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Modeling Information in Environmental Decision-Making 

Craig A. Bond and Terrence Iverson1 
      
Introduction 
 
Uncertainty abounds in environmental and resource management problems.  There is 
uncertainty about the physical processes themselves, uncertainty about which physical 
consequences people care about, and uncertainty about the value of the relevant outcomes.  
Some uncertainty may be expected to diminish with learning over time, but much will remain 
beyond the time when decisions have to be made.  As a result, decision-makers cannot simply 
wait for uncertainty to go away.  Policy needs to anticipate.  Decisions must be made ex ante. 

When evaluating choice under uncertainty, most applied work in environmental and resource 
economics builds on the well-worn structure of expected utility maximization (the EU model) or 
subjective expected utility maximization (the SEU model)2. There are good reasons for this.  For 
one, it is easy to use.  Linearity in probabilities provides a convenient analytical structure that 
has enabled economists to prove a wide range of useful results.  For example, we can clearly 
define what we mean by an increase in risk, and we can concisely describe how changes in risk 
will affect optimal decisions (Rothschild and Stiglitz 1970, Arrow 1971).  

A second explanation may ultimately be more satisfying—though we as applied economists 
rarely discuss it.  This is the criterion’s normative rationale.  In economics, the presumptive 
assumption in normative inquiry is that decisions be consistent with how a “rational” decision 
maker would act.  Rationality is then defined by a set of transparent rules, or axioms, that 
impose forms of consistency on the decision algorithm.  A common example is transitivity: if one 
prefers x to y and y to z then they should also prefer x to z.  Axiomatic rationale offers a strong 
basis for motivating public policy decisions because the unappealing consequences of violated 
axioms can be made explicit. 

The axiomatic foundations for the EU and SEU models were developed by von Neumann  and 
Morgenstern (1944) and Savage (1954), respectively.  It is fair to say that they have been 
widely—though by no means universally—regarded within our profession as compelling.  And 
though a vigorous strand of inquiry has persisted in questioning the canonical model’s 
justification (for example, Ellsberg 1961 and Kahneman and Tversky 1979), this has not 
stopped it from becoming the default language for discussing the economics of risk and time.  
This dominance carries with it the potential for dangerous complacency, especially when policy 
recommendations follow from potentially misspecified models. 

                                                 
1 The authors are, respectively, associate professor, Department of Agricultural and Resource 
Economics, Colorado State University and assistant professor, Department of Economics, Colorado State 
University. Dr. Bond is the corresponding author and may be reached at craig.bond@colostate.edu. This 
research was supported in part through Colorado Agricultural Experiment Station and Colorado Water 
Institute funding. We thank two anonymous referees and the editor for comments and suggestions that 
greatly improved the paper. All remaining errors, however, are the sole responsibility of the authors. 
2 The two models imply the same maximization problem, in which expectations are formed through 
summing probability-weighted outcomes. They differ in their interpretation of probability—for the EU 
model, probabilities are objectively given, while for the SEU model, they reflect the decision-maker’s 
subjective beliefs. 
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In this paper, we argue that deviations from the simple setting for which the EU/SEU model was 
originally intended—and for which it is optimally suited—are more common than is often 
acknowledged.   Indeed, common features of many environmental and resource management 
problems virtually ensure this. As such, we discuss the consequences of an excessive reliance 
on the EU/SEU paradigm in formulating policy decisions, and we explore some promising 
options for moving beyond it, as well as suggesting some other avenues of future research.  Our 
intention is not to provide a comprehensive review of available techniques, nor to work out any 
particular approach in detail.  Rather, we strive to provide a context for thinking about modeling 
informational issues in environmental decision-making, and to encourage additional research. 
We do this by pointing out specific ways in which structural components of the workhorse 
stochastic dynamic optimization framework can be extended or relaxed, and provide an invasive 
species example (zebra and quagga mussels in aquatic environments) to fix ideas.  The paper 
should be viewed as a complement to Shaw and Woodward (2008) who discuss similar, though 
not identical, issues. 

When the Assumptions Don’t Fit 

The EU/SEU model works best when the information available for decision-making is well 
behaved in particular ways.  Three deviations from the ideal information structure warrant 
emphasis for environmental policy decisions.  They are shown in Figure 1.  Severity of 
uncertainty refers to the extent to which uncertainty can be measured or quantified.  A low rating 
implies that existing data is sufficient for decision makers to confidently assign probabilities, 
while a high rating implies a situation in which probabilities cannot be uniquely assigned.  This 
distinction has a long history in economics dating back to early contributions by Knight (1921) 
and Keynes (1921).  The importance of tail events refers to the importance of high 
consequence, low probability events in expected utility calculations.  As Weitzman has recently 
shown, so-called “fat tail” distributions have the potential to overwhelm expected utility 
calculations (Weitzman 2009).  Finally, potential for learning reflects the extent to which future 
information flows are important for ex ante decisions.   

Information structures near the origin in Figure 1 are well behaved in the sense that they offer 
solid footing for expected utility maximization. In contrast, information structures away from the 
origin strain the validity of the standard model.  Such deviations are important for many 
environmental and resource management problems because of a common set of physical 
characteristics that these problems share. These are listed in the first column of Figure 2. 
Problems that share some or all of these features include climate change mitigation, biodiversity 
conservation, and invasive species management, just to name a few.3 The links between these 
physical characteristics and the information structure dimensions in Figure 1 are numerous. For 
example, novelty implies a situation where scientific knowledge is preliminary and incomplete 
and thus increases the severity of uncertainty; a long time horizon magnifies uncertainty from all 
sources; inertia and irreversibilities interact to determine the importance of waiting to learn; and 
feedbacks increase the importance of tail events by making it hard to rule out probability 
distributions with fat tails over extreme events (Weitzman 2009, Nordhaus 2011, Roe and Baker 
2007).  

                                                 
3 Additional examples can be found in virtually every paper cited herein; however, Table 1 in Shaw and 
Woodward (2008) provides a nice conceptual overview characterizing the size of probabilities and the 
potential for ambiguity over them. 
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Figure 1: Dimensions of Information in Environmental and Natural Resource Economics 
Problems 

Thus, the relevant information structure for many environmental and resource management 
problems may deviate from the origin in one or more dimensions in Figure 1.  But so what?  
What if we use the EU/SEU model anyway? 

Most importantly, excessive reliance on the EU/SEU model can lead to bad decisions.   
Consider first a situation where uncertainty is too severe for decision-makers to justifiably 
specify a unique probability distribution over contending forecasting models.  If they persist in 
using the standard model anyway, they must choose a distribution from among a variety of 
plausible alternatives.  The chosen policy will then perform well—in the ex ante sense of 
balancing expected costs and expected benefits—provided the chosen distribution turns out to 
be the most appropriate one.  But the same policy may perform terribly under another, equally 
plausible alternative.  By forcing policy evaluation into an inappropriate framework, the decision-
maker is in effect committing to analytical blinders that understate the true extent of uncertainty.  
A Bayesian would aggregate probabilities across models with the variance of the aggregate 
distribution accounting for the dispersion across model alternatives (Brock et al. 2003), but it 
may still be too much to ask for decision makers to agree on a unique final distribution.  A more 
natural objective when uncertainty is severe is to seek a policy that is in some sense robust 
across the range of plausible probability distributions, rather than one that performs optimally 
under a particular distribution while ignoring the implied risks under each of the others. 

The consequence of ignoring “fat tailed” probability distributions can be at least as severe.  
Weitzman (2009) shows that extreme events in the tail of the relevant probability distributions 
can make an arbitrarily large (i.e., infinite) contribution to the expected utility objective function.  
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The important takeaway is that the standard practice of ignoring extreme events—predicated on 
the fact that it is typically difficult or impossible to assign probabilities over them given available 
data—could lead to arbitrarily bad decisions.  Research to better accommodate information 
about tail events into decision-making is still in its infancy.  Nevertheless, it is clear that 
situations where fat tails cannot be ruled out—most importantly, situations with novelty and 
feedbacks—warrant pause and concern.  

  

Figure 2: Physical Characteristics and Decision Context of Complex Management 
Problems 

Finally, the consequence of ignoring the dynamic nature of scientific information has been 
widely discussed; nevertheless, it is still often ignored in applied work. Arrow and Fisher (1974) 
and Henry (1974) first recognized that the appropriately measured opportunity cost for an 
irreversible investment should include the value of future information.  This is because future 
information has value only if the option to act upon it is preserved.  This value is sometimes 
called the quasi-option value.  For environmental problems, the quasi-option value can 
sometimes go in the opposite direction of what one might expect, leading to lower levels of 
environmental protection than would be justified without it.  This is because investments in 
abatement equipment—like changes in environmental quality—can themselves be irreversible 
(see Kolstad 1996 for an example).  Alternatively, the value of future information may be so 
great that aggressive exploitation might be warranted in the short run.  The key lesson is that 
there is a value-of-information margin relevant to management tradeoffs that the standard 
EU/SEU model ignores. 

So far, our discussion of the adverse consequences of inappropriately relying on the EU/SEU 
model has focused on the claim that it can lead to bad decisions.  Two additional criticisms 
warrant mention.  First, because most environmental policy decisions are made by groups of 
stakeholders—rather than by a single decision maker or by a unified decision-making body—we 
should ask if the EU/SEU model is useful for guiding decision-making in this context.  Consider 
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the case in which uncertainty is severe, so there are a variety of probability distributions that 
cannot be ruled out in the face of available evidence.  In this case, one might naturally expect 
stakeholders in high stakes policy decisions to defend the probability distribution that most 
supports their particular interests or values (Herrick and Sarewicz 2001).  But this makes 
application of the EU/SEU model extremely difficult since it cannot be applied without decision 
makers agreeing upon a unique distribution.  There is a substantial literature that looks at 
aggregating probabilities across a variety of expert specified distributions, but there is no agreed 
upon methodology.  As such, it may be more appealing to start negotiations from a position that 
acknowledges that a variety of probability distributions are consistent with the data (see, for 
example, Lempert et al. 2004 and Iverson 2012). 

Finally, one can criticize the machinery of expected utility maximization by taking a behavioral 
perspective.  A behavioral lens asks how realistic agents actually do behave, rather than how an 
idealized rational agent hypothetically would.  Historically, economists have often pushed back 
on the assertion that public policy decision makers should seek to emulate the common sense 
logic of the average person (for example, von Neumann and Morgenstern 1944, Savage 1954). 
After all, they would say, the goal of formal analysis is to facilitate an enlightened perspective 
that goes beyond heuristic biases.  The counter argument is an extension of consumer 
sovereignty: if people respond to uncertain decisions in a way that conflicts with a particular list 
of axioms, then policy-makers may want to take these deviations seriously—at the very least, 
within the democratic process, they may be forced to.  Carried further, the goal of maximizing 
social welfare could be interpreted as saying that the desirability of a particular tradeoff should 
be evaluated with reference to behavior, not theory. 

Behavioral critiques of the EU/SEU model center on two long-standing “paradoxes”—the 
Ellsberg paradox and the Allais paradox.  Ellsberg (Ellsberg 1961) showed that people prefer 
bets with well-defined odds to bets with unspecified odds even when they get to call the terms of 
the bet in the latter situation. The finding shows that people are more averse to uncertainty over 
models then the EU/SEU model would suggest. Allais (Allais 1953) showed that people tend to 
overweight low-probability high-consequence events relative to what they would under the 
EU/SEU model.  This implies that the EU/SEU model does not accurately describe how people 
will evaluate risky outcomes when low probability tail events are important.  Both paradoxes can 
be used to justify decision criteria that differ from expected utility maximization. 

Some Promising Alternatives 

To clarify options for handling difficult information structures, we will focus on a general 
stochastic dynamic optimization problem written in recursive form using the Bellman equation 
(Bellman 1957).  To keep the discussion concrete, however, we discuss the relevant objects 
with reference to a specific invasive species problem; namely, the threat of zebra and quagga 
mussels spreading through Western waterways. As documented in Thomas (2010), these 
species were introduced to U.S. waters in the 1980’s through transatlantic shipping activities.  
They spread rapidly through the Great Lakes and the Mississippi River Basin, and they are now 
widespread in the eastern Midwest and Northeast.  More recently, the species have been 
discovered in some inland lakes in the West.  They spread primarily through the transport of 
recreational watercraft.  

We start by defining the standard dynamic programming model as follows: 

    1max ( , ; ) ( , , , ) .
t

t
u

V f E V     t t t t+1 t ts u s α s u s θ ε  (1) 
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Here  V  is the expected net present value of following the optimal control tu  from a point 

defined by the state variables ts . Instantaneous net benefits of following this control path are 

given by ( , ; ),f t tu s α where α  is a parameter vector. Expected future net benefits are defined as

 1( , , , )tE V   t+1 t ts u s θ ε , which includes a parameter vector θ and stochastic error vector t1 .  
It is calculated as the probability-weighted sum of the continuation value starting from next 
period’s state 1ts . The discount factor is 0< <1. 

For our maintained example, we assume that (1) represents an interconnected system of 
reservoirs in the West under threat of mussel invasion.  Each reservoir is represented by an 
element of the state vector ts and prevention and control strategies at each reservoir (e.g., boat 

inspections or physical removal of mussels) comprise elements of the vector .tu Spread is 

stochastic, and depends on the interaction of habitat suitability and factors like boating that 
increase the opportunity for invasive species to spread. 

We define the “standard” stochastic model (near the origin in Figure1) by an information regime 
where the instantaneous benefit function and all parameter vectors are known, state variables at 
time t are observable in contemporaneous time periods, and the distribution (but not the 
outcomes) of the stochastic shock vector 1tε  is known and defined by 1( ).tg ε  The expectation 

over future outcomes in the Bellman equation is then calculated by 

 1 1 1( , , , ) ( ) .t t tV g d   t+1 t ts u s θ ε ε ε  We further assume that 1( )tg ε  is “standard” in that the 

probability of tail events are essentially exponentially decreasing as they deviate from the 
central tendency of the distribution. In the example, these assumptions imply that habitat 
suitability and spread pressures are known, as are the probabilities of establishment. 
Furthermore,  the state of each reservoir (e.g., the population of mussels in each reservoir) is 
known at each time t. Ex ante, the state in t+1 is unknown–though the distribution over possible 
states is known.  

Next, we examine how movements away from the origin in Figure 1 affect applications of this 
standard framework. 

Severity of Uncertainty 

The severity of uncertainty within a standard stochastic EU problem refers to the treatment of 
current features and future outcomes. With known parameters, the only unknown in the future is 
the value of 1tε .  Possible values are weighted by the known probability distribution 1( )tg ε .  For 

mussels, this implies that the only unknown at time t is the state of the reservoirs in time t+1. 
 
This formulation is more general then it might at first appear.  In addition to embodying standard 
stochastic problems, it can also accommodate parametric uncertainty (e.g., a particular forcing 
parameter in a model of climate change, the level of a particular threshold, the spread of an 
invasive species) and multiple models of the state transition (e.g., uncertainty over the process 
generating the state data). Parametric uncertainty could imply that a habitat suitability parameter 
is not known with certainty, as would be the case in colder reservoirs with low calcium 
concentrations in high elevation areas. It has long been assumed by scientists that such a water 
body could not support mussel establishment. Recently, however, this assumption has been 
questioned due to competing empirical evidence (Thomas, 2010). Multiple models of state 
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transitions in our example might take the form of competing models of the behavioral response 
of boaters to various control techniques. For example, competing estimates of the elasticity of 
substitution between substitute sites may exist. 
 
Given some degree of curvature of the value function, the recognition of parametric 
uncertainty—which might be some recognition of the fact that the optimizing agent is assumed 
to “know that s/he doesn’t know”—could affect optimal management through a traditional risk 
result.4 But implementation would still entail a reasonably straightforward application of linear 
weighting by probabilities as in the EU/SEU case. Letting g(t1,, )denote the distribution 
over unknowns, the relevant expectation becomes 

  
1

1 1 1

, ,

( , , , ) ( , , ) .
t

t t tV g d d d


   t+1 t t

ε θ α

s u s θ ε ε θ α ε θ α 5 (2) 

The expectation includes uncertainty over the parameters in addition to uncertainty over the 
stochastic component of the state transitions.6 
 
To model behavioral responses, one might also assume that the “objective” probabilities, 
indicated by 1( )tg ε , are transformed through some cognitive process into alternative decision 

weights, say  1( ) .tg ε  Several such weighting schemes have been proposed in the literature.  

Examples include approaches based on prospect theory and cumulative prospect theory 
(Khaneman and Tversky, 1979; Tversky and Kahneman, 1992) and the rank-dependent 
expected utility model (Quiggin, 1982).7  
 
For our purposes, the key salient point is that the objective probabilities are transformed by a 

function  1( ) .tg ε  
As such,  the weights used to form the continuing value of the program on 

the right-hand side of the Bellman equation are not necessarily linear. Low (high) probability 
future events may be over (under) weighted, thus altering the calculus in the dynamic program 
and changing “optimal” management from the perspective of the controlling agent (Wu and 
Gonzalez, 1996). An excellent example is behavior related to a weather forecast – a 90% 
chance of rain will likely result in the same action (bringing an umbrella) as a 100% chance 
(Roberts et al. 2008). Reservoir managers may behave similarly for probability of mussel 
establishment greater than a certain threshold. 
 
Recently, the notation of non-linear weights has entered the resource valuation literature.  This 
is a particular case of our programming problem where statistical techniques are used to 

recover relative values of  1( , , , )tE V   t+1 ts u s θ ε  given a described, and not necessarily 

optimal, control rule u . Examples that test for departures from EU theory or that explicitly 
estimate weights include Roberts et al. (2008), Glenk and Colombo (2011), Wielgus, et al. 

                                                 
4 The degree of curvature is endogenously determined given a specification of instantaneous benefits 
(preferences) and the state transitions of the system. 
5 In several papers, Weitzman (1998, 2010) gives an interpretation of the discount rate as a random 
variable based on stochastic future returns to capital, and Coury and Dave (2010) show how to 
incorporate non-exponential discounting into dynamic programming problems.  
6 For ease of exposition, we suppress the dimensionality of the integration process, but note that we 
integrate over all of the unknowns. 
7 The reader is referred to Kothiyal, et al. (2011) and Shaw and Woodward (2008) for recent reviews. 
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(2009), and Burghart, et al. (2007). This literature finds that recovered decision weights 
associated with money lotteries tend to be “inverted-S” shaped, while weights on environmental 
outcomes are linear or “S-shaped.”  This can have important implications for willingness to 
pay/willingness to accept environmental policy outcomes when the outcomes are uncertain (see 
Figure 3). 

 
Figure 3: Examples of Probability Weighting Functions: Inverted S-shaped 
(underweighting high probability events), left, and S-shaped (overweighting high 
probability events), right 
 
Moving farther along the uncertainty axis in Figure 1,  ability to consistently weight potential 

outcomes breaks down. For example, it may be that the weights 1( )tg ε or  1( )tg ε are 

themselves uncertain.  Several terms are used in the economics literature to describe 
uncertainty about probabilities.  These include ambiguity, Knightian uncertainty, and deep 
uncertainty.  Two versions of uncertainty about probabilities can be considered: one in which 
“second-order probabilities” can be applied across a set of contending probability distributions, 
the other in which multiple distributions are possible but probabilities cannot be assigned across 
them.  The appropriate formulation depends on the context. In the mussels example, a 
specification without probabilities may be most appropriate for confronting a novel threat whose 
characteristics in terms of reproduction, damage, and spread are largely unknown. 
 
The Ellsberg paradox suggests that people display aversion to ambiguity above and beyond 
their standard aversion to risk.  A compelling option for modeling ambiguity aversion is the 
smooth ambiguity model of Klibanoff et al. (2005) and Klibanoff (2009).8 The smooth ambiguity 
model transforms our dynamic program as follows: 

      1
1max ( , ; ) ( , , , ) ,

t
t

u
V f E E V  

    t t t t+1 t ts u s α s u s θ ε  (3) 

where  are second-order probabilities related to the potential distributions characterizing ε  and 
( )x  is a concave function. As in the traditional risk framework, the more concave ( )x , the 

more averse the decision maker is to mean preserving spreads in the second-order 
probabilities.  The smooth ambiguity model is applied to climate policy by Millner et al. (2010).  

                                                 
8 This specification is attractive here due to the fact that preferences are dynamically consistent and the 
model has a recursive framework. A non-smooth variant,   maximin expected utility, is detailed in 
Ghirardato, et al. (2004) and Melkonyan (2011), and accounts for a range of “optimism” and “pessimism” 
on behalf of the decision maker. In fact, maximin expected utility is a limiting case with infinite ambiguity 
aversion (Kilbanoff et al., 2009).  
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A variety of decision criteria can be considered when probabilities cannot be assigned across a 
set of probability distributions (i.e., the set of contending forecasting models).  In environmental 
settings, the maximin criterion is most famous because it can be interpreted as implementing a 
strong version of the precautionary principle.  Maximin seeks a policy that is robust to the worst-
case distribution.  Gilboa and Schmeidler (1989) provide axiomatic foundations for maximin 
expected utility, a criterion that seeks to maximize expected welfare under the worst-case 
distribution from a set of possible distributions.  Roseta-Palma and Xepapadeas (2004) and 
Vardas and Xepapadeas (2010) build on recent work in robustness in macroeconomics 
(Hansen and Sargen 2008) that applies Gilboa and Schmeidler’s criterion in a closed loop 
dynamic control settings—so-called robust control. 
 
Iverson and Perrings (2012) show that maximin can be interpreted as implementing a strictly 
precautionary response. These authors also show that minimax regret can be interpreted as 
implementing a strictly “proportional” response.  Minimax regret is an alternative decision 
criterion that Savage (1954) proposed as providing a more reasonable stand in for maximin.  
Iverson and Perrings (2012) also define a criterion that flexibly varies the relative weight on the 
competing concerns defined by precaution and proportionality.  The suggested criterion nests 
policies between the extremes of strict precaution and strict proportionality.   
 
In a related direction, Lempert, Popper, and Bankes (2003) employ a regret-based objective 
function in developing computational methods for identifying policies that perform in a robust 
way across a wide range of possible models.  Lempert and Schlesinger (2000) argue that robust 
strategies provide a more solid basis for climate policy decision-making in part because they 
perform reasonably well (if not optimally) “no matter whose view” of the underlying science 
proves to be correct. 
 
Potential for Learning 
 
We have assumed that if probability distributions for any of the unknown components of the 
system exist and are known by the decision-maker, then they do not evolve as future 
information becomes available. But for many environmental and resource management 
problems, future learning will substantially reduce future uncertainty. Suppose it is believed 
initially that calcium levels in high elevation reservoirs are insufficient to support mussel 
establishment, but then a colony of mussels is found at such a location. It seems logical that 
both the scientific and management communities would take this information into account when 
designing control strategies. 
 
The ecological paradigm of adaptive management builds on this perspective.  Adaptive 
management of an ecosystem characterized by structural or other uncertainties is recursively 
structured so that new information is incorporated after either observation or perturbation of the 
system.  Management approaches are changed following the processing of this information. As 
such, management is “flexible and adaptive” (Holling and Meffe, 1996), but optimality becomes 
subjective as beliefs about the potential behavior of the system evolve.  
 
Distinctions are made between passive and active adaptive management.  Under passive 
management, potential future learning is not taken into account at the point of decision making. 
Said differently, the value of information is assumed to be zero when making tradeoffs.  
Nevertheless, under passive management, beliefs are updated after each observation.   
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On the other hand, under active management, the value of information is endogenous, and 
learning is anticipated by the decision maker. This anticipation results in an internal valuation of 
the additional benefit of future information, which is taken into account  when making 
management decisions. 
 
Active adaptive management has been modeled by augmenting the standard EU formulation to 
account for the evolution of beliefs  regarding uncertain parameters (α and/or θ ) and/or states 
of the system  .t tz s 9

 Using state-space techniques, implicit or explicit state transition 

equations for the sufficient statistics characterizing the unknown distributions can be developed 
on the basis of observations about the system, and incorporated into the state space.  
 
For example, consider the case of what might be termed parametric uncertainty with respect to 
(an) element(s) of the state transition equations. At time t, let φ θbe  perceived as random 

variables characterized by a prior distribution denoted ( ).h φ  Perhaps, for example, φ are the 
elasticities of substitution between various reservoirs, and visitation to each reservoir in the 
system are observed and recorded each year. Using some sort of information processing rule 
(e.g., using Bayes’ rule), implicit updating equations that define a posterior distribution at time 

t+1 can be written as  1 1 1( ) ( ), ( , , , ) .t t th p h s   t tφ φ u s θ ε  Practically, these equations could 

represent the sufficient statistics of the posterior distribution.  
 
In the passive learning case, the Bellman equation becomes  

    , 1max ( , ; ) ( , , , ) .
t

t
u

V f E V      t t t t+1 t ts u s α s u s θ ε  (4) 

Note here that the second term in (4) is the expectation over both the stochastic process and 
the (random) parameters of interest, but is evaluated at the current, rather than the future, 
belief. In other words, in forming the optimal management plan, the decision maker does not 
anticipate the learning (represented by 1( )th  φ ) that may happen.  

 
On the other hand, an active rule would endogenize the updating of the distribution, rendering 
the Bellman equation as 

 
 

  , 1 1 1 1

, ( ), max ( , ; )

( , , , ), ( ), ( , , , ) .

t
t

u

t t t t t

V h f

E V h h s    



   

t t t

φ t+1 t t t t

s φ u s α

s u s θ ε φ u s θ ε
 (5) 

The “states” of the system now include both the physical and belief states. Depending on the 
circumstances, the agent might find it optimal to deviate from the passive control rule (i.e., to 
experiment) in order to collect valuable future information about the unknown parameters for 
use in subsequent management actions. The quantitative effect of such learning is likely 
problem-specific, but the introduction of the information margin provides a means of augmenting 
benefit-cost analysis with the potential ex-ante value of information (Bond, 2010).  Examples of 
this type of model in various forms include applications to water and air pollution (Kaplan, et al. 
2003; Cunha-e-Sá and Santos, 2008), climate change (Kelly and Kolstad 1999; Lange and 
Triech, 2008), shallow lakes (Peterson, et al. 2003; Bond and Loomis, 2009), invasive species 

                                                 
9 In a particular probabilistic setting, this latter type of model is termed a partially-observable Markov 
decision problem. 
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management (Springborn, 2008; Haight and Polasky, 2010), and more general applications in 
policy (Brock and Carpenter; 2007).  
 
In the case of ambiguity, the Kilbanoff et al. (2009) model provides the recursive framework that 
can be applied to learning under ambiguity as well as risk. Updating functions could allow for the 
evolution of beliefs over the first or second order probabilities. Consistent with the parametric 
uncertainty example, the recursive formulation in this case becomes 

      1, ( ), ( ) max ( , ; ) , , ,
t

t t
u

V h g f E E V     t t t ε,φ t+1 t+1 t+1s φ π u s α s h g  (6) 

where ( )tg π  represents the prior/posterior beliefs regarding the second-order probabilities and 

we have suppressed unnecessary notation. Note that in (6), the value function includes both 
first- and second-order probabilities as states of the system, resulting in a very complicated 
treatment of information processing and risk/ambiguity preferences. 
 
At this point, a word of caution is in order for practitioners attempting to model learning 
structures in this manner.   In practice, modeling partial observability/parameteric 
uncertainty/ambiguity under learning suffers greatly from the curse of dimensionality, as each 
sufficient statistic related to a particular distribution must be included in the value function 
(Millner, et al. 2010). Such problems may also exhibit all manner of undesirable behavior from a 
computational standpoint (e.g., non-convexities, non-monotonicities, discontinuities, non-
convergence to true parameter values, etc...). Given current solution algorithms, this may 
restrict analysis to “toy models” with low dimensionality or evaluations of sub-optimal, 
exogenously defined paths (as in u  above). As discussed in the conclusions, however, 
techniques and computational power are expanding, and certain general principles may become 
apparent through even simple representations. 
 
Importance of Tail Events 
 
Previously, we assumed the distributions over future (physical) states of the system 1( )tg   or 

over parameter values ( )h φ  were “standard” in that they declined exponentially with increased 
distance from the central tendency of the distribution. This is certainly not the case for all 
distributions. If tail events are far more likely than that described by a normal distribution, then 
management decisions and policy would be potentially seriously underweighting extreme 
events.  
 
Consider the case of severe negative events (e.g., a large increase in temperatures as a result 
of anthropogenic climate change, causing very significant, potentially society-ending effects), 
where marginal damages tend to infinity yet there is a positive probability of such an event 
occurring. Weitzman (2009) argues in his “dismal theorem” that standard economic analysis 
such as benefit-cost analysis cannot be applied or at least is useless, since the expected utility 
in such a situation is negative infinity (Nordhaus  2011).  Others have argued that this is relevant 
only under fairly restrictive circumstances, but that the “fat tail” problem is still worthy of 
consideration, especially in the context of large-scale ecosystem change (Weitzman 2011; 
Nordhaus 2011; Pindyck 2011).  
 
Fat tails and marginal damage are related to the specification of  1( )tg    (or, in fact, any of the 

prior distributions assumed in any of the models) and ( , ; )f t tu s α , especially ( , ; )sf t tu s α  and 
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( , ; ).ssf t tu s α  Essentially, for the implications of the dismal theorem to hold, infinite negative 

marginal utility/net benefits must be assumed at some point in the state space (Pindyck 2011; 
Nordhaus 2011). A thin-tailed 1( )tg   in this case may result in a more stringent control effort (in 

the case of climate change) than assuming fat tails (Pindyck 2011). The interaction between 
( , ; )f t tu s α  and 1( )tg   are how the economic implications of extreme tail events are formed. 

However, the fact that finite observational data provides little to no information about the density 
within tails of distributions complicates matters considerably for the empiricist or modeler who 
wishes to take these considerations into account (Nordhaus 2011).  
 
Discussion and Conclusions 
 
The information structure for many environmental and resource management problems does 
not necessarily match the assumptions of the standard EU/SEU model.  Such anomalies can 
have important policy implications, especially when managing complex nonlinear ecosystems. 
The severity of uncertainty across environmental outcomes (what precisely is random, and how 
this randomness is processed and characterized by economic actors), the intertemporal nature 
of the information structure (whether learning is anticipated or not), and the importance of tail 
events (including both the preference assumptions and the distributions assumed for the 
random components of a model) can all interact to explain seemingly paradoxical behavior. This 
has been repeatedly confirmed in experimental settings and should at least be given 
consideration when making environmental policy. An understanding of how various information 
regimes affect benefits/costs and optimal/sub-optimal policies is crucial to the mission of the 
applied environmental economist, especially given the nature of many of the problems we 
consider.  
 
Modeling of such issues can shed light on which assumptions are of significant economic 
importance and how policy can be structured to take these impacts into account. The 
environmental and resource economics profession seemingly has much to offer in this line of 
research. Given our relative expertise in modeling revealed and stated preferences of non-
market goods, it seems natural that empiricists could contribute to our understanding of 
information processing, ambiguity aversion, and the slope of marginal utilities in the presence of 
multiple environmental threats. Key empirical research frontiers include determining “the shape 
of the [probability weighting function] if we think it might be nonlinear” (Shaw and Woodward 
2008, p. 85), evaluating how agents trade-off environmental outcomes in the face of contrary or 
missing information, (Pindyck 2011) and developing methods that measure the assimilation and 
processing of new information.  
 
Structural modelers have relevant expertise to analyze the implications of how agents might 
behave under differing information structures. This also pertains to the types of problems that 
are most sensitive to the differences. From the impact of fat tails and the degree of uncertainty 
about the distribution characterizing random processes and parameters, to optimal 
management under the threat of uncertain processes possibly including thresholds 
irreversibilities, to the ideal experimental regime that balances future information and “primary” 
management goals in an adaptive management setting, many questions remain unanswered.  
 
Modeling environmental and resource decisions under alternative information regimes can help 
identify the key assumptions that drive results. It may also provide a means of exploring the 
implications of heterogeneous beliefs across both experts and the public at large. Modeling can 
also contribute to an understanding of the belief conditions under which a proposed 
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management or policy path may be preferred to others (Bond 2010). These issues and the 
models representing them are complex. They may require significant investment in methods 
and techniques (especially numerical) that can account for non-linearities, non-convexities, and 
large state spaces that are endemic to these applied problems. While each individual problem 
may be complex and unique, so-called “toy models” could be used to illustrate common 
principles and results, much like the grossly simplified theoretical models appearing in virtually 
every economic textbook.  
 
Progress has been made in the engineering literature with advances in real-time approximation 
of dynamic systems, especially in robotics and artificial intelligence (see, e.g., Atkeson and 
Stephens 2008 and references therein, and Rust 1997 and Han et al. 2006 for economic 
applications). These techniques involve approximations of solutions using computational 
iteration, partial solutions, simple functional forms, and other techniques that exploit the 
emerging power of computers to perform repetitive tasks. One lesson to learn from this literature 
is that despite our disciplinary bias towards simple, elegant, and unambiguous analytical results, 
there can be considerable insight gained from numerical models and approximations, and that 
even in economic modeling, “the perfect should not be the enemy of the good” (Voltaire, 1772).  
 
Still, it might be that “there can be no descriptively adequate general theory of risky choice 
which is rational” (Loomes 2006; Shaw and Woodward 2008). Nevertheless, we would argue 
that by modeling the various issues raised in this paper, the profession can contribute to a 
greater understanding of the circumstances under which information regimes in environmental 
problems are salient features, and thus help resource managers and policy makers make ex 
ante decisions that are ideally pragmatic, yet behaviorally consistent and normatively sound. 
 
References 
 
Allais, P.M., 1953. Le comportement de l’homme rationnel devant le risque: Critique des 

postulats et axiomes de l’ecole Americaine. Econometrica 21(4):503–546.  
 
America's Climate Choices (ACC). 2010. Informing an Effective Response to Climate Change, 

National Academies Press. 
 
Arrow, K. 1963. Social Choice and Individual Values. New Haven, CT: Yale University Press. 
 
Arrow, K., 1971. Essays in the Theory of Risk Bearing. Chicago: Markham Publishing. 
 
Arrow, K., and L. Hurwicz. 1972. An optimality criterion for decision-making under ignorance. In: 

Uncertainty and Expectations in Economics: Essays in Honour of G.L.S. Shackle (ed. By 
C. Carter and J. Ford.) Oxford: Basil Blackwell. 

 
Arrow, K. and Fisher, A., 1974. Environmental Preservation, Uncertainty and Irreversibility. 

Quarterly Journal of Economics 88, 312-319. 
 
Atkeson, C.G., and B.J. Stephens. 2008. Random sampling of states in dynamic programming. 

IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 38(4):924-
929. 

 
Bellman, R.E. 1957. Dynamic Programming. Princeton, NJ: Princeton University Press. 
 



Western Economics Forum, Fall 2011 
 
 

46 
 

Bond, C.A. 2010. On the potential use of adaptive control methods for improving adaptive 
natural resource management. Optimal Control Applications and Methods 31:55-66. 

 
Bond, C.A. and J.B. Loomis. 2009. Using Numerical Dynamic Programming to compare passive 

and active learning in the adaptive management of nutrients in shallow lakes. Canadian 
Journal of Agricultural Economics 57(4):555-573. 

 
Brock, W., S. Durlauf, and K. West. 2003. Policy evaluation in uncertain economic 

environments.  Brookings Papers on Economic Activity, National Bureau of Economic 
Research. 

 
Brock, W.A. and S.R. Carpenter. 2007. Panaceas and diversification of environmental policy. 

Proceedings of the National Academy of Sciences 104 (39):15206-15211. 
 
Burghart, D.R., T.A. Cameron, G.R. Gerdes. 2007. Valuing publicly sponsored research 

projects: Risks, scenario adjustments, and inattention. Journal of Risk and Uncertainty 
35:77-105. 

 
Coury, T. and C. Dave. 2010. “Hyperbolic” discounting: A recursive formulation and an 

application to economic growth. Economics Letters 109:193-196. 
 
Cunha-e-Sá, M.A. and V. Santos. 2008. Experimentation with accumulation. Journal of 

Economic Dynamics and Control 32:470-496. 
 
Ellsberg, D. 1961. Risk, ambiguity and the Savage axioms. Quarterly Journal of Economics 

75:643-669. 
 
Gilboa, I.  2009. Theory of Decision under Uncertainty. Cambridge, MA: Cambridge Books. 
 
Gilboa, I. and Schmeidler, D. 1998. Maxmin expected utility with non-unique prior. 
Journal of mathematical economics 18(2):141-153. 
 
Glenk, K. and S. Colombo. How sure can you be? A framework for considering delivery 

uncertainty in benefit assessments based on stated preference methods. Journal of 
Agricultural Economics 62(1):25-46. 

 
Ghirardato, P., F. Maccheroni, and M. Marinacci. 2004. Differentiating Ambiguity and Ambiguity 

Attitude. Journal of Economic Theory 118:133-173. 
 
Haight, R.G. and S. Polasky. 2010. Optimal control of an invasive species with imperfect 

information about the level of infestation. Resource and Energy Economics 32:519-533. 
 
Han, J. T.L. Lai, and V. Spivakovsky. 2006. Approximate policy optimization and adaptive 

control in regression models. Computational Economics 37:433-452. 
 
Hansen, L and Sargent, T. 2008. Robustness.  Princeton University Press. 
 
Henry, C., 1974. Investment Decisions Under Uncertainty: The Irreversibility Effect. American 

Economic Review 64, 1006–1012. 
 



Western Economics Forum, Fall 2011 
 
 

47 
 

Herrick, C. and D. Sarewicz. 2001. A more effective role for scientific assessments in 
environmental policy. Science, Technology, and Human Values 25(2):309-331. 

 
Holling, C. and G. Meffe. 1996. Command and control and the pathology of natural resource 

management. Conservation Biology 10(20):328-337. 
 
Iverson, T. 2012.  Communicating trade-offs amid controversial science: Decision support for 

climate policy.  Ecological Economics, forthcoming. 
 
Kaplan, J.D., R.E. Howitt, and Y.H. Farzin. 2003. An information-theoretical analysis of budget-

constrained nonpoint source pollution control. Journal of Environmental Economics and 
Management 46:106-130. 

 
Kahneman, D. and A. Tversky. 1979. Prospect theory: An analysis of decision under risk. 

Econometrica, 47(2):263-291. 
 
Kelly, D.L. and C.D. Kolstad. 1999. Bayesian learning, growth, and pollution. Journal of 

Economic Dynamics and Control 23:491-518. 
 
Keynes, J.M. 1921. A Treatise on Probability. New York: MacMillan and Co., Ltd. 
 
Klibanoff, P., M. Marinacci, and S. Mukerji. 2005. A smooth model of decision making under 

ambiguity. Journal of Economic Theory 144:930-976. 
 
Klibanoff, P., M. Marinacci, and S. Mukerji. 2009. Recursive smooth ambiguity preferences. 

Journal of Economic Theory 144:930-976. 
 
Knight, F.H. 1921. Risk, Uncertainty and Profit. Boston: Houghton, Mifflin Co. 
 
Kolstad, C., 1996.  Learning and Stock Effects in Environmental Regulation: The Case of 

Greenhouse Gas Emissions.  Journal of Environmmental Economics and Management 
31(1): 1-18. 

 
Kothiyal, A., V. Spinu, and P.P. Wakker. 2011. Prospect theory for continuous distributions: A 

preference foundation. Journal of Risk and Uncertainty 42:195-210. 
 
Lange, A. and N. Treich. 2008. Uncertainty, learning, and ambiguity in economic models on 

climate policy: Some classical results and new directions. Climatic Change 89:7-21. 
 
Lempert, R., Nakicenovic, N., Sarewitz, D., Schlesinger, M., 2004. Characterizing 
climate-change uncertainties for decision-makers: an editorial essay. Climatic Change 
65 (1), 1--9. 
 
Loomes, G., 2006. Why there may be no rational, general, and descriptively adequate theory of 

decision under risk. Discussion paper, University of East Anglia, June, 2006, available 
online at http://www.york.ac.uk/media/economics/documents/seminars/ 
loomes_paper.pdf. 

 
Melkonyan, T. 2011. The effect of communicating ambiguous risk information on choice. Journal 

of Agricultural and Resource Economics 36(2):292-312. 



Western Economics Forum, Fall 2011 
 
 

48 
 

 
Millner, A., S. Dietz, and G. Heal. 2010. Ambiguity and climate policy. Centre for Climate 

Change Economics and Policy Working Paper No. 28, Munich Re Programme Technical 
Paper No. 4, and Grantham Research Institute on Climate Change and the Environment 
Working Paper No. 24. 

 
Milnor, J., 1954. Games against nature. In: Decision Processes, R.M. Thrall, C.H. 
National Research Council (NRC), 1979. Carbon Dioxide and Climate: A Scientific Assessment 

(Report of an Ad Hoc Study group on Carbon Dioxide and Climate). Natl. Acad. Sci., 
Washington, DC, 22 pp. 

 
Nordhaus, W. 2011. The economics of tail events with an application to climate change. Review 

of Environmental Economics and Policy, 5(2):240-257.  
 
Peterson, G.D., S.R. Carpenter, and W.A. Brock. 2003. Uncertainty and the management of 

multistate ecosystems: An apparently rational route to collapse. Ecology 84 (6):1403-
1411. 

 
Pindyck, R.S. 2011. Fat tails, thin tails, and climate change policy. Review of Environmental 

Economics and Policy 5(2):258-274. 
 
Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and 

Organization 3: 323-343. 
 
Roberts, D.C., T.A. Boyer, and J.L. Lusk. 2008. Preferences for environmental quality under 

uncertainty. Ecological Economics 66:584-593. 
 
Roe, G., Baker, M., 2007. Why is climate sensitivity so unpredictable? Science 318(5850), 629. 
 
Rothschild, M., and J. Stiglitz 1970. Increasing Risk: I. A Definition. Journal of Economic Theory 

2:225-43. 
 
Rust, J. 1997. Using randomization to break the curse of dimensionality, Econometrica 65:487-

516. 
 
Savage, L. 1954. The Foundations of Statistics. John Wiley and Sons, New York. 
 
Shaw, W.D. and R.T. Woodward. 2008. Why environmental and resource economists should 

care about non-expected utility models. Resource and Energy Economics Jan:66-89. 
 
Springborn, M. 2008. Bayesian adaptive management with optimal learning. Working paper. 

Presented at Colorado State University, Fort Collins, CO., January 28, 2008. 
 
Thomas, C.M. 2010. A cost-benefit analysis of preventative management for zebra and quagga 

mussels in the Colorado-Big Thompson system. M.S. Thesis, Colorado State University. 
 
Tversky, A. and D. Kahneman. 1992. Advances in prospect theory: Cumulative representation 

of uncertainty. Journal of Risk and Uncertainty 5:297-323. 
 



Western Economics Forum, Fall 2011 
 
 

49 
 

Voltiare. 1772. La Begueule, Conte Moral. Reprinted by Whitefish, MT: Kessinger Publishing, 
LLC. 

 
Von Neumann, J. and O. Morgenstern .1944. Theory of Games and Economic Behavior. 

Princeton University Press. 
 
Weitzman, M.L. 1998. Why the far-distant future should be discounted at its lowest possible 

rate. Journal of Environmental Economics and Management 36(3): 201-208. 
 
Weitzman, M.L. 2009. On modeling and interpreting the economics of catastrophic climate 

change. The Review of Economics and Statistics 91(1): 1-19. 
 
Weitzman, M.L. 2010. Risk-adjusted gamma discounting. Journal of Environmental Economics 

and Management 60: 1-13. 
 
Weitzman, M.L. 2011. Fat-tailed uncertainty in the economics of catastrophic climate change. 

Review of Environmental Economics and Policy 5(2):275-292. 
 
Wielgus, J., L.R. Gerber, E. Sala, and J. Bennett. 2009. Including risk in stated-preference 

economic valuations: Experiments on choices for marine recreation. Journal of 
Environmental Management 90:3401-3409. 

 
Wu, G. and R. Gonzalez. 1996. Curvature of the probability weighting function. Management 

Science 42(12):1676-1690.  
  




