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Abstract

Measuring soil quality is extremely difficult, yet it has clear economic importance. In particular, there is a great deal of
empirical interest in the dynamics of soil quality evolution when land managers respond to policies and other incentives.
Yet current methodologies for measuring changes in agricultural land quality are largely static and rely heavily either on
incomplete measures such as proxy variables, or ad hoc indexes of selected soil characteristics. Moreover, much empirical
work relies on static econometric techniques or simulation models. In this paper, we develop a means to infer soil quality
changes from input and output data using a dynamic production function model. Using data from field experiments, we estimate
the model in a way that allows the recovery of a dynamic measure of soil quality whose evolution depends on variations
in management practices. Our methodology and findings will help provide firmer empirical foundations for analyses of the
economic implications of land degradation and the soil quality implications of agricultural policies. © 2001 Elsevier Science
B.V. All rights reserved.

JEL classification: Q24; C33
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1. Introduction interventions, such as agricultural policies or R&D

investments, that alter the value of crops, the uses

The possibility of long-term soil productivity degra-
dation has potentially significant implications for eco-
nomic welfare. An understanding of soil productivity
dynamics thus has economic value, both as a tool for
agricultural decision-making, and as an input to ex
ante and ex post analyses of the benefits and costs of

* Corresponding author. Tel.: +1-608-262-6390;
fax: +1-608-262-4376.
E-mail address: coxhead@facstaff.wisc.edu (I. Coxhead).

of land, or cultivation practices. It is thus somewhat
surprising that there is little empirical evidence on
the dynamics of soil productivity that is both rigorous
and usable for the purposes of economic and policy
analysis. Repeated calls from soil scientists and oth-
ers for empirical examinations of the dynamics of soil
quality “in the context of land management strategies,
interactions, and tradeoffs” have not been effectively
addressed (Karlen et al., 1997; Jaenicke and Lengnick,
1999); nor has clear evidence from economists

0169-5150/01/$ — see front matter © 2001 Elsevier Science B.V. All rights reserved.
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of long-term soil productivity decline in some of
the developing world’s most agriculture-dependent
economies (Byerlee, 1994; Cassman and Pingali,
1995; Ali and Byerlee, 2000) stimulated major ad-
vances on the underlying dynamics of soil quality.

Three types of problems have inhibited empirical
research. First is the inherent observability issue. Any
attempt to obtain a direct measure of soil quality
confronts the choice of either arbitrarily selecting a
single indicator such as soil depth (e.g., Burt, 1981),
or the construction of an ad hoc index of indicators
(e.g., Rhoton and Lindbo, 1997). Both approaches
have been criticized for lacking rigorous foundation
and reproducibility across heterogeneous soil condi-
tions (e.g., Karlen et al., 1997). Second, data on the
attributes of soils and on conditioning factors such
as management techniques are difficult and expen-
sive to collect, especially in the time series or panel
format required for dynamic analysis. Third, there
has been a tendency to rely on the use of elaborate
but static simulation packages, such as EPIC, even
by those with access to data suitable to dynamic
analyses. !

In this paper, we introduce a parsimonious method
to explain current soil productivity in terms of past
management choices, and to predict its evolution
under future choices. The core of the method is a dy-
namic structural model whose recursive properties are
exploited to recover an indirect, but general, measure
of soil productivity based on yields. As a result, the
structure of the model enables explicit analysis of the
relationship between soil productivity and key control
variables, and offers an empirical method for estimat-

! The EPIC model is a widely used modeling platform for
simulating the interaction of the soil-climate—plant-management
processes in agricultural production (Putman and Dyke, 1987).
However, the parameters which drive the model are not esti-
mated using dynamic statistical methods like those presented in
this paper. Thus, these types of models cannot provide reliable
predictions of how variations in management processes are likely
to shape outcomes of interest. Instead, EPIC and other such
simulation models offer scenarios for exploring the interaction
of the many processes at work in these models. Future research
efforts might well be aimed at trying to extend the dynamic
framework developed in this paper in order to capture some of
the richer detail of models like EPIC, and at the same time do so
in a way that allows the underlying parameters to be estimated
statistically.

ing the parameters that govern these relationships. ?
Our goal here is to explore this technical relationship
between soil productivity and key control variables.
As such, we do not present a behavioral model that
utilizes this technical relationship. Rather, by provid-
ing quantitative measures of a key state variable, soil
productivity, our methods and findings have value
as intermediate inputs to assessments of the causes
and economic consequences of long-term declines in
the quality of farmland used for intensive staple crop
cultivation.

We use data from field experiments in which the
primary intent was to study the effects of rotations and
fertilizer application on yields, particularly of corn.
Our models exploit these data to present a careful ex-
amination of how variations in rotation and fertilizer
use affect the dynamics of soil productivity and crop
yields. These models, depending on the type of field
experiments undertaken, could also be used to explore
the effects of other farm management practices on the
dynamics of soil productivity or on other soil quality
attributes. A novel feature of our approach is that it
permits an explicit analysis of the recovery path of
soil quality under alternative management regimes.

Although the central contribution of this paper is
the dynamic econometric model, we preface its pre-
sentation with a more standard approach to analyzing
yield response to nitrogen fertilizer and rotations,
namely a random coefficients model (RCM). Next, we
introduce and estimate the dynamic structural model
using non-linear least-squares. Both models give sta-
tistically significant estimates of key parameters with
expected signs, and confirm previously documented
findings. We then use estimates from the models to
evaluate the speed at which soil quality returns to base

2 Soil and other natural scientists may find the proposed method
unsettling, because the soil quality measure is recovered without
making explicit use of measures of the physical, chemical, and
biological properties of soils. In that sense, the measure is a
complement to rather than a substitute for a unified, cross-cutting
scientific model of soil quality. However, our approach is more
coherent than previous soil quality measures. These commonly
involve either the use of soil quality proxies, such as topsoil depth,
organic matter content or water absorption potential (Burt, 1981;
Walker, 1982; van Kooten et al., 1990; Rhoton and Lindbo, 1997),
or the construction of a multivariate soil quality “index” using
a battery of quantitative and qualitative indicator variables with
unstated or arbitrary weights (Pierce et al., 1983; Smith et al.,
1993; Karlen et al., 1997).
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Fig. 1. Net N uptake (Ib/acre) by crop, accounting for carryover from previous year. N fertilizer is applied only to corn. Figures in

parentheses (e.g., N=150) indicate previous year’s N application levels.

levels under alternative management regimes follow-
ing a period of intensive grain cultivation. Finally,
we discuss some applications and implications of our
research for economic and policy analysis.

2. The data

We use data from a long-term study of yields of
economically important crops under a legume—cereal
rotation at the University of Wisconsin’s Lancaster
Research Station. Since this experiment began in
1967, seven different crop rotations have been applied
on 21 crop sequence plots with replicate plots. The
rotations tested include continuous corn (CCCCC),
corn—soybeans—corn—oats—alfalfa (CSCOM), corn—
corn—corn—alfalfa—alfalfa (CCCMM), corn—soybean
(CS), corn—alfalfa (CM) and continuous alfalfa (MM-
MMM), and the usable data set spans from 1972 to
1995 (see Vanotti and Bundy, 1994; Kim et al., 2000,
for further details).

Nitrogen fertilizer (N) is applied only to corn plots
and at four distinct levels on sub-plots (0, 50, 100, and
200 Ib/acre were applied from 1977 to 1995). Thus,
two features of the experimental design shape the

subsequent econometric specifications. First, rotation
and N fertilizer use are the only variations in man-
agement practices (although new seed varieties were
tried in different years), so our study focuses on how
these practices affect the dynamics of soil quality
and corn yields.®> Second, since N is applied only
to corn, measures of rotation and N use are strongly
collinear. We resolve this problem by combining
rotation choices and N levels into a single index of N
uptake and carryover.

Construction of this index uses estimates of N up-
take and carryover from the same data set (Vanotti and
Bundy, 1994, 1995; Vanotti et al., 1995). In the case
of legumes, nitrogen uptake is negative since these are
N-fixing crops; the index also nets out N carryover
from previous fertilizer applications (see Kim et al.,
2000, for details). By construction, if no crops were
planted on a given plot, the rotation—fertilizer index
for that plot and year would be zero. Fig. 1 shows
the average amount of N uptake after taking account
of both the uptake effects of rotations and carryover

3 Because tillage practices, liming, phosphates, and other
management practices were uniformly administered during the
experiment across all of the plots, no explicit estimates of their
effects on soil quality can be recovered from the estimation.
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from previous fertilizer applications. We use these
cardinal estimates to construct, in effect, an ordinal
ranking of rotation and fertilizer applications with its
highest value in a rotation of corn and no fertilizer,
its lowest value in rotation with alfalfa. The measure
thus reflects a strictly negative relation between N ap-
plication levels and the amount of N uptake by corn.

3. A random coefficients model

We first examine the short- and long-term effects
of crop rotations and N use on corn yields using an
RCM (Swamy, 1970; Hsiao, 1986). This approach is
designed for use when the parameters of the estimated
relationship may vary over time or space. Previous
applications to agricultural production have used the
RCM approach to obtain improved estimators in the
presence of unobserved sources of variation such as
rainfall or pests (e.g., Smith and Umali, 1985). How-
ever, the RCM is also a powerful and parsimonious
technique to control for known fixed effects like past
crop rotations that might have plot-specific impacts.

3.1. The RCM model

Let y; be a vector of time-series observations on
corn yields for plot i, N; a vector of time-series
observations on the level of N fertilizer application
for plot i, X; a matrix of time-series observations of
exogenous variables, B; a vector of parameters, and
€; a vector of uncorrelated random variables with zero
mean and variance—covariance matrix E'e€; e’j = criJZ.IT.

The RCM specification for corn-yield response is:

vi = BoiNi +X;B +€, i=1,...,n, ¢h)
Boi = Ziy +m;, @)

where Bo; is a random coefficient that varies accord-
ing to (2). Z; and vy in (2) are vectors of known
and unknown constants, respectively, and n; is an
unobservable random variable with zero mean and
variance—covariance matrix En;n; = A; and E nin;. =
0. We assume that €; and n; are uncorrelated. In this
specification, plot-specific variability in the marginal
effect of N fertilizer on yield, i.e., the heterogeneous
yield response resulting from soil quality differences,
is measured by the random coefficient Bo;. Thus val-
ues of variables in Z; affect the marginal productivity

of nitrogen fertilizer. Since the same information en-
ters both the vector Z; and the matrix X;, we now
discuss the composition of each in turn.The matrix
X; includes variables representing the short-term and
long-term effects of alternative crop rotations. Based
on the N uptake information discussed above, we
develop three rotation indexes for each year t and each
plot i. R', the current value of the index, equals the N
uptake of the current period’s crop plus the N fertil-
izer carryover. RS, a 5-year moving summation of RY,
provides a measure of the short-term rotation history.
R€, the cumulative summation of Rl is constructed to
capture the long-term history. The vector X; contains a
constant term plus RY, RS, and RC, the mean (absolute)
deviation over T years for July growing degree days
(Gdev), the mean (absolute) deviation over T years
for July precipitation (Precdev),* dummy variables
for different corn varieties (D1-D10, D12) used in the
experiments, and a dummy variable (Dummy1988)
for the year 1988, which was unusually dry.

Z; represents plot-specific characteristics. It con-
sists of a constant and ZR}, the mean value of R!, and
ZRI.S, the mean value of R> (both means are calculated
in time ¢ over all previous periods). Z; thus charac-
terizes plot-specific information in terms of initial
differentials or those that might arise as a function of
past crop choices.

Combining Egs. (1) and (2), the full specification is
given by

yi = Wiy + B X; +u, 3)

where W; = N;Z;, u; = N;n;+€; and Ewju; = Q; =
N,‘)»;Né + aiZIT. The BLUE of ; and v in (3) is the
GLS estimator,

é :l — S [ X: jlngl X: N;Z;
kin [Z ZN; |9 XNz

i=1

(]

i=1

-1

I

Details of the derivation of this estimator are presented
in Kim et al. (1997).

4 For corn production, growing conditions for the month of July
are critical since that is the month during which most pollination
occurs (Hansen, 1991).
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3.2. RCM estimation results

The GLS estimates of 3; and vy are shown in
Table 1. The coefficients associated with rotation his-
tory (R!, R> and R®) are all statistically significant at
the 1% level and have the signs indicated by produc-
tion theory. In particular, negative signs of the R!
coefficients indicate that if an N-demanding crop such
as corn is planted at time ¢, then a decrease in corn yield
can be expected at times t+i (i>0), as well. In addition,
the effects of the rotation at time ¢ on yields at time #4-i
diminish as i increases, as shown by the declining size
of the R! coefficients. These estimates offer an initial
view of the dynamic effects of rotations on yields.

The negative coefficient estimates for the devia-
tions of growing degree days (Gdev) and precipitation
(Precdev) imply quadratic and concave relationships
between corn yields and weather conditions, as ex-
pected. The coefficients for dummy variables for corn

Table 1
Estimation of RCM for the corn production®

Parameter Coefficient S.E.
Constant 121.037 2.390***
R! —7.503 0.547%+*
R —2.204 0.524%
R —0.999 0.185***
Gdev (deviation from the mean) —0.321 0.0342%**
Precdev (deviation from the mean) —4.767 0.895***
Dummy1 —6.692 3.275%*
Dummy?2 62.121 3.578***
Dummy3 19.527 5.106***
Dummy4 92.091 5.566%**
Dummy5 29.357 3.502%**
Dummy6 45.207 3.530%*
Dummy7 10.442 3.342%**
Dummy8 21.445 2.298***
Dummy9 0.373 4.452
Dummy10 —15.152 3.128%*
Dummy12 35.655 4.855%**
Dummy 1988 —50.893 3.642%**
Ziden (constant) 0.0245 0.011**
ZR! 0.125 0.258
ZR’ —0.0224  0.057

aNote: adjusted R?>=0.965, number of observations=1880.
Dummy1988 was included in order to account for extremely dry
weather conditions in 1988. The other dummies account for differ-
ent corn varieties in the sample design. Corn output is measured
in bushels/acre and N in Ib/acre.

**Significance at 5%.

***Significance at 1%.

varieties increase with a few exceptions as relatively
new corn varieties are applied (the omitted dummy
is 11, the second oldest variety). Only the estimated
coefficients for ZRi1 and ZR? are not statistically
significant.

By substituting ¥ into Eq. (2), we can recover the
random coefficient Bo;, which provides information
about the marginal productivity effects of N fertil-
izer on yields, conditional on crop and plot-specific
effects. By constructing a 90% confidence interval
around the mean estimates, we summarize the results
obtained from the estimates of the first and second
moments of marginal productivity of N fertilizer by
rotation in Fig. 2. As shown, the expected value of
the marginal contribution of N fertilizer has the high-
est value in the case of a continuous corn rotation,
and the marginal contribution of N to yield declines
as N-fixing crops such as alfalfa are introduced in
the rotation. The marginal product of N fertilizer
turns out to be statistically significant at 10% and 5%
level for the continuous corn and CSCOM rotation,
respectively. Under a continuous alfalfa rotation, the
marginal yield effect of N is statistically insignifi-
cant suggesting that when a plot is already in good
growing condition, an additional N fertilizer would
not produce any significant yield effects. This result
is supported by experimental data showing declining
corn yields at high fertilizer levels on plots with two
or three successive alfalfa rotations.

The variance of the marginal yield effect of N fer-
tilizer in the continuous corn rotation is greater than in
the other rotations involving corn, and also confirms a
common assumption in the production literature that
N fertilizer is a risk-increasing input. More generally,
since these variance estimates provide a measure of
the marginal output risk associated with fertilizer in-
puts across different rotation practices, they could be
useful in behavioral models concerned with producer
rotation and fertilizer application decisions under risk.

The results in Table 1 can also be used to predict
yield conditional on rotation and N application, and
thus to shed light on the substitutability of fertilizer
and soil quality. Using mean weather conditions and
the corn variety of 1994, along with the coefficient
estimates, a simulation shown in Fig. 3 portrays yield
differentials conditional on different rotations. In year
6, after 5 years of continuous corn and 5 years of con-
tinuous alfalfa rotation, the predicted corn yield gap is
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Fig. 2. The 90% confidence interval of the marginal product of N fertilizer on corn conditional on crop rotation. BETA indicates the
expected value of marginal product of N and SE stands for standard error associated with its expected value.

equal to approximately 40 bushels/acre (2517 kg/ha)
for an N-fertilizer application level of 100 lb/acre
(112kg/ha) on corn. These simulation results also
reflect average yield data for different rotations in the
experimental data set.

The long-term substitutability of N fertilizer for land
productivity is explored in the three panels of Fig. 4,
which show the effects of rotation on predicted yields

250

at four different N application levels after 5, 10 and 30
years of distinct rotations. One can easily see that N
fertilizer is at least a short-run substitute for land pro-
ductivity: the year-6 yield difference between contin-
uous corn and other rotations is substantially smaller
at higher N application levels. Yet, as the second and
third panels reveal, higher N application rates cannot
compensate for productivity losses associated with
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Fig. 3. Corn yield differentials conditional on crop rotation (N=100 Ib/acre).
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long-term crop rotations. In percentage terms, while
N application at 2001b/acre can decrease the yield
difference between corn grown after continuous corn
rotation and a continuous alfalfa rotation by 55% after
5 years, the same application rate can only reduce the
gap by 9% after 30 years of the same rotations. The
results summarized in Fig. 4 cast significant doubt on
the view that N fertilizer can act as a substitute for
soil quality in the long run, even when applied at very
high rates.

4. A dynamic structural model

While the RCM approach uncovers some agrono-
mic relationships and some soil productivity dynam-
ics, it does not yield an explicit measure of soil quality.
In this section, we develop a recursive dynamic model
of corn production with the aim of recovering just such
a measure. Such a general measure should, in prin-
ciple, reveal more about the dynamics of soil quality
with respect to key control variables than would proxy
measures used in previous efforts. Moreover, since our
measure uses the type of data that are available in
many locales, it should allow for comparisons across
sites. We regard our measure as providing an explicit
means to incorporate soil quality as a state variable in
dynamic analyses of land productivity, land markets,
and conservation programs.

4.1. The structural model

Suppose soil quality were observable, and that its
value at a given time depended on land management
practices and its value in the previous period. Then,
letting f{-) denote a crop production function and g(-)
be the function that governs the state equation for soil
quality, a nested production function could be written
as:

Y, = f(Q:,Ny, Prec;,Gy), )
Ql = g(Ql—laRtl_l)’ (6)

where Y; is (again, corn) yield at time ¢, O the state
of soil quality at the start of period 7, N; the level of N
fertilizer application, Prec; the average precipitation,
G; the growing degree days at year ¢, and Rtl_1 is the

rotation index variable at year —1.° The soil quality
state equation (6) says that the soil quality at the start of
period ¢ is a function of soil quality at the start of period
t—1 and the rotation index at 7—1 (which includes crop
choice and N carryover as above). This specification
reflects the recursive nature of soil quality evolution,
i.e., soil quality at a certain period cannot be entirely
determined by choosing the level of control variables
in the previous period.

To estimate the soil quality state equation, we need
to recover the parameters that govern (6) given the fun-
ctional form of g(-). Substituting Eq. (6) into Eq. (5) gi-
ves a potentially estimable nested production function:

Y = f(g(Qr—1,R]_1), Ny, Prec,,Gy). (7

The next step is to choose the functional forms of
f(-) and g(-). Since the elasticity between soil quality
and N fertilizer in (5) is a key issue in the analysis,
we seek the functional form for f(-) that imposes
minimal a priori restrictions on the substitutability of
these two variables. The translog production function,
which expresses the logarithm of output as a gener-
alized quadratic function of the logarithm of inputs,
satisfies these requirements. The production function
f(-) then becomes

InY =ag+ Zbi InX;

1

1
+§ZZb,~j(ln X)(InX)), ®)
i

where X=[Q;, N;, Prec;, G;] is a vector of input
variables.

Given the translog assumption on the production
function, a Cobb-Douglas structure for g(-) gives
the necessary linearity in parameters that leave the
model tractable. As is well known, the Cobb-Douglas
structure imposes strong restrictions on the elasticity
estimates of the governing state equation, an issue
we explore below when discussing the model’s re-
sults. After logarithmic transformation and successive
substitution of Q;, the state equation g(-) becomes

24

nQ =) o/ 'BInR}_; +a*InQs 2, )
j=1

5 In the empirical model Prec, is the average July precipitation
and G; is the July growing degree days.
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where the initial soil quality (Q;_»4) is normalized
to unity to reflect initial conditions when the sample
is large and o <1. The final step involves substituting
(9) into (8) to derive a nested production function
which depends only on the observed variables. This
non-linear function can then be estimated to recover
the parameters of interest (o and 8) which govern the
evolution of soil quality.

Any such dynamic estimation confronts an identifi-
cation problem related to the parameters that define the
state variable in the nested production function. Con-
sider the following representation of the state equation
before the successive substitution:

In O, = A/, (10)

where 8=[a, ] and A = [In Q,—1,InR! |]. The
identification problem is evident if we substitute
(10) into (8), and observe the first two terms of the
expression

{1ln Q; = b1BA,
211(n Q) (n Q) = b11(8A)(AY), (11)

where ¢;;’s are the estimated coefficients. The iden-
tification problem arises because it is impossible to
separate b1 from 6 and therefore recover the parame-
ters of interest (o and B) from & without imposing a
restriction on the value of b;. Setting b;=1 resolves
the identification problems for the rest of the system.
While this normalization changes the absolute value
of the coefficients of the nested production function,
it leaves their relative values unaffected, allowing us
to estimate an ordinal measure of soil quality from
the derived estimate of &.°

The nested production function was estimated using
NLS (non-linear least-squares) method.’ The results

% In some applications of this methodology, the lack of
pre-sample values of control variables would pose an econometric
problem; when the time series is not very long, the treatment of
the missing values is quite difficult (Greene, 1993). However, by
construction the pre-sample values of the control variable in our
case, R,_;, for all years but the most recent in the data set, are
all zeroes, reflecting uniform initial soil quality across all plots.

7 As before, the terms for a dozen categorical variables were
added to control for changing seed varieties in the specification.
Also, because sample information is not rich enough to estimate
the coefficient by; because of collinearity between In(Q, and
its square term ((In 0,)%), the latter term is dropped from the
estimation equation.

Table 2
Estimated parameters of translog production function (dependent
variable=corn yields)?

Parameter Coefficient S.E.
Constant —21.431 3.636™**
o 0.647 0.029***
B —0.058 0.024**
Log of N fertilizer (InN) 0.097 0.038**
Log of July precipitation 2.080 0.456***
(In Prec)
Log of July growing degree 4.615 0.582%**
days (InG)
(InN)? —0.005 0.005
(In Prec)? 0.721 0.121%*
(InG)? —0.395 0.047***
(InQ)(InN) —0.242 0.001***
(In Q)(In G) —0.054 0.002*
(In Q)(In Prec) —0.061 0.004***
(InN)(In G) —0.003 0.003
(In N)(In Prec) 0.001 0.005
(In G)(In Prec) —0.087 0.032%**
Dummy1 —0.083 0.035**
Dummy?2 0.262 0.088***
Dummy3 —0.683 0.099***
Dummy4 1.488 0.284***
Dummy5 0.288 0.036***
Dummy6 0.403 0.047***
Dummy7 0.126 0.037***
Dummy8 0.092 0.029***
Dummy9 —0.612 0.063***
Dummy10 —0.255 0.039***
Dummy12 —0.472 0.119***
Dummy1988 -0.717 0.047***

2Note: adjusted R2=0.5606, number of observations=1880.
Corn output is measured in bushels/acre and N in lb/acre. For
the description of the dummy variables, see the caption of
Table 1.

*Significance at 10%.

**Significance at 5%.

***Significance at 1%.

are presented in Table 2, and they have the expected
signs, a high level of significance, and explain 56%
of the variation in corn yields. Some of the difference
in R? values across the two models may be a result
of the structural restrictions imposed on the structural
model. It is a well-known fact that although structural
models tend to provide richer explanations about the
dynamics of the underlying variables, their structural
assumptions may reduce the overall explanatory power
of the model.
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4.2. Structural model estimates

The parameter estimates governing the dynamics of
soil quality (o, B) are recovered with reasonable val-
ues and high levels of significance. The estimate of
«a reflects the dynamic effects of crop rotation on soil
quality over time, and its value (0.647) means that the
effects will diminish as time elapses. The estimated
coefficient of the rotation index, 8, is equal to —0.058.
Because N uptake is measured positively, this nega-
tive value confirms the expectation that soil quality
decreases with more intensive cultivation.

Other key regression coefficient estimates provide
further insights into the soil quality—productivity
nexus. The coefficient estimate on N (0.097) reflects
a positive impact of N use on yield, controlling for
other inputs. The negative value on the quadratic term
of N application (—0.005) suggests that the marginal
productivity of N on corn yields declines at higher
N application levels; however, this term lacks sta-
tistical significance. It is also interesting to consider
the coefficient on the interaction term of soil quality
and N fertilizer levels ((In Q)(InN)). The negative
and statistically significant coefficient of this term
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(—0.242) indicates that there is an inverse relation-
ship between the marginal productivity of N and soil
quality. Derived from the nested production function,
the marginal productivity of N as a function of soil
quality is

dy

Y
= —(0.097 - 0.005In N —O.
aN N(OO97 0.005 In 0.2421n QO

—0.0031n G + 0.001 In Prec). (12)

Holding the other variables constant at their mean
values, the marginal productivity of N conditional
on soil quality is readily calculated. Soil quality is
recovered using the estimation results (o and B) as
discussed above, based on the results of four distinc-
tive rotations over 20 years. An initial soil quality
level is chosen, and then the four rotations ranging in
terms of N uptake from continuous corn to continu-
ous alfalfa are used to generate different soil quality
outcomes. These range from a low of 0.85 for con-
tinuous corn to a high of 2.05 for continuous alfalfa.
Then, the marginal productivity of N use on corn
production is estimated for different levels of soil
quality. The results are given in Fig. 5, and (as shown

30
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g 10 §N=200
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Fig. 5. Relative marginal productivity of N fertilizer on corn conditional on soil quality. Data are grouped by rotation, and each group
shows results for four levels of N application in the current year. Numbers in parentheses after each rotation (e.g., CCCCC(150)) show N

application rate over the previous 20 years.
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in Fig. 2) the marginal productivity of N given
lower soil quality (represented by continuous corn) is
higher than that of better soil qualities (represented
by other rotations). Since alfalfa fixes nitrogen, in
alfalfa—intensive rotations such as CCCMM and MM-
MMM, additional nitrogen applications may reduce
the yield of the subsequent corn crop. In these cases,
the Cobb-Douglas structure implies that the marginal
yield reduction due to overfertilization is greatest at
lower N application rates.

In Kim et al. (2000), the soil quality coefficient esti-
mates were also used to examine the evolution of soil
quality conditional on crop rotation and N application
rates. We found that while rotations can be used to
sustain or even improve soil quality, the same is not
true for fertilizer applications. Soil quality drops off
quickly with continuous corn rotations, and higher
levels of fertilizer provide only minimal improvement.
This finding (along with the RCM results) contra-
dicts those of some previous studies in the economic
literature on soil quality. In particular, it provides
no support in the case of corn for the widely ap-
plied conclusion of Burt (1981) that “intensive wheat
production with good cultural and fertilizer prac-
tices, etc., is not a threat to the long-run productivity

of soils”. 8

5. Implications for economic analysis

If the findings from the two models are reliable,
then rotations of N-using and N-fixing crops provide
a long-run basis for maintaining soil productivity that
fertilizer alone cannot. The importance of this result
for private land management practices and agricultural
policies depends on three conditions: the length of
time required to restore soil quality through rotational
practices; the relative economic returns to N-using and
N-fixing crops; and the degree to which soil quality
and its expected trajectory are reflected in the agricul-
tural land market. If soil quality recovery takes time
and the economic returns to N-fixing crops are rela-
tively low, then the efficiency effects associated with

8 Concern about the substitutability of fertilizer for soil quality
has been a matter of debate (Burt, 1981; Harris, 1990). The results
of this study are consistent with Harris argument that problems
of nutrient deficiency and toxic residues in soils could become
widespread at higher levels of fertilizer application in the long run.

the rotation-fertilizer tradeoff just mentioned could be
important. This is especially true if the tradeoff is not
reflected in land valuations, e.g., if soil quality dynam-
ics are not readily observable (Kim and Chavas, 1999).
Our two econometric models give us the opportunity to
explore the first of these conditions, i.e., the recovery
time of soil quality under alternative rotations. Subse-
quently, we comment on the other two conditions.

5.1. Soil quality recovery paths

In Fig. 6, two trajectory maps trace the recovery
time of productivity and soil quality following con-
tinuous corn rotations of different lengths. The upper
graph displays the estimation results from the RCM:
these show declining yields over time under contin-
uous corn, and progressively longer yield recovery
periods under alfalfa. After 5 years of continuous
corn, 1 year of alfalfa restores potential corn yield to
its initial value, but after 20 years, the full recovery
takes 3 years and after 30 years of continuous corn,
recovery takes 4 years. The longer recovery time is
due to the progressive yield decline in continuous
corn. These results provide information that has value
to land managers and for the design of soil conserving
rotational patterns. Knowing a lengthy history of crop
choices could also help potential buyers to evaluate
land purchases in cases where soil quality informa-
tion is not otherwise readily observable and where
economic returns to alternate crops are significantly
less than to the principal crop.

The lower graph uses the results of the dynamic
structural model to show the recovery path of soil qual-
ity after 5 and 20 years of continuous corn. In both
cases, the estimated decline in soil quality associated
with corn production appears to occur almost entirely
within the first 5 years, and soil quality recovery takes
about 3 years. If these estimated soil quality recov-
ery paths are accurate, then land managers and market
participants might care about previous cropping pat-
terns, but would need less historical information than
the RCM results suggest.

The RCM model and the dynamic structural model
provide somewhat different views of the rates of dec-
line of productivity and soil quality under continu-
ous corn and the subsequent recovery paths under
alfalfa. These differences appear to derive from the
Cobb-Douglas structure of the g(-) function and the
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The trajectory of yield recovery with alfalfa cultivation (N=100)
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Fig. 6. The trajectories of yield and soil quality recovery through the use of alfalfa.

estimated value of « in the dynamic structural esti-
mation, which provides the basis for a rapid decline
and then flat trajectory, compared to the less restrictive
RCM functional form which provides a more intuitive
depiction of steadily declining yields under continu-

ous corn that take progressively longer periods to re-
generate. However, both sets of results demonstrate
that the ability to draw inferences about soil quality
and yield recovery times could constitute important
economic information.
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5.2. Other economic implications

The potential value of estimates of soil quality eff-
ects and recovery times is clear when designing and
analyzing agricultural policies. First, it is evident that
the economic optimality of rotations with N-fixing
crops depends greatly on the returns to such crops.
In mixed farming systems with significant livestock
components, typical returns to alfalfa or soybeans may
come close to matching those for corn. This is the case,
e.g., in large areas of the US Midwest. Other farming
systems have much smaller markets for green fodder
or other products of legume crops, with the result that
relative returns to these crops are much lower. This ap-
pears to be the case in many tropical agricultural sys-
tems, where the production of grains for consumption
by humans and penned livestock is more important. If
soil quality conservation is a policy goal, there may be
sound economic arguments for subsidies on rotations
that introduce lower-value, N-fixing crops to the pro-
duction cycle. For example, soil quality conservation
is an explicit goal of the US Conservation Reserve
Program (CRP), in which participating farmers receive
payments in return for taking land out of intensive cul-
tivation, but whether the specific policies are appropri-
ate depends on the underlying soil dynamics (Hertel
and Preckel, 1988). Information from the application
of our model to appropriate data could be important as
an aid to the design of similar policies in other settings.

Information on soil quality dynamics is also impor-
tant to ex post policy assessment. In many developing
countries, e.g., private returns to corn, rice and wheat
are enhanced by import-restricting policies aimed at
promoting national self-sufficiency in staple cereals
(Krueger et al., 1988). Several recent studies of such
countries have sounded warnings about the implica-
tions of long-term declines in the quality of farmland
used for intensive and continuous cereal cultivation
(Byerlee, 1994; Cassman and Pingali, 1995). Failure
to take such trends into account imparts a downward
bias to assessments of the net social costs of food
self-sufficiency programs (Coxhead, 1997). On the
other hand, self-sufficiency programs could conceiv-
ably be implemented at lower social cost if they were
able to make use of information about soil quality
recovery rates. The parsimony of our methodology
provides a way of approaching these long-term policy
problems in countries where data are scarce.

Finally, although asymmetric information about
land quality may not be a major impediment to private
land market operation in wealthier economies, the
same can by no means be said of developing coun-
tries. In such countries, lack of reliable information
on recovery paths of soil quality could give rise to
socially inefficient land use choices and land market
performance (Kim and Chavas, 1999), with associ-
ated welfare costs. There is a strong economic case
for using developing country crop trials data, e.g.,
from the international agricultural research centers,
to examine long run soil quality dynamics in the way
outlined in this paper. These efforts could potentially
assist land-market participants in assessing the dyna-
mics of soil quality and hence the underlying value
of land based on its previous use.

More generally, for collaborative teams that might
bring economists together with natural scientists to
study the dynamics of soil quality under alternate man-
agement practices, our methodology provides a way
of recovering the central state variable, and could thus
be used in a wide variety of dynamic models of farmer
behavior concerning land use and soil conservation in-
vestments. Such collaborative efforts might also give
rise to a more explicit effort to incorporate phonolog-
ical restrictions (as in the EPIC model) into the kind
of dynamic econometric framework developed above.
This could enrich both the richness of our understand-
ing of the underlying dynamic processes of soil quality
evolution and the statistical reliability of those more
elaborate modeling approaches. The eventual social
contribution of such collaborative undertakings could
be quite great, as models of soil productivity dynamics
are likely to be critical to policy analyses concerning
long-term food production potential and environmen-
tal remediation for decades to come.
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