignifi­
cant suggesting that when a plot is already in good 
growing condition, an additional N fertilizer would 
not produce any significant yield effects. This result 
is supported by experimental data showing declining 
corn yields at high fertilizer levels on plots with two 
or three successive alfalfa rotations. 

The variance of the marginal yield effect of N fer­
tilizer in the continuous corn rotation is greater than in 
the other rotations involving corn, and also confirms a 
common assumption in the production literature that 
N fertilizer is a risk-increasing input. More generally, 
since these variance estimates provide a measure of 
the marginal output risk associated with fertilizer in­
puts across different rotation practices, they could be 
useful in behavioral models concerned with producer 
rotation and fertilizer application decisions under risk. 

The results in Table 1 can also be used to predict 
yield conditional on rotation and N application, and 
thus to shed light on the substitutability of fertilizer 
and soil quality. Using mean weather conditions and 
the corn variety of 1994, along with the coefficient 
estimates, a simulation shown in Fig. 3 portrays yield 
differentials conditional on different rotations. In year 
6, after 5 years of continuous corn and 5 years of con­
tinuous alfalfa rotation, the predicted corn yield gap is 
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equal to approximately 40 bushels/acre (2517 kg/ha) 
for an N-fertilizer application level of 100 lb/acre 
(112 kg/ha) on com. These simulation results also 
reflect average yield data for different rotations in the 
experimental data set. 

The long-term substitutability ofN fertilizer for land 
productivity is explored in the three panels of Fig. 4, 
which show the effects of rotation on predicted yields 
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long-term crop rotations. In percentage terms, while 
N application at 200 lb/acre can decrease the yield 
difference between com grown after continuous com 
rotation and a continuous alfalfa rotation by 55% after 
5 years, the same application rate can only reduce the 
gap by 9% after 30 years of the same rotations. The 
results summarized in Fig. 4 cast significant doubt on 
the view that N fertilizer can act as a substitute for 
soil quality in the long run, even when applied at very 
high rates. 

4. A dynamic strnctnral model 

While the RCM approach uncovers some agrono­
mic relationships and some soil productivity dynam­
ics, it does not yield an explicit measure of soil quality. 
In this section, we develop a recursive dynamic model 
of com production with the aim of recovering just such 
a measure. Such a general measure should, in prin­
ciple, reveal more about the dynamics of soil quality 
with respect to key control variables than would proxy 
measures used in previous efforts. Moreover, since our 
measure uses the type of data that are available in 
many locales, it should allow for comparisons across 
sites. We regard our measure as providing an explicit 
means to incorporate soil quality as a state variable in 
dynamic analyses of land productivity, land markets, 
and conservation programs. 

4.1. The structural model 

Suppose soil quality were observable, and that its 
value at a given time depended on land management 
practices and its value in the previous period. Then, 
lettingj{-) denote a crop production function and g(·) 
be the function that governs the state equation for soil 
quality, a nested production function could be written 
as: 

Yt = f(Qt,Nr. Prec1 ,Gr), 

Qr = g(Qr-!,Rf_,), 

(5) 

(6) 

where Y1 is (again, com) yield at time t, Q1 the state 
of soil quality at the start of period t, N1 the level of N 
fertilizer application, Prec1 the average precipitation, 
G1 the growing degree days at year t, and Rf_ 1 is the 

rotation index variable at year t-1. 5 The soil quality 
state equation ( 6) says that the soil quality at the start of 
period tis a function of soil quality at the start of period 
t-1 and the rotation index at t-1 (which includes crop 
choice and N carryover as above). This specification 
reflects the recursive nature of soil quality evolution, 
i.e., soil quality at a certain period cannot be entirely 
determined by choosing the level of control variables 
in the previous period. 

To estimate the soil quality state equation, we need 
to recover the parameters that govern (6) given the fun­
ctional form of g(·). Substituting Eq. (6) intoEq. (5) gi­
ves a potentially estimable nested production function: 

(7) 

The next step is to choose the functional forms of 
f(-) and g(·). Since the elasticity between soil quality 
and N fertilizer in (5) is a key issue in the analysis, 
we seek the functional form for f(·) that imposes 
minimal a priori restrictions on the substitutability of 
these two variables. The translog production function, 
which expresses the logarithm of output as a gener­
alized quadratic function of the logarithm of inputs, 
satisfies these requirements. The production function 
f(-) then becomes 

ln Y = ao + _L)i 1n Xi 

1 
+2: LLbu(ln Xi)(ln Xi), 

i j 

(8) 

where X=[Q1, N1 , Prec1, Gtl is a vector of input 
variables. 

Given the translog assumption on the production 
function, a Cobb-Douglas structure for g(-) gives 
the necessary linearity in parameters that leave the 
model tractable. As is well known, the Cobb-Douglas 
structure imposes strong restrictions on the elasticity 
estimates of the governing state equation, an issue 
we explore below when discussing the model's re­
sults. After logarithmic transformation and successive 
substitution of Q1, the state equation g(·) becomes 

24 

ln Q1 = Lai-lf31nRf_j + a 24 ln Qt-24. (9) 
j=l 

5 In the empirical model Prec1 is the average July precipitation 
and G1 is the July growing degree days. 
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where the initial soil quality (Qr-24) is normalized 
to unity to reflect initial conditions when the sample 
is large and a< 1. The final step involves substituting 
(9) into (8) to derive a nested production function 
which depends only on the observed variables. This 
non-linear function can then be estimated to recover 
the parameters of interest (a and {3) which govern the 
evolution of soil quality. 

Any such dynamic estimation confronts an identifi­
cation problem related to the parameters that define the 
state variable in the nested production function. Con­
sider the following representation of the state equation 
before the successive substitution: 

In Qt =SA', (10) 

where B=[a, {3] and A = [In Qt-1, In Rf_1]. The 
identification problem is evident if we substitute 
(1 0) into (8), and observe the first two terms of the 
expression 

~1ln Qt = b18A', 

~11(ln Qt)(ln Qt)' = b11(BA')(AB'), (11) 

where ~ iJ 's are the estimated coefficients. The iden­
tification problem arises because it is impossible to 
separate b1 from 5 and therefore recover the parame­
ters of interest (a and /3) from ~ 1 without imposing a 
restriction on the value of b1. Setting b1=l resolves 
the identification problems for the rest of the system. 
While this normalization changes the absolute value 
of the coefficients of the nested production function, 
it leaves their relative values unaffected, allowing us 
to estimate an ordinal measure of soil quality from 
the derived estimate of 5. 6 

The nested production function was estimated using 
NLS (non-linear least-squares) method. 7 The results 

6 In some applications of this methodology, the lack of 
pre-sample values of control variables would pose an econometric 
problem; when the time series is not very long, the treatment of 
the missing values is quite difficult (Greene, 1993). However, by 
construction the pre-sample values of the control variable in our 
case, R, _ j, for all years but the most recent in the data set, are 
all zeroes, reflecting uniform initial soil quality across all plots. 

7 As before, the terms for a dozen categorical variables were 
added to control for changing seed varieties in the specification. 
Also, because sample information is not rich enough to estimate 
the coefficient b11 because of collinearity between In Q, and 
its square term ((In Q, )2), the latter term is dropped from the 
estimation equation. 

Table 2 
Estimated parameters of translog production function (dependent 
variable=corn yields )• 

Parameter Coefficient S.E. 

Constant -21.431 3.636*** 
Ci 0.647 0.029*** 

fJ -0.058 0.024** 
Log of N fertilizer (InN) 0.097 0.038** 
Log of July precipitation 2.080 0.456*** 

(In Prec) 
Log of July growing degree 4.615 0.582*** 

days (In G) 
(lnN)2 -0.005 0.005 
(lnPrec)2 0.721 0.121 *** 
(In G)2 -0.395 0.047*** 
(In Q)(lnN) -0.242 0.001 *** 
(In Q)(ln G) -0.054 0.002* 
(In Q)(ln Prec) -0.061 0.004*** 
(lnN)(ln G) -0.003 0.003 
(lnN)(ln Prec) 0.001 0.005 
(ln G)(ln Prec) -0.087 0.032*** 
Dummy! -0.083 0.035** 
Dummy2 0.262 0.088*** 
Dummy3 -0.683 0.099*** 
Dummy4 1.488 0.284*** 
Dummy5 0.288 0.036*** 
Dummy6 0.403 0.047*** 
Dummy? 0.126 0.037*** 
Dummy8 0.092 0.029*** 
Dummy9 -0.612 0.063*** 
Dummy!O -0.255 0.039*** 
Dummy12 -0.472 0.119*** 
Dummyl988 -0.717 0.047*** 

•Note: adjusted R2=0.5606, number of observations=l880. 
Corn output is measured in bushels/acre and N in lb/acre. For 
the description of the dummy variables, see the caption of 
Table 1. 

*Significance at 10%. 
**Significance at 5%. 
***Significance at 1%. 

are presented in Table 2, and they have the expected 
signs, a high level of significance, and explain 56% 
of the variation in corn yields. Some of the difference 
in R2 values across the two models may be a result 
of the structural restrictions imposed on the structural 
model. It is a well-known fact that although structural 
models tend to provide richer explanations about the 
dynamics of the underlying variables, their structural 
assumptions may reduce the overall explanatory power 
of the model. 



22 K. Kim et al./ Agricultural Economics 25 (2001) 13-26 

4.2. Structural model estimates 

The parameter estimates governing the dynamics of 
soil quality (a, fJ) are recovered with reasonable val­
ues and high levels of significance. The estimate of 
a reflects the dynamic effects of crop rotation on soil 
quality over time, and its value (0.647) means that the 
effects will diminish as time elapses. The estimated 
coefficient of the rotation index, fJ, is equal to -0.058. 
Because N uptake is measured positively, this nega­
tive value confirms the expectation that soil quality 
decreases with more intensive cultivation. 

Other key regression coefficient estimates provide 
further insights into the soil quality-productivity 
nexus. The coefficient estimate on N (0.097) reflects 
a positive impact of N use on yield, controlling for 
other inputs. The negative value on the quadratic term 
of N application ( -0.005) suggests that the marginal 
productivity of N on corn yields declines at higher 
N application levels; however, this term lacks sta­
tistical significance. It is also interesting to consider 
the coefficient on the interaction term of soil quality 
and N fertilizer levels ((In Q)(lnN)). The negative 
and statistically significant coefficient of this term 
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( -0.242) indicates that there is an inverse relation­
ship between the marginal productivity of N and soil 
quality. Derived from the nested production function, 
the marginal productivity of N as a function of soil 
quality is 

ay Y 
aN = N (0.097 - 0.005ln N - 0.242ln Q 

-0.003ln G + O.OOllnPrec). (12) 

Holding the other variables constant at their mean 
values, the marginal productivity of N conditional 
on soil quality is readily calculated. Soil quality is 
recovered using the estimation results (a and fJ) as 
discussed above, based on the results of four distinc­
tive rotations over 20 years. An initial soil quality 
level is chosen, and then the four rotations ranging in 
terms of N uptake from continuous corn to continu­
ous alfalfa are used to generate different soil quality 
outcomes. These range from a low of 0.85 for con­
tinuous corn to a high of 2.05 for continuous alfalfa. 
Then, the marginal productivity of N use on corn 
production is estimated for different levels of soil 
quality. The results are given in Fig. 5, and (as shown 

CSCOM(150) 
1 

Soil Quality 

CCCMM(150) 
1.36 

FaN=50 

DID N=100 

E!IN=150 

L\'IN=200 

MMMMM 
2.05 

Fig. 5. Relative marginal productivity of N fertilizer on corn conditional on soil quality. Data are grouped by rotation, and each group 
shows results for four levels of N application in the current year. Numbers in parentheses after each rotation (e.g., CCCCC(l50)) showN 
application rate over the previous 20 years. 
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in Fig. 2) the marginal productivity of N given 
lower soil quality (represented by continuous corn) is 
higher than that of better soil qualities (represented 
by other rotations). Since alfalfa fixes nitrogen, in 
alfalfa-intensive rotations such as CCCMM and MM­
MMM, additional nitrogen applications may reduce 
the yield of the subsequent corn crop. In these cases, 
the Cobb-Douglas structure implies that the marginal 
yield reduction due to overfertilization is greatest at 
lower N application rates. 

In Kim et al. (2000), the soil quality coefficient esti­
mates were also used to examine the evolution of soil 
quality conditional on crop rotation and N application 
rates. We found that while rotations can be used to 
sustain or even improve soil quality, the same is not 
true for fertilizer applications. Soil quality drops off 
quickly with continuous corn rotations, and higher 
levels of fertilizer provide only minimal improvement. 
This finding (along with the RCM results) contra­
dicts those of some previous studies in the economic 
literature on soil quality. In particular, it provides 
no support in the case of corn for the widely ap­
plied conclusion of Burt (1981) that "intensive wheat 
production with good cultural and fertilizer prac­
tices, etc., is not a threat to the long-run productivity 
of soils". 8 

5. Implications for economic analysis 

If the findings from the two models are reliable, 
then rotations of N-using and N-fixing crops provide 
a long-run basis for maintaining soil productivity that 
fertilizer alone cannot. The importance of this result 
for private land management practices and agricultural 
policies depends on three conditions: the length of 
time required to restore soil quality through rotational 
practices; the relative economic returns toN-using and 
N-fixing crops; and the degree to which soil quality 
and its expected trajectory are reflected in the agricul­
tural land market. If soil quality recovery takes time 
and the economic returns to N-fixing crops are rela­
tively low, then the efficiency effects associated with 

8 Concern about the substitutability of fertilizer for soil quality 
has been a matter of debate (Bmt, 1981; Harris, 1990). The results 
of this study are consistent with Harris argument that problems 
of nutrient deficiency and toxic residues in soils could become 
widespread at higher levels of fertilizer application in the long run. 

the rotation-fertilizer tradeoff just mentioned could be 
important. This is especially true if the tradeoff is not 
reflected in land valuations, e.g., if soil quality dynam­
ics are not readily observable (Kim and Chavas, 1999). 
Our two econometric models give us the opportunity to 
explore the first of these conditions, i.e., the recovery 
time of soil quality under alternative rotations. Subse­
quently, we comment on the other two conditions. 

5.1. Soil quality recovery paths 

In Fig. 6, two trajectory maps trace the recovery 
time of productivity and soil quality following con­
tinuous corn rotations of different lengths. The upper 
graph displays the estimation results from the RCM: 
these show declining yields over time under contin­
uous corn, and progressively longer yield recovery 
periods under alfalfa. After 5 years of continuous 
corn, 1 year of alfalfa restores potential corn yield to 
its initial value, but after 20 years, the full recovery 
takes 3 years and after 30 years of continuous corn, 
recovery takes 4 years. The longer recovery time is 
due to the progressive yield decline in continuous 
corn. These results provide information that has value 
to land managers and for the design of soil conserving 
rotational patterns. Knowing a lengthy history of crop 
choices could also help potential buyers to evaluate 
land purchases in cases where soil quality informa­
tion is not otherwise readily observable and where 
economic returns to alternate crops are significantly 
less than to the principal crop. 

The lower graph uses the results of the dynamic 
structural model to show the recovery path of soil qual­
ity after 5 and 20 years of continuous corn. In both 
cases, the estimated decline in soil quality associated 
with corn production appears to occur almost entirely 
within the first 5 years, and soil quality recovery takes 
about 3 years. If these estimated soil quality recov­
ery paths are accurate, then land managers and market 
participants might care about previous cropping pat­
terns, but would need less historical information than 
the RCM results suggest. 

The RCM model and the dynamic structural model 
provide somewhat different views of the rates of dec­
line of productivity and soil quality under continu­
ous corn and the subsequent recovery paths under 
alfalfa. These differences appear to derive from the 
Cobb-Douglas structure of the g(·) function and the 
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The trajectory of yield recovery with alfalfa cultivation (N=1 00) 
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Fig. 6. The trajectories of yield and soil quality recovery through the use of alfalfa. 

estimated value of a in the dynamic structural esti­
mation, which provides the basis for a rapid decline 
and then flat trajectory, compared to the less restrictive 
RCM functional form which provides a more intuitive 
depiction of steadily declining yields under continu-

ous corn that take progressively longer periods to re­
generate. However, both sets of results demonstrate 
that the ability to draw inferences about soil quality 
and yield recovery times could constitute important 
economic information. 
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5.2. Other economic implications 

The potential value of estimates of soil quality eff­
ects and recovery times is clear when designing and 
analyzing agricultural policies. First, it is evident that 
the economic optimality of rotations with N-fixing 
crops depends greatly on the returns to such crops. 
In mixed farming systems with significant livestock 
components, typical returns to alfalfa or soybeans may 
come close to matching those for com. This is the case, 
e.g., in large areas of the US Midwest. Other farming 
systems have much smaller markets for green fodder 
or other products of legume crops, with the result that 
relative returns to these crops are much lower. This ap­
pears to be the case in many tropical agricultural sys­
tems, where the production of grains for consumption 
by humans and penned livestock is more important. If 
soil quality conservation is a policy goal, there may be 
sound economic arguments for subsidies on rotations 
that introduce lower-value, N-fixing crops to the pro­
duction cycle. For example, soil quality conservation 
is an explicit goal of the US Conservation Reserve 
Program (CRP), in which participating farmers receive 
payments in return for taking land out of intensive cul­
tivation, but whether the specific policies are appropri­
ate depends on the underlying soil dynamics (Hertel 
and Preckel, 1988). Information from the application 
of our model to appropriate data could be important as 
an aid to the design of similar policies in other settings. 

Information on soil quality dynamics is also impor­
tant to ex post policy assessment. In many developing 
countries, e.g., private returns to com, rice and wheat 
are enhanced by import-restricting policies aimed at 
promoting national self-sufficiency in staple cereals 
(Krueger et al., 1988). Several recent studies of such 
countries have sounded warnings about the implica­
tions of long-term declines in the quality of farmland 
used for intensive and continuous cereal cultivation 
(Byerlee, 1994; Cassman and Pingali, 1995). Failure 
to take such trends into account imparts a downward 
bias to assessments of the net social costs of food 
self-sufficiency programs (Coxhead, 1997). On the 
other hand, self-sufficiency programs could conceiv­
ably be implemented at lower social cost if they were 
able to make use of information about soil quality 
recovery rates. The parsimony of our methodology 
provides a way of approaching these long-term policy 
problems in countries where data are scarce. 

Finally, although asymmetric information about 
land quality may not be a major impediment to private 
land market operation in wealthier economies, the 
same can by no means be said of developing coun­
tries. In such countries, lack of reliable information 
on recovery paths of soil quality could give rise to 
socially inefficient land use choices and land market 
performance (Kim and Chavas, 1999), with associ­
ated welfare costs. There is a strong economic case 
for using developing country crop trials data, e.g., 
from the international agricultural research centers, 
to examine long run soil quality dynamics in the way 
outlined in this paper. These efforts could potentially 
assist land-market participants in assessing the dyna­
mics of soil quality and hence the underlying value 
of land based on its previous use. 

More generally, for collaborative teams that might 
bring economists together with natural scientists to 
study the dynamics of soil quality under alternate man­
agement practices, our methodology provides a way 
of recovering the central state variable, and could thus 
be used in a wide variety of dynamic models of farmer 
behavior concerning land use and soil conservation in­
vestments. Such collaborative efforts might also give 
rise to a more explicit effort to incorporate phonolog­
ical restrictions (as in the EPIC model) into the kind 
of dynamic econometric framework developed above. 
This could enrich both the richness of our understand­
ing of the underlying dynamic processes of soil quality 
evolution and the statistical reliability of those more 
elaborate modeling approaches. The eventual social 
contribution of such collaborative undertakings could 
be quite great, as models of soil productivity dynamics 
are likely to be critical to policy analyses concerning 
long-term food production potential and environmen­
tal remediation for decades to come. 
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