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Abstract

A common approach in modeling negotiations is to apply game theory to single issues. Recent work has suggested that the
complexity of international negotiations can be better modeled by linking independent games. Successful linking is possible
when the linked issues have compensating asymmetry of similar magnitude. An important result of linked games is that such
games produce a greater feasible set of choices relative to the aggregated isolated games. In this paper, we demonstrate that
achieving strict dominance of the linked game is not trivial and that results and implications depend on the structures of the
isolated games. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Negotiations over water among sovereign nations
are typically difficult. Often geographic and topo-
graphic attributes of international water resources
cause dramatic differences in political boundaries and
economically efficient alignment of water use. Issues
of equity typically cause negotiations to stall or agree-
ments to reach outcomes seemingly inconsistent with
economic efficiency. The case of Israeli-Palestinian
negotiations over water is an example. Frustration
has often been expressed in international circles with
the pace of the peace process and Israeli—Palestinian
negotiations in general because the international com-
munity believes large gains can be made with full
cooperation that are currently not being captured.
This paper investigates explanations of such cases
based on equity concerns.

* Corresponding author.
E-mail addresses: rjust@arec.umd.edu (R.E. Just),
sinaia@bgumail.bgu.ac.il (S. Netanyahu).

The model presented here suggests that the prob-
lem may be that full cooperation, while satisfying
economic efficiency considerations, does not satisfy
concerns of the sovereigns involved. This problem is
shown to arise when the payoffs from negotiations
are highly asymmetric and equity is of great con-
cern. Both of these conditions appear to apply in the
Israeli—Palestinian case. Payoffs from water projects
seem to be highly asymmetric favoring the Israelis
because of structural differences in the economies
and hydrological circumstances, and equity concerns
are great because the potential payoffs are highly
inequitable.

When negotiations address an issue with strong
asymmetry, grouping issues with compensating asym-
metry can be advantageous. Viewing the negotiation
of individual issues as games, linking two asymmet-
ric games can be advantageous because countries
are more likely to (1) exchange in-kind side pay-
ments than monetary side payments and (2) sustain
self-enforceable agreements that facilitate credible
threats against defection. The conditions under which
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linked games dominate the aggregated results of play-
ing the respective isolated games are the focus of this
paper.

In many international negotiations, the characteris-
tics of a prisonei’s dilemma are present, i.e., the most
attractive actions from the standpoint of one county
are detrimental to a neighboring country. Participa-
tion in voluntary agreements in such situations is un-
likely because both parties face incentives to defect.
On the other hand, binding agreements enforced by
a third party, while possible within sovereign nations,
are not effective at the international level. Fortunately,
many such situations occur repeatedly over succeed-
ing time periods. When a game is repeated, incen-
tives for cooperation are greater. However, even when
cooperative agreements are reached, countries often
face incentives to defect. Particularly with large dif-
ferences in preferences, full cooperation is less likely
to be sustained. The problem without enforcement in-
frastructure is how to create mutual incentives so that
all players prefer continued cooperation. One way is
to expand the set of strategies available to players by
linking independent asymmetric issues.

Interestingly, situations are observed in practice
where a country is a signatory to an agreement even
though its welfare appears to decline with coop-
eration. This observation could suggest that some
countries behave irrationally. Alternatively, it is pos-
sible that by focusing on a single issue or agreement
that the full complexity of international negotiations
is not realized. More likely, countries are willing
to lose on one agreement in return for a larger
gain from another agreement. This paper addresses
cases of international negotiations involving multiple
agreements.

We consider problems with two 2-strategy, 2-player
games in general form and analyze the outcomes of
the aggregated isolated games compared to the case of
a linked game. A generalized framework is presented
for analyzing such problems under different structures
using the prisoner’s dilemma case as an example. The
relevance of linked games is emphasized for the case
where equity is important, a typical problem in in-
ternational negotiations. Linking can offer advantages
for international cooperation in principle because full
cooperation is often not feasible. However, we show
that important conditions must be satisfied for gains
to be attained.

2. Structures of games

Before discussing the potential of linking games, a
delineation of game structures is useful. Although the
principles apply to multi-player and multi-strategy
games, the discussion here is kept simple and intu-
itive by examining 2-strategy, 2-player games using
the framework of Fig. 1. In each cell, the first entry
gives the payoff to Player A and the second entry
gives the payoff to Player B if strategies of both play-
ers correspond to that cell. Generally, Players A and
B each have two strategies, cooperate or defect, in
each game. Without loss of generality, the payoffs of
the cooperate—cooperate strategies in Game 1 can be
represented by (1, 1) and the payoffs of defect—defect
in both games can be represented by (0, 0) by simply
re-scaling and translating the origin. Payoffs of other
various strategies in Games 1 and 2 are depicted in
Fig. 1.

Depending on the structure of the games, the Nash
equilibrium can be determined as incompletely sum-
marized in Table 1. Four particular structures are em-
phasized here because they have defection equilibria
(see, e.g., Barrett, 1994; Folmer et al., 1993). Games
with equilibria consisting only of cooperation are not
interesting because the intent here is to explain less
than full cooperation.

Linking games of different structures has been in-
vestigated by Folmer et al. (1993), Ragland (1995),

Player B
Cooperate Defect

Cooperate | 1 1 q r
Player A
Defect K ! 0 0
(@)
Player B
Cooperate Defect
Cooperate | u v w X
Player A

Defect y z 0 0

(b)

Fig. 1. A generic case for: (a) Game I; (b) Game 2.
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Table 1
Alternative game structures

Structure Conditions for Game 1 Conditions for Game 2 (1 > Oandv > 0) Nash equilibrium*
PD game g<0,r>1,5s>1,1t<0 w<0,x>v.y>u,z<0 D-D

Assurance game g<0,r<l,s<l1,t<0 w<0, x<v.y<u,z<0 C-C, D-D
Iterated dominance game gq<0,r>1,s<1,1r<0 w<0,x>v,y<u,z<0 D-D

Chicken game ¢g>0,r>1,s>1,t>0 w>0,x>v,y>u,z>0 C-D, D-C

* The defect strategy is denoted by D and the cooperate strategy is denoted by C.

and Bennett et al. (1998). Folmer et al. consider linking
a pair of asymmetric prisoner’s dilemma (PD) games.
Ragland considers linking two isolated PD games, a
PD and a chicken game, two chicken games, and a PD
and an iterated dominance game. Bennett et al. con-
sider linking a PD game and an iterated dominance
game. By examining the convex hull of the feasible
sets of the aggregated isolated games and the feasible
set of the linked game, they show that strict domi-
nance of the linked game over the aggregated isolated
games can be achieved. Only Ragland gives examples
where strict dominance is not obtained.

This paper shows that strict dominance of the
linked game over the aggregated isolated games is
not obtained in a wide variety of circumstances and
embellishes understanding of when dominance is ob-
tained. Given recent advocacy for linking games (e.g.,
Folmer et al., 1993; Hauer and Runge, 1997), a clear
determination of conditions under which linking is
advantageous is needed. In general, linking can be ad-
vantageous (1) when it expands the feasible choice set
for the parties and (2) when it makes new strategies
possible that are not permitted in the isolated games.

3. Linking prisoner’s dilemma games: an example

Consider first the case where each of two isolated
games are PD games. In the Nash equilibrium of PD
games, both players defect. Figs. 2a and b illustrate the
feasible sets of two PD games. Fig. 2a (Fig. 2b) is con-
structed using the payoffs in Fig. 1a (Fig. 1b) accord-
ing to conditions in the first row of Table 1. Only the
relevant positive quadrant is represented. To consider
the problem where cooperation has merit, suppose u >
Oand v > 0. The convex hull of feasibility in Fig. 2a
is defined by points (0, 0), (0, Yy), (1,1), (X1,0)
where X1 = (s —¢#)/(1—¢t)and Y, = (r —q)/(1 —q).
The convex hull of feasibility in Fig. 2b is defined

by points (0, 0), (0, Y2), (u,v), (X2,0) where X, =
u—v(y—u)/(z—v)and ¥ = v—ulx —v)/(w—u).

Figs. 2a and b are constructed for the case where
cooperation is superior to convex combinations of par-
tial cooperation, i.e., st =1 —Y| > 50 = 1/(1 — X7)
and s3 = (v — Y2)/u > s4 = v/(u — X3) where s,
52, s3, and s4 are slopes of the respective segments as
shown. The alternative case of inferiority is illustrated
in Fig. 2c. Inferiority of cooperation corresponds to
r—0D/1—1t) > (1 —-¢g)/(s—1) in Game 1 and
(x—v)/(v—2) > (u—w)/(y —u) in Game 2. In other
words, cooperation is not preferred if Player B’s gain
from defecting (when Player A cooperates) relative
to his loss from Player A’s defecting (when Player B
cooperates) exceeds Player A’s loss from Player B’s
defecting (when Player A cooperates) relative to his
gain from defecting (when Player B cooperates).

Now consider constructing the feasible set of the
two aggregated PD games, i.e., the convex hull of
the aggregate payoffs for all combinations of play in
Figs. 2a and b. Table 2 displays the relevant points and
Figs. 3a—d show the exercise graphically depending on
whether none, both, or one of the individual PD games
have cooperation inferior to convex combinations of
partial cooperation, respectively. Note that vertices of
the aggregate convex hull correspond to playing pure
strategies in each game. Other points on the convex
hull correspond to playing mixed strategies, i.e., each
of two strategies part of the time in one or both of the
games.

3.1. Superiority of cooperation to partial
cooperation in both games

Several alternative characterizations define the al-
ternative cases. One distinction is whether cooperation
is preferred to combinations of partial cooperation in
the separate games. This is the case when the feasible
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Fig. 2. (a) The feasible payoff set of: (a) Game 1 and (b) Game 2 in the PD Case; (c) Game 1 when cooperation is inferior.

sets of both isolated games have convex frontiers as
in Fig. 3a.

3.1.1. Aggregation when games are symmetric
The results of aggregation depend on the rela-
tionship of the separate games. With PD structure,

s1 > spands3 > s4. This leaves six possible or-
derings of the slopes in Figs. 2a and b: 57 > 52 >
§3 > 54,83 > S4 > S| > §2, 81 > §3 > S4 >
§2, §1 > §3 > 52 > S4, §3 > S| > §2 > 54, ands3z >
s1 > s4 > s2. For purposes of discussion, the last
four of these can be characterized as “sufficiently
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Table 2
Aggregation of two isolated games

Point Payoffs in Game 1 (Fig. 2a) Payoftfs in Game 2 (Fig. 2b) Aggregate payoffs
1 ©, YD) 0, Y2) 0,71+ Y2)

2 0,Y)) (u,v) (u, Y1 +v)

3 ©,Y) (X2,0) (X2, Y1)

4 (L1 0, Y2) (1,14 Y2)

5 (1, n (u, v) (I+u, I +v)

6 (LN (X2,0) (I+ X2, 1)

7 (X1,0) 0, Y2) (X1, Y2)

8 (X1,0) (u, v) (X1 +u,v)

9 (X1,0) (X2,0) (X1 +X2,0)

symmetric” because the payoff sets of the isolated
games have similar shapes in the positive quadrant
of rationality. Manipulation of the points in Fig. 3a
reveals that the convex hull will include points
0,0), (X1+X2,0), (1+4+u,l+v), and (0, Y1 4+ Y2)
and exclude points (X, ¥>) and (X3, Y;). Which of
the other points will be on the frontier is determined as
follows. ! If s; < (>)s3, then (u, Y1 +v) is (is not) on
the frontier and (1, 1 4+ Y3) is not (is). Note that s; >
s3 corresponds to (1 —r)/(1 —q) > (v—x)/(u —w).
In other words, Player A’s gain relative to Player
B’s loss associated with Player A’s defection (when
Player B cooperates) is greater than Player A’s loss
relative to Player B’s gain associated with Player
B’s defection (when Player A cooperates). Similarly,
(1 + X5, 1) is on the frontier when so < s4, and
(X1 4+ u, v) is on the frontier when s, > s4. Thus, the
convex hull is completely characterized by conditions
on the slopes of the frontiers in Figs. 2a and b.

3.1.2. Aggregation when games are asymmetric
Consider next the case when slopes are ordered as
S] > §p > §3 > §40rS83 > §4 > §| > §5p. We charac-
terize these cases as sufficiently asymmetric, because
the payoff sets of the isolated games have very dif-
ferent shapes in the positive quadrant of rationality.
That is, one mixed strategy highly favors one player

! In this case, as in many others throughout the paper, which
points fall on the frontier can be determined by observing a
parallelogram. For example, in this case the points (0, Y| + Y2),
u, Yy +v), 1 +u, 1l +v), and (1, 1 + ¥,) form a parallelogram
in which all the segments have slopes s; or s3. Because the two
end points of the parallelogram fall on the frontier, which of the
other two points falls on the frontier is determined by comparing
the slopes of the two segments.

in one game and another mixed strategy highly favors
the other in the other game. Graphically, this is the
case where the entire frontier of one game is steeper
than the entire frontier of the other game. The result
is that full cooperation is in the interior of the feasible
set of the aggregated games. For example, Fig. 3d
corresponds to the case where s3 > s4 > s; > 52 and
the convex hull is defined by (0, 0), (X| + X»,0),
(1+ X7, 1), (X2,Y1), (u, Y1 +v)and (0, Y1 4 Y7). If
§1 > s2 > 53 > S4, then the convex hull is defined by
0,0), (X1 + X2,0), (X1 +u,v), (X1,Y2), (1,1 +
Y2)and (0, Y7 + Y»). These are interesting cases
because full cooperation is not an equilibrium. This
situation cannot apply where full cooperation pro-
duces an economically desirable outcome.

3.2. Inferiority of cooperation to partial cooperation
in both games

Similar manipulation in the case of Fig. 3b reveals
that the convex hull includes (0, 0), (X4 X3, 0), and
(0, Y1 + Y3) and excludes (1 +u, 1 +v), (u, Y1 +v),
(14 X,, 1), (X14+u,v)and (1, 1+ Y2). Which of the
other two points are on the frontier can be determined
as follows. If Y1/ X1 > (<)Ya2/ X3, then (X, Y1) is
(is not) on the frontier and (Xy, Y7) is not (is). These
conditions depend on how much each player benefits
relative to the other player’s loss in cases of partial
cooperation compared to no cooperation.

3.3. Inferiority of cooperation to partial cooperation
in one game

Suppose Game 1 is the game where cooperation
is inferior to combinations of partial cooperation as
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Player B

(0, Y1+ Y2)
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0, Y) e
(Xz,Y 1) e (X, Ya)
(1+u, 1+v)
an
Player A
(b) 0,0) (X1,0) (X1 + X2, 0)

Fig. 3. (a) The feasible payoff set of aggregated PDs; (b) aggregated PDs when cooperation is inferior; (c) aggregated PDs when cooperation
is inferior in one game; (d) an alternative feasible set for aggregated PDs.
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Fig. 3 (Continued).
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in Fig. 3c. Note that Fig. 3c is drawn for the case
where s4 < —Y1/X1 < s3. The convex hull is de-
fined by (0,0), (0,Y1 + Y2), (u, Y1 + v), (X1 +
u,v)and (X; + X»,0) with all other points from
Table 2 in the interior. If s4 < s3 < —Yi/X1,
then the convex hull is defined by (0,0), (0, Y] +
Y2), (u, Yy +v), (X1 4+ u,v)and (X; + X5, 0) with
all other points from Table 2 in the interior. If
—Y1/X1 < s4 < s3, then the convex hull is defined
by (0,0), (0, Y; + Y2), (u, Y1 +v), (X2, Y1), (X1 +
u,v)and (X; + X,0) with all other points from
Table 2 in the interior. Intuitively, these outcomes
correspond to adding the possibilities of Game 2
onto the combinations of partial cooperation in
Game 1.

3.4. Payoff possibilities with linked games

Next, consider the linked game obtained by adding
the payoffs of the two isolated games for all com-
binations of strategies as depicted in Fig. 4a. The
difference in the linked case from the aggregated
case is that strategies associated with the individual
games need not be individually rational. Only group
rationality is required of the aggregate payoffs. This
difference is illustrated by comparing the diagram-
matic representation of linked strategies in Fig. 4b
with the aggregated strategies available in Fig. 3a.
By considering strategies with negative payoffs for
one player in one game, strategies with higher pos-
itive payoffs for the other player may be available.

Player B
c c d
c d d
cc I+u 1+v qtu r+v 1+w 1+x g+w r+x
dc s+u t+v v stw t+x w x
Player A
cd 1+y 1+z gty r+z 1 1 q r
dd sty t+z z s t 0 0
(@)
Player B

(g+w,r+x)

g, 1)

0,0

(q+u, r+v)

(s, 1)

(b)

Player A

(s+y,t+2)

Fig. 4. (a) The general linked game; (b) the feasible set of the linked game; (c) comparison of feasible sets of the aggregated and linked
games; (d) the feasible linked set when cooperation is inferior in one game.
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Player B

(G+u,r+v)

(1 +u, 1+v)

\(1 +X2, 1)
: (A+y, 1+2)

(©) Player A
Player B
(g+w, rx)
g +u, r+v)
9] o
(s +u, 1 +v)
(0, 0) Player A

(d

(s.2) (s+y,t+z)

Fig. 4 (Continued).

Such cases are key to obtaining advantages from
linking.

Regardless of game structure in Table 1, many of the
strategies in Fig. 4a are dominated by others (lie on the
interior of the convex hull) and can be eliminated from

consideration. For example, under the maintained as-
sumption that u > Oandv > 0, (1 + «, 1 + v) domi-
nates (i, v), (1, 1), and (0, 0). Also, (1 + w, 1 + x)
dominates (w, x) and (1 + y, 1 + z) dominates (y, z).
Strategies (s+y, t+z) and (¢ +w, r+x) can be elimi-
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nated from consideration for the case of two PD games
because they do not satisfy individual rationality, i.e.,
t+z <0andg+w < 0. Only eight of the 16 alterna-
tives in Fig. 4a must be considered in constructing the
convex hull of the linked game. The interesting cases
correspond to the conditions underlying Figs. 3a—d.

3.5. Linking under superiority of cooperation to
partial cooperation in both games

As in the case of aggregated games two possibilities
deserve attention, symmetry and asymmetry.

3.5.1. Linking when games are symmetric

As in the aggregated case, consider first the four
possible orderings of slope in Figs. 2a and b given by
S] > §3 > S4 > S§2, §] > §3 > S > S4, §3 > S| >
s > s4, ands3 > s1 > s4 > s2, which correspond
to sufficiently symmetry. Manipulation of the points
in Fig. 4a reveals that the positive frontier of the con-
vex hull includes (1 + u, 1 + v). Which of the other
points will be on the frontier can be determined as
follows. The points (¢ + w,r +x), (1 + w, 1 + x),
(14u, 14v), and (¢ +u, r +v) form a parallelogram
in which all the segments have slopes s; or s3, i.e.,
have slopes (1—r)/(1—¢g)or (v—x)/(u—w).If 51 <
(>)s3, then (g +u, r +v) is (is not) on the frontier and
(I1+w, 14x) is not (is). Similarly, (1+y, 142z) is (is
not) on the frontier when s, < (>)s3, and (s+u, t+v)
is (is not) on the frontier when s, > (<)s4. As for the
aggregated case, the convex hull is completely charac-
terized by conditions on the slopes of the frontiers in
Figs. 2a and b. Considerable overlap of the frontiers
of the aggregated and linked cases is found. The point
(1 4+ u, 1 4 v) lies on both frontiers and the adjacent
frontier segments have the same slope in both cases.
The only difference is that the adjacent segments ex-
tend somewhat farther in the linked case producing
weak dominance of the linked frontier as demonstrated
in Fig. 4c. The most striking result is that the linked
outcomes dominate the aggregated outcomes only for
cases where payoff combinations are substantially dif-
ferent than the full cooperation case. As demonstrated
later, outcomes other than full cooperation are chosen
in these cases when equity is a concern. 2

2 Hereafter, situations where payoff combinations substantially
different than the full cooperation case are preferred will be called
cases where equity is a concern.

3.5.2. Linking when games are asymmetric

For the case of sufficient asymmetry, slopes are or-
dered as S1 > 82 > §3 > §540rs3 > S§4 > 81 > 2.
In this case, the entire frontier of one game is steeper
than the entire frontier of the other game as in Fig. 3d,
so full cooperation is in the interior of the feasible
payoff set. For example, if s3 > s4 > 51 > 52, then
the upper right frontier of the convex hull is defined
by (g+w,r+x), (q+u,r+v), (g+y,r+2z), 1+
v, 142), and (s+y,t+2z). If s1 > sp > 53 > 54, then
the upper right frontier of the convex hull is defined
by (s+y,t+2), s+u,t+v), s+w,t+x), (1+
w, 1 4+ x), and (g + w, r + x). Interestingly, both of
these cases generate a convex hull for the linked game
that strictly dominates the aggregated games. How-
ever, as indicated above, these are cases where full
cooperation cannot represent an economically desir-
able outcome. For example, full cooperation cannot
achieve economic efficiency in the traditional sense.

3.6. Linking under inferiority of cooperation to
partial cooperation in both games

Without presenting numerous figures, some mental
geometry verifies that extending payoff representa-
tions for the individual games in Fig. 3b into negative
quadrants as done in Fig. 4b generates an extended
feasible payoff set for the linked case. Algebraically,
the upper right frontier of the convex hull of payoffs
is defined by (¢ + w,r + x)and (s + y, t + z), and
either (¢ + y,r + z)or(s + w,t 4+ x). The point
(g+y, r+z) will be on the frontier if (z—x)/(y—w) >
(t—r)/(s —g)and (s + w,t + x) will be on the
frontier if (z — x)/(y —w) < (¢t —r)/(s — g). Thus,
the linked frontier strictly dominates the aggregated
frontier. However, again, this is a case where full co-
operation cannot represent an economically efficient
outcome (even in the individual games).

3.7. Linking under inferiority of cooperation fo
partial cooperation in one game

Again, suppose Game 1 is the game where cooper-
ation is inferior to combinations of partial cooperation
as in Fig. 3c. Fig. 4d shows the expansion of feasible
payoffs with linking. Again, with some mental geom-
etry, the convex hull in Fig. 4d clearly dominates the
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one from Fig. 3c. Alternatively, note that Fig. 4d is
drawn for the case with s4 < (t — r)/(s — q) < s3
where (t —r)/(s — q) is the slope of the broken lines
in Fig. 4d. In this case, the upper right frontier of the
convex hull is defined by (¢ + w,r + x), (¢ + u,
r4+v), (s+u,t+v),and(s+y,t+2z). Ifs4 <53 <
(t—r)/(s —q), then the upper right frontier of the con-
vex hull is defined by (¢ + w, r +x), (s + w, r +x),
(s4u, t+v), and (s+y, t+2). If t—r)/(s—¢q) < 54 <
s3, then the convex hull is defined by (¢ + w, r 4+ x),
(g+u,r+v), (q+y,r+z), and (s+y, t+z). Clearly,
in each case, the convex hull of the linked game strictly
dominates the convex hull of the aggregated games.
As in other such cases, however, these are cases where
the full cooperation outcome, (1 4+ u, 1 4 v), is in the
interior of the feasible payoff set. And also as in other
cases, these are cases where cooperation is not attrac-
tive on the basis of economic efficiency alone, i.e.,
according to a preference map represented by linear
contours with slope —1, which would be the standard
surplus criterion of welfare economics.

3.8. Conclusions for linking two PD games

Interestingly, the linked game associated with two
isolated PD games does not necessarily strictly domi-
nate the aggregated isolated games. In some cases,
at least one point can be common to both frontiers.
When the two frontiers have a common point, the
point (1 4+ u, 1 4 v) that corresponds to full coopera-
tion will always lie on both frontiers. In addition, this
analysis proves that the linked game and the aggre-
gated isolated games often have common segments.
In fact, when full cooperation lies on both frontiers
then they have common segments on both sides of the
full cooperation point. These other points along the
frontiers result from mixed strategies. These mixed
strategies at a given point along the frontier, however,
do not necessarily represent the same set of mixed
strategies in the aggregated isolated games as in the
linked game because more combinations are feasible
in the linked game.

Furthermore, the entire frontier of the linked game
can possibly be identical to the frontier of the aggre-
gated game. As shown by Netanyahu (1998), equiva-
lence of the linked and aggregated frontiers requires
six equations in the 10 variables introduced in Fig. 1.
Thus, many cases, including cases of asymmetry, yield

identical frontiers. This result runs counter to the gen-
eral assertions of Folmer et al. (1993) and Cesar and
de Zeeuw (1994) that linking of asymmetric PD games
enriches the set of sub-game perfect Nash equilibria or
that linked games strictly dominate aggregated isolated
games. Depending on circumstances, linking may or
may not expand the feasible set and may expand it only
in ways that do not affect the equilibrium outcome.

4. Linking of various game structures

The approach of the previous section can be ap-
plied to each pair of game structures suggested by
Table 1.3 Suppose a PD game is linked to an assurance
game. Assurance games have two Nash equilibria as-
sociated with the strategies cooperate—cooperate and
defect—defect. The linked game is obtained by adding
the payoffs of all strategy combinations. Our results
sharply contrast with the assertions of Hauer and
Runge (1997). When a PD game and assurance game
are linked, Hauer and Runge claim that negotiations
become more complex, decreasing the chances of an
agreement relative to the single issue case. We show
that a significant portion of the frontiers of the ag-
gregated isolated games and the linked game overlap,
suggesting that chances of coming to an agreement
of full cooperation are similar in both aggregated and
linked games. Furthermore, when full cooperation is
reached by isolated games, there is no advantage in
playing the linked game. Finally, while Hauer and
Runge focus either on full cooperation or full defec-
tion, our results show that mixed strategies are possi-
ble in the linked game. In fact, the feasible payoff set
of the linked game weakly dominates the aggregated
isolated games only because of these mixed strategies.

Linking two assurance games leads to a trivial
outcome of full cooperation where no added benefits
accrue to linking. This case is significant because it
identifies conditions where both players choose the
most preferred outcome of cooperation without negoti-
ation. Linking a PD game with an iterated-dominance
(ID) game reveals that an ID game yields less oppor-

3 For the sake of brevity, we only summarize the results ob-
tained under many game structures. For more detail, see Netanyahu
(1998).



98 R.E. Just, S. Netanyahu/Agricultural Economics 24 (2000) 87-100

Full Cooperation (Economic Efficiency)

~ Nash Bargaining (Equitable) Solution

Player A

Fig. 5. The case where equity is preferred to efficiency.

tunity for linking.* Thus, linking a PD game with
an ID game is not as attractive as linking a PD game
with another PD game, other things equal.

Linking a PD game to a chicken game reveals that
a mix of strategies is always preferred to full cooper-
ation. Full cooperation is in the interior of the linked
game when it is inferior to mixed partial cooperation
in either isolated game. The frontier of the linked game
and the frontier of the aggregated isolated games have
considerable overlap because mixed cooperation does
not generate negative payoffs for either player in the
chicken game. Thus, much of the opportunity for link-
ing (usually gained by using strategies that are not fea-
sible under the rationality constraint of isolated play)
is lost. The only points added to the feasible set with
linking are those associated with mixed cooperation
strategies from the PD game.

For the case of linking two chicken games, the fea-
sible sets of the isolated games are entirely contained
in the positive quadrants. Thus, linking does not add
any strategies that are not feasible in the aggregated
isolated games. For this reason, the feasible set of the
linked game is identical and linking offers no advan-
tages. Visual examination also reveals that if either

4 The payoff structure of the ID game is based on Bennett et al.
(1998).

chicken game has cooperation dominated by mixed
partial cooperation, then full cooperation cannot be on
the frontier of either the linked or aggregated isolated
games.

5. Equity considerations in negotiation

Because the dominance of linking over aggregated
isolated games is attained only when full cooperation
is not preferred, our analysis explains seemingly in-
termittent enforcement of policies. The explanation is
based on equity concerns. To consider equity consid-
erations in bargaining, it is useful to consider the Nash
bargaining solution which corresponds to maximizing
IT = (ua —up)(up —up) where ua () corresponds
to the utility derived by Player A (B) and it (up)
corresponds to the reservation utility of Player A (B).
In the case of games such as represented in Fig. 4b,
the reservation utilities are normalized to zero. Thus,
contours that hold the product of utility increments
constant are rectangular hyperbolas as represented by
ITy, in Fig. 5.

Fig. 5 demonstrates why outcomes substantially
different than full cooperation are sometimes pre-
ferred. When the feasible set is highly asymmetric,
the parties may be reluctant to pursue full cooperation
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because of equity disagreements. Yet the parties may
be able to identify partial cooperation strategies that
obtain an outcome preferable to both non-cooperation
and full cooperation given equity concerns. That is,
the tangency of the rectangular hyperbola contour of
the Nash bargaining criterion to the feasible set may
represent a sub-game perfect equilibrium.
Interestingly, these circumstances can arise when
traditional economic efficiency analysis suggests full
cooperation as the preferred outcome. Suppose, €.g.,
that payoffs in the games represent standard surplus
measures and that the feasible payoffs of the aggre-
gated and linked games in Fig. 5 are represented by
dotted and solid lines, respectively, as in Fig. 4c. The
standard criterion of economic efficiency corresponds
to maximizing the sum of surpluses. The associated
welfare indifference contours are linear with slope —1
as depicted by the broken line in Fig. 5. The resulting
“optimum” is highly inequitable. So also is the Nash
bargaining solution of the aggregated isolated games
although less so. The Nash bargaining solution of the
linked game, on the other hand, can be considerably
more equitable as demonstrated by the tangency of
the IT1, contour with the linked feasible set in Fig. 5.
This phenomenon may explain why international on-
lookers encourage full cooperation based on economic
efficiency grounds while the parties are reluctant to
accept full cooperation because of equity concerns
and instead pursue seemingly intermittent cooperation
(mixed strategies). For such cases, linking may serve
to identify an equitable outcome that is almost effi-
cient but yet much more acceptable to the parties.

6. Conclusions

This paper has introduced a conceptual framework
for exploring the potential of linking games as an ex-
planation and possible means of facilitation of inter-
national agreements. In particular, a stylized example
has been developed showing that linking is preferred
only in situations where one party agrees to lose in
one agreement for the benefit of being a bigger win-
ner in another agreement, i.e., when the rationality
constraints of the isolated games are relaxed by link-
ing. While linking has been explored in the literature
as a way of facilitating full cooperation when it does
not occur naturally, our results show that linking is

never preferred to isolated play when full cooperation
is the preferred outcome under linking. Alternatively,
linking is preferred when the preferred outcome under
linking involves mixed strategies that are typically
composed of partial and intermittent cooperation.

Despite claims elsewhere regarding strict domi-
nance of linked games over aggregated isolated games,
our results show that obtaining strict dominance is not
trivial. Lack of dominance of linked strategies that
uniquely satisfy equity concerns reduces the attrac-
tiveness of linking. The cases where full cooperation
is not preferred under linking, i.e., the cases where
linking is advantageous over isolated play, are either
cases where cooperation is inferior in one of the iso-
lated games or the two games have highly asymmetric
payoff structures (so equity is likely to be a concern).
However, the condition of asymmetry is typically not
sufficient to make linking preferred unless one of the
isolated games is a PD.

Because agreement is achieved by means of link-
age to unrelated bargaining issues that have reciprocal
benefits, this approach holds potential for implement-
ing a self-enforcement mechanism. That is, a typical
case is where neither party wants to defect from the
joint agreement because they stand to lose more on
the issue where they are a big winner than they can
gain by defecting on the issue where they are a loser.

This paper shows that linking tends to be pre-
ferred in the specific circumstances that describe
Isracli-Palestinian water negotiations: highly asym-
metric payoffs and significant equity concerns. Thus,
further investigation of linking opportunities seems
to be a fruitful area for assisting further progress
in negotiations and/or understanding limits to fur-
ther progress. The results here, however, suggest that
care is necessary in identifying linkage opportunities.
Issues considered for linking to water negotiations
will tend to generate more attractive opportunities
from linking if they (1) have PD characteristics and
(2) have payoff possibilities that highly favor the
Palestinians in contrast to the asymmetry that heavily
favors Israelis in water negotiation opportunities.
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