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Abstract 

A common approach in modeling negotiations is to apply game theory to single issues. Recent work has suggested that the 
complexity of international negotiations can be better modeled by linking independent games. Successful linking is possible 
when the linked issues have compensating asymmetry of similar magnitude. An important result of linked games is that such 
games produce a greater feasible set of choices relative to the aggregated isolated games. In this paper, we demonstrate that 
achieving strict dominance of the linked game is not trivial and that results and implications depend on the structures of the 
isolated games. © 2000 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Negotiations over water among sovereign nations 
are typically difficult. Often geographic and topo­
graphic attributes of international water resources 
cause dramatic differences in political boundaries and 
economically efficient alignment of water use. Issues 
of equity typically cause negotiations to stall or agree­
ments to reach outcomes seemingly inconsistent with 
economic efficiency. The case of Israeli-Palestinian 
negotiations over water is an example. Frustration 
has often been expressed in international circles with 
the pace of the peace process and Israeli-Palestinian 
negotiations in general because the international com­
munity believes large gains can be made with full 
cooperation that are cunently not being captured. 
This paper investigates explanations of such cases 
based on equity concerns. 

* Corresponding author. 
E-mail addresses: tjust@arec.umd.edu (R.E. Just), 
sinaia@bgumail.bgu.ac.il (S. Netanyahu). 

The model presented here suggests that the prob­
lem may be that full cooperation, while satisfying 
economic efficiency considerations, does not satisfy 
concerns of the sovereigns involved. This problem is 
shown to arise when the payoffs from negotiations 
are highly asymmetric and equity is of great con­
cern. Both of these conditions appear to apply in the 
Israeli-Palestinian case. Payoffs from water projects 
seem to be highly asymmetric favoring the Israelis 
because of structural differences in the economies 
and hydrological circumstances, and equity concerns 
are great because the potential payoffs are highly 
inequitable. 

When negotiations address an issue with strong 
asymmetry, grouping issues with compensating asym­
metry can be advantageous. Viewing the negotiation 
of individual issues as games, linking two asymmet­
ric games can be advantageous because countries 
are more likely to (l) exchange in-kind side pay­
ments than monetary side payments and (2) sustain 
self-enforceable agreements that facilitate credible 
threats against defection. The conditions under which 
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linked games dominate the aggregated results of play­
ing the respective isolated games are the focus of this 
paper. 

In many international negotiations, the characteris­
tics of a prisoner's dilemma are present, i.e., the most 
attractive actions from the standpoint of one county 
are detrimental to a neighboring country. Participa­
tion in voluntary agreements in such situations is un­
likely because both parties face incentives to defect. 
On the other hand, binding agreements enforced by 
a third party, while possible within sovereign nations, 
are not effective at the international level. Fortunately, 
many such situations occur repeatedly over succeed­
ing time periods. When a game is repeated, incen­
tives for cooperation are greater. However, even when 
cooperative agreements are reached, countries often 
face incentives to defect. Particularly with large dif­
ferences in preferences, full cooperation is less likely 
to be sustained. The problem without enforcement in­
frastructure is how to create mutual incentives so that 
all players prefer continued cooperation. One way is 
to expand the set of strategies available to players by 
linking independent asymmetric issues. 

Interestingly, situations are observed in practice 
where a country is a signatory to an agreement even 
though its welfare appears to decline with coop­
eration. This observation could suggest that some 
countries behave irrationally. Alternatively, it is pos­
sible that by focusing on a single issue or agreement 
that the full complexity of international negotiations 
is not realized. More likely, countries are willing 
to lose on one agreement in return for a larger 
gain from another agreement. This paper addresses 
cases of international negotiations involving multiple 
agreements. 

We consider problems with two 2-strategy, 2-player 
games in general form and analyze the outcomes of 
the aggregated isolated games compared to the case of 
a linked game. A generalized framework is presented 
for analyzing such problems under different structures 
using the prisoner's dilemma case as an example. The 
relevance of linked games is emphasized for the case 
where equity is important, a typical problem in in­
ternational negotiations. Linking can offer advantages 
for international cooperation in principle because full 
cooperation is often not feasible. However, we show 
that important conditions must be satisfied for gains 
to be attained. 

2. Structures of games 

Before discussing the potential of linking games, a 
delineation of game structures is useful. Although the 
principles apply to multi-player and multi-strategy 
games, the discussion here is kept simple and intu­
itive by examining 2-strategy, 2-player games using 
the framework of Fig. 1. In each cell, the first entry 
gives the payoff to Player A and the second entry 
gives the payoff to Player B if strategies of both play­
ers correspond to that cell. Generally, Players A and 
B each have two strategies, cooperate or defect, in 
each game. Without loss of generality, the payoffs of 
the cooperate-cooperate strategies in Game 1 can be 
represented by (1, 1) and the payoffs of defect-defect 
in both games can be represented by (0, 0) by simply 
re-scaling and translating the origin. Payoffs of other 
various strategies in Games 1 and 2 are depicted in 
Fig. 1. 

Depending on the structure of the games, the Nash 
equilibrium can be determined as incompletely sum­
marized in Table 1. Four particular structures are em­
phasized here because they have defection equilibria 
(see, e.g., Barrett, 1994; Folmer et al., 1993). Games 
with equilibria consisting only of cooperation are not 
interesting because the intent here is to explain less 
than full cooperation. 

Linking games of different structures has been in­
vestigated by Folmer et al. (1993), Ragland (1995), 

PlayerB 

Cooperate Defect 

Cooperate 1 1 q r 

Player A 

Defect s t 0 0 
(a) 

PlayerB 

Cooperate Defect 

Cooperate u v w X 

Player A 

Defect y z 0 0 

(b) 

Fig. l. A generic case for: (a) Game I; (b) Game 2. 
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Table I 
Alternative game structures 

Structure 

PD game 
Assurance game 
Iterated dominance game 
Chicken game 

Conditions for Game I 

q < 0, r > I, s > I, t < 0 
q < 0, r < I, s < I, t < 0 
q < 0, r > I, s < 1, t < 0 
q > 0, r > I, s > I, t > 0 

Conditions for Game 2 (u > 0 and v > 0) 

W < 0, X> V, y > U, Z < 0 
W < 0, X < V. y < ll, Z < 0 

W < 0, X> V, )' < U, Z < 0 
W > 0, X> V, y > U, Z > 0 

Nash equilibrium" 

D-D 
C-C, D-D 
D-D 
C-D, D-C 

" The defect strategy is denoted by D and the cooperate strategy is denoted by C. 

and Bennett et al. ( 1998). Folmer et al. consider linking 
a pair of asymmetric prisoner's dilemma (PD) games. 
Ragland considers linking two isolated PD games, a 
PD and a chicken game, two chicken games, and a PD 
and an iterated dominance game. Bennett et al. con­
sider linking a PD game and an iterated dominance 
game. By examining the convex hull of the feasible 
sets of the aggregated isolated games and the feasible 
set of the linked game, they show that strict domi­
nance of the linked game over the aggregated isolated 
games can be achieved. Only Ragland gives examples 
where strict dominance is not obtained. 

This paper shows that strict dominance of the 
linked game over the aggregated isolated games is 
not obtained in a wide variety of circumstances and 
embellishes understanding of when dominance is ob­
tained. Given recent advocacy for linking games (e.g., 
Folmer et al., 1993; Hauer and Runge, 1997), a clear 
determination of conditions under which linking is 
advantageous is needed. In general, linking can be ad­
vantageous (1) when it expands the feasible choice set 
for the parties and (2) when it makes new strategies 
possible that are not permitted in the isolated games. 

3. Linking prisoner's dilemma games: an example 

Consider first the case where each of two isolated 
games are PD games. In the Nash equilibrium of PD 
games, both players defect. Figs. 2a and b illustrate the 
feasible sets of two PD games. Fig. 2a (Fig. 2b) is con­
structed using the payoffs in Fig. la (Fig. 1b) accord­
ing to conditions in the first row of Table 1. Only the 
relevant positive quadrant is represented. To consider 
the problem where cooperation has merit, suppose u > 
0 and v > 0. The convex hull of feasibility in Fig. 2a 
is defined by points (0,0), (O,YJ), (1,1), (Xt,O) 
where X 1 = (s- t)l(l- t) and Y1 = (r- q)l(l- q). 
The convex hull of feasibility in Fig. 2b is defined 

by points (0, 0), (0, Y2), (u, v), (X2, 0) where X2 = 
u- v(y- u)l(z- v) and Y2 = v- u(x- v)l(w- u). 

Figs. 2a and b are constructed for the case where 
cooperation is superior to convex combinations of par­
tial cooperation, i.e., SJ = 1 - Yt > s2 = 11(1 - X2) 
and S3 = (v- Y2)lu > s4 = vl(u- X2) where SJ, 

s2, s3, and s4 are slopes of the respective segments as 
shown. The alternative case of inferiority is illustrated 
in Fig. 2c. Inferiority of cooperation corresponds to 
(r - 1)1(1 - t) > (1 - q)l(s - 1) in Game 1 and 
(x- v) I ( v- z) > (u- w) I (y- u) in Game 2. In other 
words, cooperation is not preferred if Player B' s gain 
from defecting (when Player A cooperates) relative 
to his loss from Player A's defecting (when Player B 
cooperates) exceeds Player A's loss from Player B' s 
defecting (when Player A cooperates) relative to his 
gain from defecting (when Player B cooperates). 

Now consider constructing the feasible set of the 
two aggregated PD games, i.e., the convex hull of 
the aggregate payoffs for all combinations of play in 
Figs. 2a and b. Table 2 displays the relevant points and 
Figs. 3a-d show the exercise graphically depending on 
whether none, both, or one of the individual PD games 
have cooperation inferior to convex combinations of 
partial cooperation, respectively. Note that vertices of 
the aggregate convex hull correspond to playing pure 
strategies in each game. Other points on the convex 
hull correspond to playing mixed strategies, i.e., each 
of two strategies part of the time in one or both of the 
games. 

3.1. Superiority of cooperation to partial 
cooperation in both games 

Several alternative characterizations define the al­
ternative cases. One distinction is whether cooperation 
is preferred to combinations of partial cooperation in 
the separate games. This is the case when the feasible 
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Player B 

(1' 1) 

(a) (0, 0) 

Player B 

(u, v) 

(b) (0, 0) 

Player B 

slope 
....---- S2 = 11(1 -Xi) 

(Xi, 0) 

slope 
S4 = v!(u - Xz) 

Player A 

Player A 

.. slope 

··················~ .. :I= 1- Yi <sz 

·· ... 
······· .... 

····· ..... . 
···········..... slope 

·········-x S2 = uo _Xi) 

Player A 
(c) (0, 0) (Xt, 0) 

Fig. 2. (a) The feasible payoff set of: (a) Game 1 and (b) Game 2 in the PD Case; (c) Game 1 when cooperation is inferior. 

sets of both isolated games have convex frontiers as 
in Fig. 3a. 

3.1.1. Aggregation when games are symmetric 
The results of aggregation depend on the rela­

tionship of the separate games. With PD structure, 

s1 > s2 and s3 > s4. This leaves six possible or­
derings of the slopes in Figs. 2a and b: SJ > s2 > 
S3 > S4, S3 > S4 > S] > S2, S] > S3 > S4 > 
S2, S] > S3 > S2 > S4, S3 > S] > S2 > S4, and S3 > 
SJ > s4 > s2. For purposes of discussion, the last 
four of these can be characterized as "sufficiently 
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Table 2 
Aggregation of two isolated games 

Point Payoffs in Game I (Fig. 2a) 

(0. Yt) 

2 (0, Ytl 

3 (0, Yt) 

4 (I, I) 

5 (I, I) 

6 (1, I) 

7 (Xt.O) 

8 (Xt.O) 

9 (Xt,O) 

symmetric" because the payoff sets of the isolated 
games have similar shapes in the positive quadrant 
of rationality. Manipulation of the points in Fig. 3a 
reveals that the convex hull will include points 
(0, 0), (X1 + X2, 0), (1 + u, 1 + v), and (0, Y1 + Y2) 
and exclude points (XJ, Yz)and(Xz, YJ). Which of 
the other points will be on the frontier is determined as 
follows. 1 If SJ < (> )s3, then (u, Y1 + v) is (is not) on 
the frontier and (1, 1 + Yz) is not (is). Note that SJ > 
s3 corresponds to (1- r)/(1- q) > (v- x)j(u- w). 
In other words, Player A's gain relative to Player 
B's loss associated with Player A's defection (when 
Player B cooperates) is greater than Player A's loss 
relative to Player B' s gain associated with Player 
B's defection (when Player A cooperates). Similarly, 
(1 + Xz, 1) is on the frontier when sz ::::: s4, and 
(X 1 + u, v) is on the frontier when sz ~ s4. Thus, the 
convex hull is completely characterized by conditions 
on the slopes of the frontiers in Figs. 2a and b. 

3.i.2. Aggregation when games are asymmetric 
Consider next the case when slopes are ordered as 

s1 > sz > s3 > s4 or s3 > s4 > s1 > sz. We charac­
terize these cases as sufficiently asymmetric, because 
the payoff sets of the isolated games have very dif­
ferent shapes in the positive quadrant of rationality. 
That is, one mixed strategy highly favors one player 

1 In this case, as in many others throughout the paper, which 
points fall on the frontier can be determined by observing a 
parallelogram. For example, in this case the points (0, Yt + Yz), 

(u, Yt + v), (l + u, I+ v), and(!, I+ Y2 ) form a parallelogram 
in which all the segments have slopes s 1 or s3. Because the two 
end points of the parallelogram fall on the frontier, which of the 
other two points falls on the frontier is determined by comparing 
the slopes of the two segments. 

Payoffs in Game 2 (Fig. 2b) Aggregate payoffs 

(0. Yz) (0, Yt + Yz) 
(u, v) (u, Yt + v) 
(Xz, 0) (Xz, Yt) 
(0, Yz) (I.I+Yz) 
(u, v) (I +u, I+ v) 
(Xz, 0) (I+ Xz, I) 
(0, Yz) (Xt. Yz) 
(u, v) (Xt +u,v) 
(Xz, 0) (Xt + Xz, 0) 

in one game and another mixed strategy highly favors 
the other in the other game. Graphically, this is the 
case where the entire frontier of one game is steeper 
than the entire frontier of the other game. The result 
is that full cooperation is in the interior of the feasible 
set of the aggregated games. For example, Fig. 3d 
corresponds to the case where s3 > s4 > SJ > sz and 
the convex hull is defined by (0, 0), CX1 + Xz, 0), 
(1 + Xz, 1), (Xz, Y1), (u, Y1 + v) and (0, Y1 + Yz). If 
s1 > sz > s3 > s4, then the convex hull is defined by 
(0, 0), (XI+ Xz, 0), (XI+ u, v), (XJ, Yz), (1, 1 + 
Yz) and (0, Y1 + Yz). These are interesting cases 
because full cooperation is not an equilibrium. This 
situation cannot apply where full cooperation pro­
duces an economically desirable outcome. 

3.2. inferiority of cooperation to partial cooperation 
in both games 

Similar manipulation in the case of Fig. 3b reveals 
that the convex hull includes (0, 0), (X 1 + Xz, 0), and 
(0, Y1 + Yz) and excludes (1 + u, 1 + v), (u, Y1 + v), 

(1 + Xz, 1), (XI+ u, v) and (1, 1 + Yz). Which of the 
other two points are on the frontier can be determined 
as follows. If Y1/ X1 > ( <)Yz/ Xz, then (Xz, Y1) is 
(is not) on the frontier and (X 1, Yz) is not (is). These 
conditions depend on how much each player benefits 
relative to the other player's loss in cases of partial 
cooperation compared to no cooperation. 

3.3. inferiority of cooperation to partial cooperation 
in one game 

Suppose Game 1 is the game where cooperation 
is inferior to combinations of partial cooperation as 
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Player B 

(0, Y1 + Yz) 

Player A 

(0, 0) (X1, 0) 

(a) 

Player B 

'• .. 
·· .... 

········· ..•. ······· ..... 

···· ... 

Player A 
(b) (0, 0) (X1 + Xz, 0) 

Fig. 3. (a) The feasible payoff set of aggregated PDs; (b) aggregated PDs when cooperation is inferior; (c) aggregated PDs when cooperation 
is inferior in one game; (d) an alternative feasible set for aggregated PDs. 
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Player B 

(X1+u,v) 

Player A 

(c) (0, 0) (X1, 0) 

Player B 

\(I +X2, I) 

Player A 

(d) (0, 0) 

Fig. 3 ( Collfinued). 
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in Fig. 3c. Note that Fig. 3c is drawn for the case 
where s4 < - YJ/ X 1 < s3. The convex hull is de­
fined by (0, 0), (0, Y1 + Y2), (u, Y1 + v), (XJ + 
u, v) and (XJ + X2, 0) with all other points from 
Table 2 in the interior. If s4 < s3 < - Y1 I X 1, 

then the convex hull is defined by (0, 0), (0, Y1 + 
Y2), (u, YI + v), (XI+ u, v) and (Xt + X2, 0) with 
all other points from Table 2 in the interior. If 
- YI I X 1 < S4 < s3, then the convex hull is defined 
by (0, 0), (0, Yt + Y2), (u, Yt + v), (Xz, Yt), (Xt + 
u, v) and (XI + Xz, 0) with all other points from 
Table 2 in the interior. Intuitively, these outcomes 
correspond to adding the possibilities of Game 2 
onto the combinations of partial cooperation in 
Game 1. 

c 

cc 1 +u 1 + v q+u 

de s+u t+ v u 
Player A 

cd l+y l+z q+y 

dd s+y t+z y 
(a) 

Player B 

(q+w,r+x) 

(b) 

d 
c 

3.4. Payoff possibilities with linked games 

Next, consider the linked game obtained by adding 
the payoffs of the two isolated games for all com­
binations of strategies as depicted in Fig. 4a. The 
difference in the linked case from the aggregated 
case is that strategies associated with the individual 
games need not be individually rational. Only group 
rationality is required of the aggregate payoffs. This 
difference is illustrated by comparing the diagram­
matic representation of linked strategies in Fig. 4b 
with the aggregated strategies available in Fig. 3a. 
By considering strategies with negative payoffs for 
one player in one game, strategies with higher pos­
itive payoffs for the other player may be available. 

Player B 

r+v 

v 

r+z 

z 

I +w 

s+w 

1 

s 

c 
d 

(s + y, I+ z) 

l+x q+w 

t+x w 

1 q 

t 0 

Player A 

d 
d 

r+x 

X 

r 

0 

Fig. 4. (a) The general linked game; (b) the feasible set of the linked game; (c) comparison of feasible sets of the aggregated and linked 

games; (d) the feasible linked set when cooperation is inferior in one game. 
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PlayerB 

(u, Y1 +v) 

(1 +u, 1 +v) 

(c) Player A 

Player B 

Player A 

(d) (s + y, t + ::.) 

Fig. 4 (Continued). 

Such cases are key to obtaining advantages from 
linking. 

Regardless of game structure in Table 1, many of the 
strategies in Fig. 4a are dominated by others (lie on the 
interior of the convex hull) and can be eliminated from 

consideration. For example, under the maintained as­
sumption that u > Oand v > 0, (1 + u, 1 + v) domi­
nates (u, v), (1, 1), and (0, 0). Also, (1 + w, 1 + x) 
dominates (w, x) and (1 + y, 1 + z) dominates (y, z). 
Strategies (s+y, t+z) and (q+w, r+x) can beelimi-
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nated from consideration for the case of two PD games 
because they do not satisfy individual rationality, i.e., 
t + z < 0 and q + w < 0. Only eight of the 16 alterna­
tives in Fig. 4a must be considered in constructing the 
convex hull of the linked game. The interesting cases 
correspond to the conditions underlying Figs. 3a-d. 

3.5. Linking under superiority of cooperation to 
partial cooperation in both games 

As in the case of aggregated games two possibilities 
deserve attention, symmetry and asymmetry. 

3.5.1. Linking when games are symmetric 
As in the aggregated case, consider first the four 

possible orderings of slope in Figs. 2a and b given by 
S] > S3 > S4 > S2, S] > S3 > S2 > S4, S3 > S] > 
s2 > S4, and s3 > s1 > s4 > s2, which correspond 
to sufficiently symmetry. Manipulation of the points 
in Fig. 4a reveals that the positive frontier of the con­
vex hull includes ( 1 + u, 1 + v). Which of the other 
points will be on the frontier can be determined as 
follows. The points (q + w, r + x), (1 + w, 1 + x), 
(l+u, 1+v), and(q+u,r+v)formaparallelogram 
in which all the segments have slopes s1 or s3, i.e., 
have slopes (1- r)/(1- q) or (v -x)/(u- w). If s1 < 
(>)s3, then (q+u, r+v) is (is not) on the frontier and 
( 1 + w, 1 + x) is not (is). Similarly, ( 1 + y, 1 + z) is (is 
not) on the frontier when s2 ::; (2:)s3, and (s +u, t + v) 
is (is not) on the frontier when s2 2:: (::;)s4. As for the 
aggregated case, the convex hull is completely charac­
terized by conditions on the slopes of the frontiers in 
Figs. 2a and b. Considerable overlap of the frontiers 
of the aggregated and linked cases is found. The point 
(1 + u, 1 + v) lies on both frontiers and the adjacent 
frontier segments have the same slope in both cases. 
The only difference is that the adjacent segments ex­
tend somewhat farther in the linked case producing 
weak dominance of the linked frontier as demonstrated 
in Fig. 4c. The most striking result is that the linked 
outcomes dominate the aggregated outcomes only for 
cases where payoff combinations are substantially dif­
ferent than the full cooperation case. As demonstrated 
later, outcomes other than full cooperation are chosen 
in these cases when equity is a concern. 2 

2 Hereafter, situations where payoff combinations substantially 
different than the full cooperation case are preferred will be called 
cases where equity is a concern. 

3.5.2. Linking when games are asymmetric 
For the case of sufficient asymmetry, slopes are or­

dered as S] > S2 > S3 > S4 Or S3 > S4 > S] > S2. 
In this case, the entire frontier of one game is steeper 
than the entire frontier of the other game as in Fig. 3d, 
so full cooperation is in the interior of the feasible 
payoff set. For example, if s3 > s4 > s1 > s2, then 
the upper right frontier of the convex hull is defined 
by(q+w,r+x), (q+u,r+v), (q+y,r+z), (1+ 
y, l+z), and (s+y, t+z). If s1 > s2 > s3 > s4, then 
the upper right frontier of the convex hull is defined 
by(s+y,t+z), (s+u,t+v), (s+w,t+x), (1+ 
w, 1 + x), and (q + w, r + x). Interestingly, both of 
these cases generate a convex hull for the linked game 
that strictly dominates the aggregated games. How­
ever, as indicated above, these are cases where full 
cooperation cannot represent an economically desir­
able outcome. For example, full cooperation cannot 
achieve economic efficiency in the traditional sense. 

3.6. Linking under inferiority of cooperation to 
partial cooperation in both games 

Without presenting numerous figures, some mental 
geometry verifies that extending payoff representa­
tions for the individual games in Fig. 3b into negative 
quadrants as done in Fig. 4b generates an extended 
feasible payoff set for the linked case. Algebraically, 
the upper 1ight frontier of the convex hull of payoffs 
is defined by (q + w, r + x) and (s + y, t + z), and 
either (q + y, r + z) or (s + w, t + x). The point 
(q+y, r+z) will be on the frontier if (z-x)/(y-w) 2:: 
(t - r)/(s - q) and (s + w, t + x) will be on the 
frontier if (z- x)j(y- w) ::; (t- r)/(s- q). Thus, 
the linked frontier strictly dominates the aggregated 
frontier. However, again, this is a case where full co­
operation cannot represent an economically efficient 
outcome (even in the individual games). 

3. 7. Linking under inferiority of cooperation to 
partial cooperation in one game 

Again, suppose Game 1 is the game where cooper­
ation is inferior to combinations of partial cooperation 
as in Fig. 3c. Fig. 4d shows the expansion of feasible 
payoffs with linking. Again, with some mental geom­
etry, the convex hull in Fig. 4d clearly dominates the 
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one from Fig. 3c. Alternatively, note that Fig. 4d is 
drawn for the case with s4 < (t - r)j(s - q) < s3 

where (t- r)j(s- q) is the slope of the broken lines 
in Fig. 4d. In this case, the upper right frontier of the 
convex hull is defined by (q + w, r + x), (q + u, 
r+v), (s+u,t+v), and(s+y,t+z).Ifs4 <s3 < 
(t- r) / (s -q), then the upper right frontier of the con­
vex hull is defined by (q + w, r +x), (s + w, t +x), 
(s+u, t+v), and (s+y, t+z). If(t-r)j(s-q) < s4 < 
s3, then the convex hull is defined by (q + w, r + x), 
(q+u, r+v), (q+y, r+z), and (s+y, t+z). Clearly, 
in each case, the convex hull of the linked game strictly 
dominates the convex hull of the aggregated games. 
As in other such cases, however, these are cases where 
the full cooperation outcome, (1 + u, 1 + v), is in the 
interior of the feasible payoff set. And also as in other 
cases, these are cases where cooperation is not attrac­
tive on the basis of economic efficiency alone, i.e., 
according to a preference map represented by linear 
contours with slope -1, which would be the standard 
surplus criterion of welfare economics. 

3.8. Conclusions for linking two PD games 

Interestingly, the linked game associated with two 
isolated PD games does not necessarily strictly domi­
nate the aggregated isolated games. In some cases, 
at least one point can be common to both frontiers. 
When the two frontiers have a common point, the 
point ( 1 + u, 1 + v) that corresponds to full coopera­
tion will always lie on both frontiers. In addition, this 
analysis proves that the linked game and the aggre­
gated isolated games often have common segments. 
In fact, when full cooperation lies on both frontiers 
then they have common segments on both sides of the 
full cooperation point. These other points along the 
frontiers result from mixed strategies. These mixed 
strategies at a given point along the frontier, however, 
do not necessarily represent the same set of mixed 
strategies in the aggregated isolated games as in the 
linked game because more combinations are feasible 
in the linked game. 

Furthermore, the entire frontier of the linked game 
can possibly be identical to the frontier of the aggre­
gated game. As shown by Netanyahu (1998), equiva­
lence of the linked and aggregated frontiers requires 
six equations in the 10 variables introduced in Fig. 1. 
Thus, many cases, including cases of asymmetry, yield 

identical frontiers. This result runs counter to the gen­
eral assertions of Folmer et al. (1993) and Cesar and 
de Zeeuw ( 1994) that linking of asymmetric PD games 
enriches the set of sub-game perfect Nash equilibria or 
that linked games strictly dominate aggregated isolated 
games. Depending on circumstances, linking may or 
~ay not expand the feasible set and may expand it only 
m ways that do not affect the equilibrium outcome. 

4. Linking of various game structures 

The approach of the previous section can be ap­
plied to each pair of game structures suggested by 
Table 1. 3 Suppose a PD game is linked to an assurance 
game. Assurance games have two Nash equilibria as­
sociated with the strategies cooperate-cooperate and 
defect-defect. The linked game is obtained by adding 
the payoffs of all strategy combinations. Our results 
sharply contrast with the assertions of Hauer and 
Runge (1997). When a PD game and assurance game 
are linked, Hauer and Runge claim that negotiations 
become more complex, decreasing the chances of an 
agreement relative to the single issue case. We show 
that a significant portion of the frontiers of the ag­
gregated isolated games and the linked game overlap, 
suggesting that chances of coming to an agreement 
of full cooperation are similar in both aggregated and 
linked games. Furthermore, when full cooperation is 
reached by isolated games, there is no advantage in 
playing the linked game. Finally, while Hauer and 
Runge focus either on full cooperation or full defec­
tion, our results show that mixed strategies are possi­
ble in the linked game. In fact, the feasible payoff set 
of the linked game weakly dominates the aggregated 
isolated games only because of these mixed strategies. 

Linking two assurance games leads to a trivial 
outcome of full cooperation where no added benefits 
accrue to linking. This case is significant because it 
identifies conditions where both players choose the 
most preferred outcome of cooperation without negoti­
ation. Linking a PD game with an iterated-dominance 
(ID) game reveals that an ID game yields less oppor-

3 For the sake of brevity, we only summarize the results ob­
tained under many game structures. For more detail, see Netanyahu 
(1998). 
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Player 8 Full Cooperation (Economic Efficiency) 

Nash Bargaining (Equitable) Solution 

Player A 

Fig. 5. The case where equity is preferred to efficiency. 

tunity for linking. 4 Thus, linking a PD game with 
an ID game is not as attractive as linking a PD game 
with another PD game, other things equal. 

Linking a PD game to a chicken game reveals that 
a mix of strategies is always preferred to full cooper­
ation. Full cooperation is in the interior of the linked 
game when it is inferior to mixed partial cooperation 
in either isolated game. The frontier of the linked game 
and the frontier of the aggregated isolated games have 
considerable overlap because mixed cooperation does 
not generate negative payoffs for either player in the 
chicken game. Thus, much ofthe opportunity for link­
ing (usually gained by using strategies that are not fea­
sible under the rationality constraint of isolated play) 
is lost. The only points added to the feasible set with 
linking are those associated with mixed cooperation 
strategies from the PD game. 

For the case of linking two chicken games, the fea­
sible sets of the isolated games are entirely contained 
in the positive quadrants. Thus, linking does not add 
any strategies that are not feasible in the aggregated 
isolated games. For this reason, the feasible set of the 
linked game is identical and linking offers no advan­
tages. Visual examination also reveals that if either 

4 The payoff structure of the ID game is based on Bennett et al. 
( 1998). 

chicken game has cooperation dominated by mixed 
partial cooperation, then full cooperation cannot be on 
the frontier of either the linked or aggregated isolated 
games. 

5. Equity considerations in negotiation 

Because the dominance of linking over aggregated 
isolated games is attained only when full cooperation 
is not preferred, our analysis explains seemingly in­
termittent enforcement of policies. The explanation is 
based on equity concerns. To consider equity consid­
erations in bargaining, it is useful to consider the Nash 
bargaining solution which corresponds to maximizing 
n = (uA- UA)(UB- UB) where UA (iiB) corresponds 
to the utility derived by Player A (B) and iiA (iiB) 

corresponds to the reservation utility of Player A (B). 
In the case of games such as represented in Fig. 4b, 
the reservation utilities are normalized to zero. Thus, 
contours that hold the product of utility increments 
constant are rectangular hyperbolas as represented by 
flL in Fig. 5. 

Fig. 5 demonstrates why outcomes substantially 
different than full cooperation are sometimes pre­
ferred. When the feasible set is highly asymrnetlic, 
the parties may be reluctant to pursue full cooperation 
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because of equity disagreements. Yet the parties may 
be able to identify partial cooperation strategies that 
obtain an outcome preferable to both non-cooperation 
and full cooperation given equity concerns. That is, 
the tangency of the rectangular hyperbola contour of 
the Nash bargaining criterion to the feasible set may 
represent a sub-game perfect equilibrium. 

Interestingly, these circumstances can arise when 
traditional economic efficiency analysis suggests full 
cooperation as the preferred outcome. Suppose, e.g., 
that payoffs in the games represent standard surplus 
measures and that the feasible payoffs of the aggre­
gated and linked games in Fig. 5 are represented by 
dotted and solid lines, respectively, as in Fig. 4c. The 
standard criterion of economic efficiency corresponds 
to maximizing the sum of surpluses. The associated 
welfare indifference contours are linear with slope -1 
as depicted by the broken line in Fig. 5. The resulting 
"optimum" is highly inequitable. So also is the Nash 
bargaining solution of the aggregated isolated games 
although less so. The Nash bargaining solution of the 
linked game, on the other hand, can be considerably 
more equitable as demonstrated by the tangency of 
the Ih contour with the linked feasible set in Fig. 5. 
This phenomenon may explain why international on­
lookers encourage full cooperation based on economic 
efficiency grounds while the parties are reluctant to 
accept full cooperation because of equity concerns 
and instead pursue seemingly intermittent cooperation 
(mixed strategies). For such cases, linking may serve 
to identify an equitable outcome that is almost effi­
cient but yet much more acceptable to the parties. 

6. Conclusions 

This paper has introduced a conceptual framework 
for exploring the potential of linking games as an ex­
planation and possible means of facilitation of inter­
national agreements. In particular, a stylized example 
has been developed showing that linking is preferred 
only in situations where one party agrees to lose in 
one agreement for the benefit of being a bigger win­
ner in another agreement, i.e., when the rationality 
constraints of the isolated games are relaxed by link­
ing. While linking has been explored in the literature 
as a way of facilitating full cooperation when it does 
not occur naturally, our results show that linking is 

never preferred to isolated play when full cooperation 
is the preferred outcome under linking. Alternatively, 
linking is preferred when the preferred outcome under 
linking involves mixed strategies that are typically 
composed of partial and intermittent cooperation. 

Despite claims elsewhere regarding strict domi­
nance of linked games over aggregated isolated games, 
our results show that obtaining strict dominance is not 
trivial. Lack of dominance of linked strategies that 
uniquely satisfy equity concerns reduces the attrac­
tiveness of linking. The cases where full cooperation 
is not preferred under linking, i.e., the cases where 
linking is advantageous over isolated play, are either 
cases where cooperation is inferior in one of the iso­
lated games or the two games have highly asymmetric 
payoff structures (so equity is likely to be a concern). 
However, the condition of asymmetry is typically not 
sufficient to make linking preferred unless one of the 
isolated games is a PD. 

Because agreement is achieved by means of link­
age to unrelated bargaining issues that have reciprocal 
benefits, this approach holds potential for implement­
ing a self-enforcement mechanism. That is, a typical 
case is where neither party wants to defect from the 
joint agreement because they stand to lose more on 
the issue where they are a big winner than they can 
gain by defecting on the issue where they are a loser. 

This paper shows that linking tends to be pre­
ferred in the specific circumstances that describe 
Israeli-Palestinian water negotiations: highly asym­
metric payoffs and significant equity concerns. Thus, 
further investigation of linking opportunities seems 
to be a fruitful area for assisting further progress 
in negotiations and/or understanding limits to fur­
ther progress. The results here, however, suggest that 
care is necessary in identifying linkage opportunities. 
Issues considered for linking to water negotiations 
will tend to generate more attractive opportunities 
from linking if they (1) have PD characteristics and 
(2) have payoff possibilities that highly favor the 
Palestinians in contrast to the asymmetry that heavily 
favors Israelis in water negotiation opportunities. 
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