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Abstract 

In many arid and semi-arid regions whether or not to desalinate seawater has long been a non-issue and policy debates are 
focused on the timing and extent of the desalination activities. We analyze how water scarcity and demand structure, on the one 
hand, and cost reduction via R&D programs, on the other hand, affect the desirable development of desalination technologies 
and the time profiles of fresh and desalinated water supplies. We show that the optimal R&D policy is of a non-standard most 
rapid approach path (NSMRAP) type, under which the state of desalination technology - the accumulated learning from 
R&D efforts - should approach a pre-specified target process as rapidly as possible and proceed along it thereafter. The 
NSMRAP property enables a complete characterization of the optimal water policy. The renewable nature of the fresh water 
stock permits a non-monotonic behavior of the optimal stock process: under certain conditions, the stock is depleted, to be 
(fully or partly) refilled at a later date. © 2000 Elsevier Science B.V. All rights reserved. 

JEL classification: Q16; Q25 
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1. Introduction 

Whether or not to desalinate water has long been 
a non-issue in many arid and semi-arid regions and 
policy debates focus instead on the timing and extent 
of desalination. At stake here is not water needed for 
basic subsistence (this relatively small quantity can be 
supplied from local fresh sources in most cases), but 
rather water used as input to agricultural, industrial 
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and environmental production, for which the usual 
economic considerations apply. Currently, desalinated 
water is expensive - estimates range between $0.6 
and $1 per cubic meter (Glueckstern and Priel, 1998) 
- hence attracts only small demand. However, the 
various technologies considered, such as distillation, 
Reverse Osmosis and Electrodialysis (Spiegler and 
Laird, 1980) leave a large room for cost reduction, 
pending appropriate investment in R&D. 

As R&D programs consume resources and take time 
to bear fruits, their scheduling vis-a-vis the temporal 
exploitation of available fresh water sources entails 
delicate intertemporal tradeoffs. The present paper 
investigates these tradeoffs. We assume that techno­
logical progress due to R&D evolves continuously in 
time, as the R&D efforts accumulate through learning 
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in the form of knowledge, which in turn affects to 
reduce the unit cost of desalination in a continuous 
fashion. The problem, then, is to set the optimal time 
profiles of the supply of fresh (primary) and desali­
nated (backstop) water resources and of the R&D 
efforts. 

Most studies of resource exploitation with a po­
tential backstop substitute deal with non-renewable 
resources and assume that the backstop resource be­
comes competitive at a particular date (e.g., as a 
result of a technological breakthrough). The backstop 
technology atTival date may be known or uncertain 
(Dasgupta and Heal, 1974, 1979; Heal, 1976; Das­
gupta and Stiglitz, 1981), and it may be influenced by 
R&D activities (Kamien and Schwartz, 1971, 1978; 
Dasgupta et al., 1977; Deshmukh and Pliska, 1985; 
Hung and Quyen, 1993). Just et al. (1996) considered 
renewable water resources, investigating the adoption 
of desalination technologies whose uncertain arrival 
dates depend on exogenous R&D activities. 

Departing from the discrete-event nature of the new 
technology arrival date, Tsur and Zemel (1998, 2000a) 
analyzed the development of solar technologies as a 
backstop substitute to fossil energy, by considering a 
technological process that advances continuously in 
time rather than in abrupt major improvements. They 
found that gradual technological progress tends to mo­
tivate intensive early engagement in R&D programs 
- a feature not shared by R&D programs under the 
discrete event framework. 

The present effort modifies Tsur and Zemel's frame­
work to the case of renewable resources. Recharge 
processes change the optimal policy in a number of 
ways. In particular, they allow the stock to be depleted 
during some period and refill at a later date, follow­
ing desalination cost reduction. With a non-renewable 
resource, this option is not available. Nonetheless, the 
underlying structure of the optimal R&D programs in 
both cases is otherwise similar. 

We find that the optimal desalination R&D pro­
cess admits a non-standard most rapid approach path 
(MRAP) (Spence and Starrett, 1975): the state of de­
salination technology (the net accumulation of learn­
ing from R&D) approaches as rapidly as possible a 
pre-specified target process (rather than a stationary 
state) and proceeds along it thereafter. The optimal 
supply policy is tuned so as to ensure a continuous 
transition from fresh to desalinated water, avoiding 

sudden cuts in the fresh water supply rate due to a 
premature depletion of the fresh water stock. 

The next section sets up the dynamic decision prob­
lem and defines a feasible water policy in terms of 
three control variables (supply rates of fresh and de­
salination water and R&D investments) and two state 
variables (fresh water stock and desalination knowl­
edge). In Section 3 we provide an explicit characteri­
zation of the optimal policy in terms of simple policy 
rules. Section 4 concludes and Appendix A contains 
the technical derivations. 

2. Formulation of the decision problem 

Water can be derived from two sources: a renew­
able fresh water stock of finite size, and desalinated 
seawater. The use of the latter source is practically 
limited only by its cost, which can be reduced with 
the technological progress associated with R&D. To 
focus attention on the tradeoffs associated with R&D, 
we simplify and consider a single fresh water stock 
and a single desalination technology, leaving aside 
such extensions as multiple primary and backstop 
stocks with different water qualities. 

Demand. Beyond basic subsistence needs (the quan­
tity of which has been set aside and is not part of 
the water demand), water is an input to production 
processes of various sectors, e.g., household, agricul­
tural, industrial and environmental. Let Gj(qj) rep­
resent sector j' s output, measured in monetary flow 
rates, when it uses water input at the rate qj, j = 
1, 2, ... , J, where J is the number of sectors. The 
usual properties are assumed for G j, namely, Gi (0) = 
0, Gj > 0 and G'J < 0. At a price p, sector j will 
demand water at the rate that maximizes Gj(q)-pq, 
i.e., the rate Dj(p) defined by Gj (Dj(p)) = p. Thus, 
the derived demand for water for sector j is given by 
D j (p) = Gj -I (p). Given the assumed properties of 
Gj, the demand Dj(p) is decreasing. The total de­
mand for water is obtained by summing the sector de­
mands, i.e., at a price p, the total demand for water 
is D(p) = L,f=l Dj(p). The aggregate benefit (out­

put) function G is defined by G' (q) = n- 1 (q) and 
G(O) = 0; thus G(q) = f~D- 1 (s)ds. Allowing the 
derived demand to vary with time, e.g., due to pop­
ulation growth, complicates the analysis but does not 
change the basic features of the solution (see Tsur and 



Y. Tsur, A. Zemel/ Agricultural Economics 24 (2000) 73-85 75 

Zemel, 1998), hence this extension will not be further 
considered here. 

Supply of fresh water. Let C(qc) represent the in­
stantaneous cost of supplying fresh water at the rate 
qc (covering pumping, conveyance, etc.). We assume 
that C(qc) is increasing and strictly convex, hence the 
marginal cost Mc(qc) = dC(qc)jdqc increases with 
the supply rate. 

The fresh water stock, denoted X" evolves over time 
according to 

. dX, 
X, = - = R(X,) - qc 

dt t 
(1) 

where R(X) = ~(X -X) is the fresh water rate of 
replenishment, which vanishes at a full stock, when 
X = X. Integrating (1) gives 

X, =X+ (Xo- X) e-l;t -1' q~ e-l;(l-s) ds (2) 

Supply of desalinated water. The unit cost of desali­
nation is independent of the supply rate q8 of desali­
nated water but depends on the state of desalination 
technology, which we call knowledge and denote by 
K1 • Given K1 , the desalination technology at time t 
admits constant returns to scale and can be described 
by the unit (or marginal) cost function M 8(K1 ) which 
decreases with knowledge. The latter, in turn, accu­
mulates due to the learning associated with the R&D 
investments Ir, r :::::: t, that had taken place up to 
timet. 

The balance between the rate of R&D investment, 
I 1 , and the rate at which existing knowledge is lost 
or becomes obsolete due to aging or new discoveries 
determines the rate of knowledge accumulation 

. dK 
K =- = I1 -8K 

dt 
(3) 

where the knowledge level K is measured in monetary 
units and the constant 8 is a knowledge depreciation 
parameter. Integrating (3), we obtain 

K1 = 11 
Ir e8(r-l) dr + Ko e-81 (4) 

Benefit. The gross surplus generated by using water at 
the rate q is given above in terms of the area below 
the inverse demand curve to the left of q: G(q) = 
J'(j D- 1 (s) ds. The cost of supplying water at the rates 

qc and q' is given by C (qc) + Ms (K1 )c/. The net 
surplus generated by q = qc +q 8 is thus G(qc +q 8 )­

[C(qc) + M,(K1)q 8 ]. Accounting also for the R&D 
cost I 1 , the instantaneous net social benefit at time tis 
given by 

(5) 

Water policy. A water policy consists of the time pro­
files of q( (fresh water supply rate), q( (desalinated 
water supply rate) and It (R&D investment rate). A 
policy r = (q(, qi, It it ::0: 0} determines the evolu­
tion of the state variables X1 (fresh water stock) and K1 

(desalination knowledge) via (1)-(4) and gives rise to 
the instantaneous net benefit process (5). The optimal 
policy is the solution to 

V(Xo, Ko) = Maxr 100 [G(q~ + ql)- C(q~) 
-MsCKt )q: -It l e-rt dt (6) 

subject to (1), (3), q(, q( ::0: 0, 0 ::S I1 < i, X1 ::0: 0 
and Xo, Ko given. In (6), r is the time rate of discount 
and i is an exogenous bound on the affordable R&D 
effort that implies, in view of (3), the upper bound 
K = i j 8 on desalination know ledge. 

3. Characterization of the optimal policy 

It is expedient to characterize the optimal policy in 
two steps. First, the optimal supply rates of fresh (q() 
and desalinated (qn water are specified in terms of 
the state of desalination knowledge (Kt) and of the 
fresh water scarcity price A1 . In the second step, the 
optimal R&D policy (i.e., the investment rate It and 
the conesponding Kt process) is determined together 
with the scarcity rent (A7) process. The derivation of 
the optimal policy is rather involved and is, therefore, 
relegated to Appendix A. Here we present the main 
characteristics and discuss their policy implications. 

Step I: The optimal rates of fresh and desalinated 
water supplies 

The effective marginal cost of fresh water sup­
ply consists of the direct supply cost Mc(qc) = 
dC(qc)jdqc plus the shadow price (or scarcity rent) 
At of the remaining stock of fresh water. The shadow 
price reflects the value of avoiding fresh water short­
age in the future. The marginal cost of desalination at 
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a given state of knowledge K is Ms(K). At each point 
of time, an additional unit of water should be supplied 
from the cheapest available source. Thus, fresh water 
is supplied up to the rate q; defined by 

(7) 

At this rate, desalination is competitive and any ad­
ditional supply comes from desalination plants. Thus, 
given Kr and At, the water supply curve (i.e., the 
marginal cost of water supply) is given by (see right 
panel of Fig. 1). 

M(qiKt, At)= Min{Mc(q) +At, Ms(Kt)} (8) 

The total rate (from both sources) of water supply at 
timet, denoted q(Kt, At), is determined by the inter­
section point of supply and demand, as the right panel 
of Fig. 1 depicts. If this point falls on the flat portion 
of the supply curve (where the marginal cost equals 
Ms), then water is supplied from both sources, yielding 

K($) 

qc(K,, At) and qs(Kr, At) for the fresh and desalinated 
water supply rates, respectively: 

(9) 

otherwise, only fresh water is used. Indeed, the supply 
rule (7)-(9) resembles static economic optimization by 
maximizing the area ABCD of Fig. 1, which represents 
the sum of the consumers and suppliers surplus. The 
dynamics of the problem enter via the incorporation 
of the dynamic shadow price into the effective cost of 
fresh water supply. 

A difficulty with implementing the supply rule 
(7)-(9) may arise if the fresh water stock is empty and 
the fresh water supply rate qc(Kt, At) required by (7) 
exceeds the recharge rate. Fortunately, this situation 
cannot occur under the optimal policy. This is so be­
cause the optimal processes Kt and A7 are so chosen 
that at the time of depletion T*, and while the fresh 
water stock is empty thereafter, it is not desirable 

Mc(q)+A.t 

R(O) 
D(M,(Kt)) 

Fig. 1. Right panel: water supply and demand at time t, given K, and )..., . The area ABCD represents the sum of consumer and producer 
surpluses. Left panel: marginal cost of desalination as a function of knowledge. 
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to supply fresh water beyond the recharge rate R(O). 

This property is formulated as follows. 

Claim 1 (Continuity of fresh water supply at deple­
tion). If it is optimal to deplete the fresh water stock, 
then qc(Kr*, An---+ R(O) as t---+ T*. 

Claim 1 implies that the transition from fresh to 
desalinated water is a gradual process, so that the 
supply of desalinated water starts well before the 
depletion event. This behavior is in contrast to the 
policy advocated by the standard theory of a resource 
exploitation industry facing a backstop technology, 
namely to abruptly abandon the primary resource 
when its price reaches that of the backstop. A similar 
continuity property has been derived by Hung and 
Quyen (1993) and by Tsur and Zemel (1998) in the 
context of non-renewable resources. 

Step 2: The optimal R&D policy ( Ir* and Kr*) 
The optimal R&D policy is a non-standard variant 

of the so-called MRAP of Spence and Starrett (1975). 
A standard MRAP is defined by the process that ap­
proaches as rapidly as possible some pre-specified 
steady state level k and remains there. Formally, let 
K1m denote the process initiated at Ko and driven by 
the R&D policy that invests in learning at the maximal 
feasible rate /1 = l. Recalling ( 4 ), 

(10) 

The standard MRAP initiated below the steady state 
level K is given by K 1 = Min{Kj11 , K}. 

A non-standard MRAP (NSMRAP) involves a 
pre-specified target process, rather than a fixed steady 
state. Initiated below the target process, the NSM­
RAP begins, like the MRAP, as K;n. As soon as it 
an·ives at the target process, the NSMRAP switches 
to the target process and cruises along it from that 
time on. A NSMRAP, therefore, is specified in terms 
of Kf11 and some target process such that the most 
rapid approach is to the target process rather than 
to a target steady state. Of course, if the target pro­
cess settles at its own steady state k before being 
crossed by Kf11 , the NSMRAP reduces to the stan­
dard MRAP. We now introduce the target process 
corresponding to the optimal R&D policy. We refer 
to it as the root process for a reason soon to become 
obvious. 

Define 

L(K, A) = -M~(K)qs(K, A)- (r + 8) (11) 

This function (which is a generalization of the evo­
lution function used to determine steady states of 
infinite-horizon dynamic problems by Tsur and Zemel 
(1996, 2000b)) can be viewed as the derivative (with 
respect to K) of some utility to be maximized by 
the optimal R&D process (see Appendix A). Thus, 
we seek the root K(A) of L(K, A), i.e., the solu­
tion of L(K (A), A) = 0, in the domain in which 
L(K, A) decreases in K. To rule out corner solutions, 
we assume that the root is unique in this domain, and 
that Ko < K(A) < K for all A. Indeed, the evolution 
functions displayed in Fig. 2 (based on some sim­
ple specifications of the relevant demand and supply 
functions) have double roots. However, the evolution 
functions increase at the smaller roots. Thus, only the 
larger roots are relevant to our discussion. 

K(A1) is the root process corresponding to the 
scarcity rent process A1 and it bears a simple eco­
nomic interpretation: Increasing knowledge by the 
infinitesimal amount dK reduces the cost of desali­
nation at the rate qs(K, A) by -M~(K)qs(K, A) dK 
but incurs an extra cost of (r + 8) dK due to interest 
payment on the investment and the increased depre­
ciation. The root K(A) represents the optimal balance 
between these conflicting effects. 

Initiated at Ko < K (0), the NSMRAP with respect 
to K(A1) is given by K 1 = Min{Kp', K(A1)}. The as­
sociated R&D investment rate is 

if K 1 < K(At) 

if K1 = K(A1) 
(12) 

(It is assumed that I is large enough to support the 
rate required by (12) along the root process, so that 
the NSMRAP is feasible for the optimal A7 .) We can 
now state 

Claim 2 (The NSMRAP property). The optimal 
R&D policy is the NSMRAP with respect to the root 
process K(An. 

Claim 2 bears an important policy implication: If 
R&D is at all worthwhile, then the R&D program must 
be initiated immediately, at the highest feasible rate. 
The Claim also implies that the characterization of the 
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0.02 

-0.02 
1 2 3 4 

K 

Fig. 2. The evolution functions L(K, A.) (Eq. (II)) and LR(K) (Eq. (15)) vs. the knowledge level K when Kcr > k0 . K0 is the root of 
L(K, 0), Kcr is the critical knowledge level in which M,(Kcr) = Mc(R(O)) and is also the intersection of ff(K) and L(K, 0). Both LR(K) 
and L(K, A.R) vanish at /(R. 

optimal R&D policy requires to specify the optimal 
scarcity process A.'J'. The derivation is presented in Ap­
pendix A, where we find that the dynamic behavior 
depends on the initial fresh water stock and on the 
relative position of the following knowledge levels: 
I. K0 = K (0) which is the root of L(K, 0), i.e., the 

solution of 

(13) 

2. the solution Kcr of 

(14) 

is the critical knowledge level above which the 
fresh water stock becomes inessential, since extrac­
tion above the recharge rate is more expensive than 
desalination. 

Prior to depletion, the scarcity rent takes a sim­
ple exponential form A.'J' = :>..0 e<rH)t, where the non­
negative constant :>..0 depends on the initial stock as 
explained below. The following characterization holds 

Claim 3. If K0 > Kcr then the optimal R&D policy 
is the standard MRAP K: = Min{Kfl, K0} and the 
steady state fresh water stock is not empty. 

Claim 3 appeals to economic intuition. A steady 
state above the critical level ~r implies a fresh 
water supply rate below R(O) and corresponds to a 
non-depleted stock. According to this claim, the ini­
tial stock does not affect the R&D policy and the 
equilibrium stock in this case. Yet, the time profile 
of the stock process can take markedly different pat­
terns. Let Q0 be the benchmark quantity defined in 
Appendix A by (A.ll). We arrive at the following 
characterization. 

Claim 4. (a) When K0 > Kcr and Xo ~ Q0 , the 
stock is never depleted and the scarcity rent vanishes 
at all times. (b) When K0 > Kcr and Xo < Q0 , the 
stock is depleted and refills again while the optimal 
scarcity rent process A.'J' increases exponentially until 
depletion and falls back to zero at the steady state. 

The unique feature characterizing case (b), namely 
the non-monotonic behavior of the fresh water stock 
(and of the corresponding shadow price), is a mani­
festation of the renewable nature of the fresh water 
resource. When the initial stock is small, it is advan­
tageous to deplete it when the desalination knowledge 
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is limited, then let the stock refill as knowledge accu­
mulates and the cost of desalination decreases. With a 
non-renewable resource, such as fossil fuel, this beha­
vior is not feasible (see Tsur and Zemel, 1998, 2000a). 
Observe, however, that the optimal R&D policy is 
the monotonic MRAP even in this case, as Claim 3 
ensures. 

When K0 = Kcr Claims 3 and 4 remain valid, 
except that both the stock and the scarcity rent vanish 
at the steady state. 

We turn now to the case /( 0 < Kcr. Depletion is 
favorable in this case and the continuity condition on 
the depletion date (Claim l) requires the fresh water 
supply rate to equal the replenishment rate R(O) on 
that date. It turns out that during the post-depletion pe­
riod the fresh water supply remains at the rate R(O), so 
that the fresh water stock remains empty and the de­
salinated water supply rate equals D(M8 (K1))- R(O). 
Accordingly, define 

L R(K) = -M~(K)[D(M8 (K))- R(O)]- (r + 8) 

(15) 

and let K R be the root of L R. It is verified in Appendix 
A that /(R E (K0 , Kcr) (see also Fig. 2) and that this 
root is the steady state of the optimal K-process. 

The optimal K-process, by virtue of Claim 2, is of 
the form Ki = Min{K;n, K(A.7)}. One possibility is 
that K;n lags behind K(A.j) prior to arrival at the steady 
state and the optimal process is a standard MRAP to 
K R. The alternative is that K 1m overtakes the root pro­
cess at an earlier date r, and the optimal knowledge 
process is a NSMRAP, evolving along with the root 
process during its final stage. Which of these cases oc­
curs depends on the initial fresh water stock vis-a-vis 
the benchmark quantity Qm of (A.12) according to the 
following claim. 

Claim 5. (a) When K0 < Kcr and Qm 2: Xo, Ki = 
Min{K;n, /(R} is a simple MRAP to /(R. (b) When 
K0 < Kcr and Qm < Xo, Kj follows a NSMRAP to 
AR 
K. 

The NSMRAP of case (b) implies that the R&D 
program is initiated at the highest feasible rate but 
slows down at the later, singular stage of the pro­
cess so as to delay the arrival at the steady state. This 

delay is designed to take advantage of the large ini­
tial fresh water stock. So long as this relatively cheap 
resource can be exploited above the recharge rate, it 
does not pay to arrive too early at the knowledge 
steady state, which is optimal only when fresh water 
supply is restricted to the recharge rate. Observe that 
even this NSMRAP is monotonic in time, although 
Eq. (3) can accommodate non-monotonic knowledge 
processes. 

4. Closing comments 

Water scarcity can induce responses of various 
kinds. First, it might lead to conflicts and competi­
tion among nations, regions or sectors (see, e.g., the 
collection of works edited by Biswas, 1994, by Di­
nar and Loehman, 1995, and by Just and Netanyahu, 
1998). Alternatively, it can encourage steps towards 
more efficient use of water via improved irrigation 
and distribution systems, quality-differentiated sup­
plies and efficient pricing (see Tsur and Dinar, 1997, 
and works in Parker and Tsur, 1997). Finally, when 
the futility of the first approach is recognized and 
the potential of the second approach is realized, one 
may turn to the development of alternative sources, 
namely desalination technologies. This work is con­
cerned with the third approach, focusing attention on 
its intertemporal aspects, particularly on the optimal 
scheduling of the R&D activities. 

In earlier works (Tsur and Zemel, 1998, 2000a) we 
derived optimal rules for the development of back­
stop (solar) technologies in light of the environmental 
costs of fossil energy and its finite reserves. Here 
also we consider the optimal development of back­
stop substitutes for a limiting primary resource -
fossil energy then, fresh water now. The difference 
between the two stems from the fact that fresh water 
is (typically) renewable, whereas fossil deposits are 
not. The presence of recharge processes renders the 
scarcity of the primary resource less crucial, but at 
the same time it changes the optimal policy quite sub­
stantially. For example, it is possible in the present 
case that the fresh water stock will be first depleted 
and eventually refill (fully or partly) as technological 
progress reduces the cost of desalination to the ex­
tent that fresh water exploitation decreases below the 
recharge rate. Such behavior is, of course, impossible 
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for non-renewable deposits. The time profile of the 
primary resource stock has far reaching implications 
for the optimal R&D policy, since the latter de­
pends crucially on the scarcity (shadow) price of the 
former. 

Sure enough, many regions around the Globe have 
all the water they need from local, fresh sources. But 
the number of water-scarce regions is growing by 
the year and in many desalinated seawater is (or will 
be) cheaper than fresh water conveyed from remote 
sources. As in the non-renewable case, we find that 
when the cost of desalination decreases with knowl­
edge in a continuous fashion, the optimal R&D pol­
icy is of a non-standard MRAP type. The presence of 
recharge process has a substantial effect on the tar­
get process to which the optimal knowledge process 
moves as rapidly as possible. The NSMRAP property 
calls for early engagement in R&D efforts - well in 
advance times of water shortage. 

For many regions assuming that demand increases 
with time appears more realistic. However, Tsur and 
Zemel ( 1998) showed that, although the details of 
the optimal policy are affected by this extension, the 
NSMRAP property of the optimal R&D policy is pre­
served. The same conclusion holds also in the present 
case of a renewable resource. Extensions to situations 
involving multiple fresh water stocks as well as the 
incorporation of uncertainty that affects various com­
ponents of the model (water demand, the knowledge 
accumulation process) are impmtant topics for future 
research. 

Appendix A. Derivation of the optimal policy 

We present below the formal derivation of the 
optimal supply rule and R&D policy characterized in 
Section 3. 

Preliminaries. Let T denote the time at which the 
stock of fresh water is first depleted. The optimization 
problem (6) is recast as 

V(Xo, Ko) = Maxr,T loT [G(q~ + q:)- C(q~) 
-M8 (Kr)q;- Ir] e-rt dt 

+e-rrvco, Kr) (A.l) 

subject to the same constraints. The current-value 

Hamiltonian for (A.l) is of the form 

Hr = G(q~ + q;)- C(q~)- Ms(Kr )q:- Ir 

+Ar[R(Xr)- qn + YrUr- oKr) 

where Ar and y 1 are the current-value costate vari­
ables corresponding to X1 and K1, respectively, and 
it is recalled that R(X) = ~(X - X). Incorporat­
ing the Lagrange multipliers associated with the 
constraints on qc, q8 and I, the Lagrangian J 1 = 

c c s s 0 I I (I- I ) . b . d Hr +arq1 +a1q1 +a 1 +a - 1 rs o tame. 
Necessary conditions include (see Leonard and 

Long (1992); all variables are evaluated at their opti­
mal values): 
1. Maxqc,qs{Jr} ::::} D-1(q( + qf)- Mc(q()- At+ 

a; = 0 and D-1 (q( + qt) - Ms(Kt) +a~ = 0, 
hence 

M8 (Kr) = Mc(q() +At 

q~ + q; = D(Ms (Kt)) 

(A.2) 

(A.3) 

hold along the optimal plan whenever qc and q8 are 
both positive and the conesponding Lagrange mul­
tipliers vanish. This establishes the optimal supply 
rule given by (7)-(9), as depicted in Fig. 1. The 
modifications when supply from either source van­
ishes are straightforward. 

2. Maximizing the Lagrangian with respect to I 1 re­
veals that I 1 equals 0 or i whenever y1 -=/= 1. Thus, 
I 1 can undergo a discontinuity only at the singular 
value Yt = 1. 

3. i-rA= -aH ;ax= A~ yielding Ar = Ao eCrH')t 

prior to depletion. 
4. AoX T = 0 is the transversality condition associated 

with X r :::: 0, implying that Ao = 0 if the fresh 
water stock is never empty. 

5. YT = avco, Kr)/aK is the transversality condi­
tion associated with the free value of K r. 

6. Hr = rV(O, K T) is the transversality condition 
associated with the free choice of T. 

Proof of Claim 1. Let q':_ = limrtrq( and q~ = 
limt.J.rq( be the limiting pre- and post-depletion sup­
ply rates of fresh water (the subscripts- and+ denote 
the conesponding pre- and post-depletion limits of 
other quantities as well). We need to show that 

q':__ = q~ = R(O) (A.4) 
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This means that the fresh water stock will not be 
depleted before the marginal cost of fresh water is 
high enough to exclude its supply above the natural 
recharge rate. 

Since y + is the initial knowledge shadow price 
for the post-depletion problem, it follows that 
aV(O, KT)IaK = Y+· Moreover, for the pre-dep­
letion problem, condition (5) above reads Y- = YT = 
a v (0, K T) I a K. Thus, the costate variable y I evolves 
smoothly as the pre-depletion problem turns into the 
post-depletion problem at the depletion time T. In 
view of condition (2), the quantity lr(y1 - 1) is also 
continuous on that date. 

The Bellman equation for the post-depletion value 
reads 

rV(O, KT) = G(D(Ms(KT))) 

-M8 (KT)[D(Ms(KT))- q~] 

-C(q~)- h + Y+(/+- 8KT) (A.5) 

where we have used again the fact that a v (0, K T) I a K 
= Y+· The transversality condition (6), H_ = HT = 
rV(O, KT), where 

H_ = G(D(Ms(KT)))-Ms(KT)[D(Ms(KT))- q=._] 

-C(q:_)- L + y_(I_- 8KT) 

+L[R(O)- q=._] (A.6) 

is compared with (A.5), using the continuity of y 1 

and of 11(y1 - 1) at t = T. We find that C(q=._) -

C(q~)- Ms(KT)(q=._ -q~) +L(q:_- R(O)) = 0, or 
C(q:_)- C(q~)- M 8 (KT )(q=_ -q~) +L(q:_ -q~) + 
L(q~ - R(O)) = 0, which reduces, using (A.2), to 
C(q=_)-C(q~)-Mc(q:_)(q=_ -q~)+L(q_t;_ -R(O)) = 
0. 

Now, to deplete the stock requires q=_ ::=:: R(O) 
while following depletion q_t;_ :::; R(O). Thus, 
C(q=_) - C(q_c;_) = Mc(Z/)(q:_ - q_c;_), where q_c;_ :::; 
qc :::; q=_, hence [Mc(ZJc) - Mc(q:_)](q:_ - q_c;_) = 
.L(R(O)- q_c;_) ::=:: 0. However, Mc(qc) increases with 
qc and the left-hand side cannot be positive, imply­
ing that these conditions must hold as equalities, 
establishing (A.4). D 

From (A.2) and (A.4) we conclude that 

(A.7) 

holds at the optimal depletion date T*. Also, depletion 
at T*, i.e., XT* = 0, requires (cf. 2) 

T* 

fa qc(K1*, A.n e-I;(T*-IJ dt=X + (Xo- X) e-I;T* 

(A.8) 

Once the knowledge process is given, these two rela­
tions can be used to determine the parameters T* and 
A.0, as explained below. 

Proof of Claim 2. We first show that given the optimal 
scarcity rent A.7, the optimal R&D policy (11*, Kn 
can be obtained as the solution of the one-dimensional 
problem 

V(Ko) = Ko + MaxurJfo 00 
{}(K1, t) e-rl dt (A.9) 

subject to K = I - 8 K, 0 :::; 11 :::; i, and Ko given, 
where 

{}(K, t) = G(qc + qs)- C(qc)- A.;qc 

-M8 (K)q 5 - (r + 8)K 

and qc = qc(K,A.7) and q 5 = q 5 (K,A.n are given 
by the optimal supply rules (7)-(9). The integrand 
{}(K, t), denoted the equivalent utility, is independent 
of the control I and its explicit time dependence enters 
through the scarcity rent A.7. Consider first the problem 

V(Ko) = Maxurlfooo J(K1 , 11 , t) e-rt dt (A.lO) 

subject to the same constraints and supply rule as in 
(A.9), where 

J(K, I, t) = G(qc + q 5)- C(qc) 

-A.;qc- M 8 (K)q 5 - I 

It is verified that the necessary conditions correspond­
ing to (A.1 0) coincide with the necessary conditions 
associated with It, K1 and the costate variable y 1 of 
the original problem (6). Following Spence and Star­
rett ( 1975), we use (3) to remove I from J. Integrating 
the resulting K term by parts, we obtain (A.9). 

Differentiating {}(K, t) with respect to K, noting 
that (A.2) and (A.3) imply that the terms involving 
actJaK and alJaK vanish, gives a{}laK = L(K, A.) 

(cf. Eq. (11)), and the unique root K(A. 1) maximizes 
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fJ(K, t) at any time t. Now, the analysis of Spence 
and Starrett (1975) shows that the MRAP to the maxi­
mum of the equivalent utility is the optimal process for 
this type of problems, characterized by utilities which 
do not depend explicitly on the controls. Indeed, the 
problem at hand is not autonomous due to the time 
dependence introduced by the scarcity rent A.7. How­
ever, these authors have established (see their foot­
note, p. 394), that the same result applies when the 
MRAP process follows the root process rather than a 
stationary maximum. Once the root process has been 
reached, fJ(K, t) must be maintained at its maximum 
by tuning It so as to ensure that Kt = K(A.1), as 
specified in (12). D 

Two immediate corollaries follows 

Corollary 1. The optimal process Kt cannot de­
crease. 

Proof. Initiated below the root process, Kt can only 
increase towards the root process but not exceed it. 
Once on the root process, Kt can decrease only if the 
latter decreases. This cannot happen before the fresh 
water stock is depleted, since before depletion the 
scarcity rent is either zero or increases exponentially, 
and K(A.) increases with A.. For a period of vanishing 
stock, with fresh water extraction at the recharge rate 
R(O), A. may decrease. However, Kt must differ from 
the root process during that period through which, ac­
cording to (A2), Ms(Kn = Mc(R(O)) + At, and a 
decrease in At implies that Kt must increase. D 

Corollary 2. The optimal process Kt must converge 
to a steady state. 

Proof. The corollary follows from Corollary 1 and 
the fact that Kt is bounded. D 

Turning to Claim 3, we introduce the following no­
tation: 

K0 = K(O) is the root of L(K, 0) (see Eq. (13)). 
Kcr = M8-l (Mc(R(O))) (see (14)); K > Kcr im­

plies qc(K, A.) < R(O) for any A.. 
Kfl = (1 - e-81 )K + Ko e-ot (see (10)) is the 

standard MRAP initiated at Ko. 
Tcr = log[(K -Ko)/(K -Kcr)]/8 is the time when 

the process Kfl passes through Kcr. 

rrcr 
Q0 = Jo qc(K:U,O)el;tdt-X(ei;Tcr_1) (A.ll) 

If Q0 > Xo then Xrcr < 0 (see (2)) and qc(Kfl, 0) is 
not feasible. 

ProofofClaim3. ToverifythatKt = Min{Kfl, K0 }, 

note that K(A.) :::: K0 for any non-negative A.. Claim 
2, then, requires that Kt must follow K:U at least 
up to K0 . When K0 :::: Kcr, the fresh water stock 
cannot vanish when Kt arrives at K0 or thereafter 
(with a positive A.). Hence, the shadow price must 
vanish at the steady state, implying that the root pro­
cess must converge to K0 . Kt cannot exceed this 
state at any time, because otherwise it would vio­
late the monotonicity property of Corollary 1, hence 
Kt = Min{Kfl, K0}. 0 

Regarding the scarcity process, we establish the fol­
lowing proposition. 

Proposition. A.0 = 0 if and only if K0 > Kcr and 

Xo:::: Q 0 . 

Proof. Suppose that A.0 = 0. Then, the root process 

reduces to the stationary point K0 and, according to 
Claim 2, Kt = Min{kfl, K0 } and qc(Kt, 0) is the 
optimal fresh water supply. If K0 < Kcr then Kt < 
Kcr and qc(Kt, 0) > R(O) at all times t. The stock 
will, therefore, be depleted on a finite date, at which 
time qc must undergo a discontinuous drop to R(O), 
violating Claim 1. Thus, K0 :::: Kcr and the optimal 
process must pass through ~r. However, if Xo < 
Q0 , then qc(Kt, 0) is not feasible and the fresh water 
stock will be depleted prior to ~r, implying again a 
discontinuity in qc. Indeed, the second condition of the 
proposition is required to ensure that the initial stock 
suffices to support qc(Kt, 0). Otherwise, a positive 
scarcity rent is called for. 

To see that the conditions of the proposition suf­
fice, suppose that both K0 :::: Kcr and Xo ::::: Q0 hold. 
Then, the fresh water stock is never depleted using 
qc(K:U, 0). (Ifthe stock is depleted prior to Tcr, then 
Xo < Q0 since qc(K:U, 0) > R(O) for Kfl < Kcr, 
which holds for T < t < Tcr, violating the assumed 
condition. Similarly, if the stock is positive at Tcr it 
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will not vanish at a later date since qc ( K, 0) < R (0) 
for K > Kcr.) Moreover, Kr* = Min{K1

111 , K 0} 

according to Claim 3. Now, assume that A.~ > 0. 
qc(K, A.) decreases in A., hence qc (Kr*, A.n < 
qc(K:U, 0) for all t < T cr and the fresh water 
stock is never depleted under the optimal policy 
qc(Kt, A.;>, violating the transversality condition (4) 

XTAO = 0. 0 

Proof of Claim 4. (a) Follows directly from the 
proposition. (b) Suppose that Xo < Q0 . From the 
proposition we know that A.~ > 0, hence the fresh wa­
ter stock must be depleted at or before ycr (after ycr, 
Kr* > Kcr and depletion cannot occur). The values of 
A.~ and of the depletion date T* are determined from 
(A.7) and (A.8). 

Following depletion, the fresh water supply rate 
is restricted to R(O). Eq. (A.2), then, gives A-7 = 
Ms(Kt) - Mc(R(O)) = Ms(K;") - M5 (Kcr) as long 
as this quantity is not negative, i.e., during the pe­
riod T* :S t :S ycr. The supply mix is R(O) and 
D(M5 (Kt))- R(O) for fresh and desalinated water, re­
spectively. At ycr, K1

111 = Kcr, the shadow price van­
ishes and the third phase begins. As knowledge accu­
mulates, Kr* :::: Kcr, qc(K;", 0) decreases below R(O) 
and desalination makes up the remaining demand. The 
fresh water stock fills up, eventually to enter a steady 
state at the stock level X = X- qc(K0 , 0)/s > 0, 
equality holding only if .k0 = Kcr. D 

We turn to the case K 0 < Kcr. This case involves a 
different steady state, namely the root J{R of LR(K) = 
-M~(K)[D(Ms(K))- R(O)]- (r + 8) (cf. Eq. (15)). 
In terms of the root process, this steady state can be 
written as J{R = K(A.R), where A.R = MsCKR) -
Mc(R(O)) is shown in Lemma 1 below to be posi­
tive. It is useful to distinguish between the date yR = 
log[(K - Ko)/(K - .t{R)]/8 when the MRAP K;n 

passes through K R and the time T*R when the optimal 
process Kt enters .kR: K;*R = .kR. Since no feasible 
process can proceed faster than K;n, it must be that 
T*R:::: yR_ 

We introduce the benchmark scarcity rent A-0 
A. R e-<rHJTR, the corresponding process A-?1 

A-0 e(rHJt and the benchmark quantity 

TR 

Q111 = fo qc(K;n,A~n)e~ 1 dt-X(eFR -1) (A.l2) 

The proof of Claim 5 is presented via a series of 
Lemmas. 

Proof. Suppose that J{R :::: Kcr, so that M5 (KR) :S 
Ms(Kcr) = Mc(R(O)) and qc(KR, 0) :S R(O). 
Hence, q 5 (KR, 0) = D(Ms(KR)) - qc(.kR, 0) :::: 
D(Ms(KR))- R(O) and, since M 5(K) is decreasing, 
L(KR, 0):::: LR(KR) = 0 = L(K0 , 0), implying that 
K R :s .k0 < Kcr and violating the assumption that 
J{R :::: Kcr. Indeed, with J{R < Kcr, we verify that 
A.R = Ms(KR)- Mc(R(O)) = Ms(KR)- Ms(Kcr) > 
0. Moreover, the definition of A. R implies that 
q 5 (KR, A_R) = D(Ms(KR))- R(O), hence bothLR(K) 
and L(K, A_R) vanish at J{R and J{R = K(A.R) > 

K (0) = K0 . The situation is depicted in Fig. 2. D 

Lemma 2. When K 0 < Kcr, the optimal steady state 
is at X = 0, K = K R and A. = A. R. 

Proof. Assume that the fresh water steady state stock 
is not empty. The corresponding scarcity rent must 
vanish, implying that K0 is the steady state knowledge 
level. But when K 0 < Kcr the fresh water supply 
rate qc (K0 , 0) exceeds R(O) and the finite stock must 
be depleted. Thus, when K 0 < Kcr the steady state 
occurs with an empty stock and A-7 > 0. The fresh 
water supply rate at the steady state must, therefore, 
equal R(O), implying, in view of Claim 2, that J{R is 
the knowledge steady state. Since J{R = K(A.R), it 
follows from Claim 2 again that A. R is the scarcity rent 
at the steady state. D 

Lemma 3. When K 0 < Kcr, the optimal processes 
Kt and A-7 enter their respective steady states J{R and 
A. R at or after the fresh water stock depletion date, 
i.e., T*R :::: T*. During 0 :S t :S T*, A-7 increases 
exponentially. If T*R > T*, then during T* :S t :S 
T*R the scarcity rent decreases back to its steady state 
level A. R and the process K (A-n is non-monotonic. 

Proof. Suppose Kt = K R at some t < T* and recall 
that q( > R(O) prior to depletion. Then, using (A.2), 

Mc(q() +At= Ms(KR) = Mc(R(O)) + A.R implying 
thatA1 < A.R.ItfollowsthatK(A-1) < K(A.R) = J{R = 
Kr*. But the optimal knowledge cannot exceed the root 

process and we conclude that J{R cannot be entered 
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prior to depletion, so that T*R ~ T* and K} • .:s f<R. 

Using (A.7) we find Mc(R(O)) + A.R = M5 (KR) .:s 
Ms(K}.) = Mc(R(O)) +A.~., hence A.~. ~ A.R. If the 
strong inequality holds and T*R > T*, the shadow 
price (and the corresponding root process) must de­
crease after T* until they reach A. R and K R, respec­
tively, at T*R. D 

By Claim 2, Kt = Min{Kfl, KCA.:>}. One possibi­
lity is that K1m lags behind K (A.7) before f<R is reached 

and the optimal process is a standard MRAP to K R. 
The alternative is that KF overtakes the root pro­
cess at an earlier date, and the optimal knowledge 
process is a NSMRAP, following the root process 
at its final stage. To identify the conditions under 
which either of these cases hold, we need the following 
lemma. 

Lemma 4. Suppose i 0 < Kcr. Then, (a) ifT* < yR 
then T*R = TR and Kt follows the standard MRAP to 
K_R; (b) ifT* > TR then T*R = TR and Kt follows 

the NSMRAP before arriving at K*; (c) if T* = yR 
then T*R = T* and Kt follows the standard MRAP 
as in (a). 

Proof. 
1. Suppose T* < TR .:S T*R. According to Lemma 3, 

the root process is non-monotonic, exceeding f<R 
at the depletion date and returning to it at T*R. If 
the optimal process were to follow the root process 
before T*R, it must also be non-monotonic, contra­
dicting Corollary 1. Thus, Kt = K;n all the way 
to K.R. 

2. Suppose T* > TR. Then T*R ~ T* > TR and Kt 
departs from Kin to follow K (A.n before arriving 
at K R. But the optimal process is monotonic, hence 
the root process must also be monotonic, which 
according to Lemma 3 can occur only if T*R = T*. 

3. Suppose T* = TR but T*R > T*. According 
to Lemma 3, the root process is non-monotonic 
and cannot be followed by Kt, which must, there­
fore, proceed with the standard MRAP all the way 
to K.R. It follows that KF and Kt reach K_R on 
the same date, contradicting our assumption that 
T*R > TR. Thus, T*R = T* = TR and Kt 

Min{KR, K~1 }. D 

Whether or not K;n overtakes K CA.:> depends on the 
initial scarcity rent A.o, as K(A.1 ) increases with A.1 = 
A.o e(rHlt. With the benchmark process A.~ as defined 

above, K(A.~R) = K(A.R) = f<R = Kf!R and K(A.~1 ) 
meets KJD at t = TR. The root process is assumed 
to be slower than K 1m and the two processes can­
not cross twice. It follows that for any A.o ~ A.31 , 

K (A.o e<rHlt) ~ K1m for all t .:S T R, whereas if A.o < 

A.{f the two processes must cross prior to TR. In view 
of Claim 2, this observation implies the following 
lemma. 

Lemma 5. Suppose i 0 < Kcr. (a) If A.() ~ A.31 then 
K* = Km until TR. (b) J+ A.* < A.m then K*- Km t t , J 0 0 t- t 

fort .:S rand K7 = KCA.:>for t ~ r, where 0 < r < 
TR is the date KF crosses K(A.n. 

To establish which of the two cases in Lemma 5 
applies, we need the following lemma. 

Lemma 6. Suppose i 0 < Kcr. Then A.() ~ A.0 if and 
only if Qm ~ Xo. 

Proof. Assume first that Qm ~ Xo. This implies that 
under the ( KJD, A.~) policy the stock is depleted before 
or at time TR. Suppose that A.0 < A.(f. The process KJD 
is not slower than any feasible policy hence Kt .:S K 1m 

for all t .:S TR. Moreover, since qc(K, A.) decreases in 
both arguments, qc(K1m, A.~) < qc(Kt, A.n and the 
optimal policy yields T* < TR. However, according 
to Lemma 5, A.0 < A.0 implies that the root process is 
adopted before TR, which entails, according to Lemma 
4, T* > TR, contradicting our previous assumption. 
Thus, Qm ~ Xo implies A.0 ~ A.g1 • 

Suppose now that A.0 ~ A.0, hence the optimal 
policy is the standard MRAP Kt = K 1m until TR. 
Thus, qc(KJD, A.~) ~ qc(K,*, A.:> and depletion un­
der the optimal policy cannot precede depletion under 
the CK;1\ A.~) policy. From Lemma 4 we know that 
T* .:S TR, hence depletion under the (KJD, A.~n) policy 
cannot occur later then yR, so that Qm ~ X0 . D 

Proof of Claim 5. (a) When i 0 < Kcr and Qm ~ 
Xo, then according to Lemma 6, A.0 ~ A.0. Lemma 5, 

in turn, implies that K,* = Min { KJD, K R} is a simple 
MRAP to f<R. (b) When i 0 < Kcr and Qm < Xo, 
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then according to Lemma 6, A.~ < A.0. Lemma 5, in 

turn, implies that K 1* follows a NSMRAP to K R. 0 

In case (b), the parameters A.~, T* and the switching 
date r are determined by solving (A.7), (A.8) and 
r -log[(K- Ko)/(K- K(A.~))]/8 = 0. 
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