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Abstract

An internal solution to an optimal control problem involving conjunctive-use of surface and groundwater may be inapplicable
if water is not sufficiently fungible across space and time. We provide a more general solution and apply it to the problem of
allocating a limited amount of water from the Ko‘olau mountains to two Oahu water districts separated by those mountains.
The solution involves initially allocating all of the mountain water to the district supplied by groundwater but eventually
allocating all of the water to the district supplied by surface water. The conditions for an internal solution hold only in the
intervening years when some mountain water is allocated to each district. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Resource economics; Conjunctive-use

1. Introduction

As in many states, water management in Hawaii is
organized according to separate water districts. It is
commonly assumed that efficient management can be
accomplished by managing each district separately
and then trading across districts until the value of
water is equalized across districts. This view not only
glosses over spatial issues such as transport costs and
conveyance losses, but also overlooks complications
that arise in the context of conjunctive-use. Previous
authors have shown how to incorporate transportation
costs and water quality into water allocation models
such that the marginal benefit at each point in the
system is equal to its corresponding full marginal
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E-mail addresses: rsmith@dept.agecon.umn.edu (R.B.W. Smith),
jimr@hawaii.edu (J. Roumasset).

! Tel.: +1-808-956-7496; fax: +1-808-956-4347.

cost, including the conveyance costs as well as pollu-
tion costs (see, e.g. Chakravorty et al., 1995; Krulce
et al., 1997). Similar conditions apply to the problem
of interbasin water transfers. Such models, however,
require that preconditions guarantee the feasibility of
an internal solution. When it is possible to transport
the resource from one market to the other, however,
one could encounter situations where the amount of
water available for transport is insufficient to equate
water values across districts, and hence, preempt the
possibility of obtaining internal solutions.

In the present paper, we are concerned with a case
in which there are limits to allocating water between
neighboring markets. For illustrative purposes we
consider a situation in Hawaii involving two water
districts that share a common source. Because each
district has its own source as well as the common
source, corner solutions are possible in which all of
the common source is allocated to one district or the
other. The situation is further complicated by the prob-
lem of conjunctive-use; one district relies primarily

0169-5150/00/$ — see front matter © 2000 Elsevier Science B.V. All rights reserved.
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on groundwater from the Pearl Harbor Aquifer, while
the other relies primarily on surface water. Ordinarily,
one would solve for the extraction/allocation profile
that simultaneously solves for optimal depletion of
the aquifer up to some steady state and optimal spa-
tial distribution of the total water available in each
time period (Tsur, 1991; Tsur and Graham-Tomasi,
1991). In the present problem, however, one must
solve for constrained conjunctive-use, admitting the
possibility that water scarcity may become greater in
one market than the other — even when it already
receives all of the available common water. Since the
optimal allocation may be different in each time pe-
riod, this involves choosing an allocation vector for
the common source as well as an optimal extraction
profile for the groundwater aquifer, both of which are
interdependent. The model we present is a step in the
direction of developing a general spatial/intertemporal
model of conjunctive-use water management with
multiple water sources and transport technologies.

Section 2 provides a theory of conjunctive-use with
limited possibilities of moving water from one district
to another. Section 3 illustrates the model for a current
conflict between water districts on the Island of Oahu.
Some conclusions and policy implications are offered
in Section 4.

2. Model

Consider two adjacent water districts divided by a
mountain range, with districts 1 and 2 indexed by i =
1,2. Each district contains a fully integrated water
market with its own aggregate demand function. An
aqueduct system traverses the mountain range and the
constant flow of water through the aqueduct can be
used to supply either district with water. Denote the
daily flow of aqueduct water by S and the amount of
aqueduct water diverted to districts 1 and 2 at time ¢
by s1(¢) and s3(¢), respectively. The per-unit cost of
gravity driven transport of the water to district i is
denoted 7p; > 0.2

District 1 has access to a coastal aquifer, where the
amount of aquifer water extracted at time ¢ is denoted

2 Bach district’s transportation cost may be thought of as
the mean cost to that district. For methods of incorporat-
ing intra-district transport cost differences, see Chakravorty and
Roumasset (1991) and Chakravorty et al. (1995).

as g(t). We follow Krulce et al. (1997) in modeling
aquifer characteristics. Let 4(¢) denote the head of the
aquifer above sea level at time #, and let / (#) denote the
amount of water leaking from the aquifer given head
level k. The higher the head level, the larger the sur-
face area from which water can leak, and the greater
the water pressure on the existing surface area; sug-
gesting that leakage increases in head. We assume that
the leakage function satisfies the following properties:
I(h) = 0,I'(th) > 0,1"(h) > 0, and [(0) =0, i.e.,
leakage is a positive, increasing, convex function of
head. Aquifer inflow (from rainwater) occurs at rate
w. Unexploited, the aquifer head rises to the level /4
where leakage exactly equals inflow, w = I(h). Since
leakage increases as head levels increases and head
levels fall as the aquifer is exploited, it follows that
w —I(h) > 0. The aquifer head evolves over time ac-
cording to h(t) = w —1(h(@)) — q(t).3 The average
cost of extracting water from the aquifer is c(k) > 0,
where ¢/(h) < 0, ¢”(h) > 0, and limy_, o c(h) = oo.

In addition to aqueduct water, district 2 receives a
daily flow of surface water and sustainable ground-
water yields denoted S¥. Both districts have access
to exotic backstop technologies, e.g., desalination.
Let b;(¢) and b,(¢) denote the time ¢ amount of the
backstop resource supplied to districts 1 and 2, respec-
tively, and represent the per-unit cost of the backstop
technology (desalination) by p. The per-unit cost of
transporting aquifer or backstop water to end users in
district 1 is denoted as 73 > 0, while the per-unit cost
of transporting surface or backstop water to end users
in district 2 is denoted as » > 0.

Given ST and access to the backstop technologies,
a water commission is responsible for managing aque-
duct allocation and water extraction rates from the
aquifer. The time ¢ water demands for districts 1 and
2 are represented by D!(p1(t), 1) and D*(py(2), 1),
respectively. Here p;(¢) is the time ¢ price of water in
district i. For i = 1, 2 and for all ¢, we assume Di =
dD;/dp; < 0 and D) = 98D'/dt > 0: demand
is strictly decreasing in price and demand is non-
decreasing over time. Denote the time ¢ inverse
demands for district i by N'(x!,), where x! is
the time ¢ quantity of water demanded in dis-
trict i. Given the properties of D!, it follows that
NI = 8N'/axi < 0 and Nj = 9IN'/3r = 0,

3 All dotted variables, e.g., h, refer to time derivatives.
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i = 1,2. The gross surplus of water in district i is
given by f Ni(x, t) dx. Then the water commission’s
problem can be represented as choosing the trajectory
{q(l‘), bi(1), s1(2), bz(l‘), SZ(t)}re(O,oo)7 to maximize:

oo q+b1+s
/ - { / N'(x, £) dx — [e(h(©)q ()
0 0

+pb1(t) +s1(t) 101 + (g (1) + b1 (1)) 71]

ST 4by+s57
+ / N(x, 1) dx — [pba(t) + 52(t) 702
0

+<SF—+bza»rﬂ} dr @2.1)

subject to
h(t) = w —I(h(t)) — q(2),
S=s51(t)+s0), 0<ss@)<S, i=12.

Using s7(t) = S—s1 (1), the current value Hamiltonian
for this problem is

qi+b1+s)
H= [ N'(x, 1) dx — [e(h(1))q(t)
0

+pbi(t) + s1(t)To1 + (g () + by (1))71]

SF+8S—s1+by
+s1(@)y1(2) + / N'(x,t)dx
0
—[pba(®) + (S = 51(1) 702 + (ST + b2 (1)) 2]

+AO[w = I(h(1)) = g1 +[S = s1(D]y2(0),

where A(t) > O is the time ¢ shadow price of aquifer
water, and y; (¢) > O the time ¢ shadow value of an ad-
ditional unit of aqueduct water to district i. Suppress-
ing ¢, the necessary conditions for an optimal solution
are

h=w—I(h) —q, (2.2)

. oH
A=rr— = rd 4 (h)g + U (h)A, (2.3)

OH |
5q—=N (g+bi+s;,)—ch) —t1—A <0, (24

JdH 1 _
B =N @tbits,)—p-1 =<0, 2.5)
1

OH
— =N (g+b1+s1,")— 7101+ N
as1
~NA(SF+ 5 — 51+ b2, )
+1020 — 12 <0, (2.6)
oH -
—=N2(SF +S—s1+by, ) —p-1 <0, (27)
by
JdH oH 5
— =S, ~ = — 81,
a1 %)

and the complementary slackness conditions:

oH oH oH oH
4= 70 =TVi= O’

=2 = 1,2.
301 T T 35 T o !

(2.8)

Define pi(r) = N'(g(t) + bi(t) + s1(1),t) and
pa(t) = N2(SF + § — 51 + by, 1). Following Krulce
et al. (1997), we assume the cost of desalination is
high enough so that water is always extracted from the
aquifer and (2.4) always holds with equality,

A= 22 C(h) —T11. (29)

By Eq. (2.9), the in situ shadow price of district 1
water, A, is equal to the market price of water in district
1 less extraction and transport costs. Also, rearranging
Eq. (2.3) gives

ko dg U

T r ro
The left-hand side of (2.10) is the marginal benefit -
of extracting water today. The right-hand side is the
marginal user cost, i.e. the lost present value of extract-
ing water. The first right-hand side term is the fore-
gone present value from not appropriating the capital
gain associated with saving the marginal unit of water.
The second term is the present value lost from having
to incur higher extraction costs in the future. The third
term is the (partially offsetting) reduction in marginal
user cost due to the higher recharge associated with
the lower head level. Alternatively, expression (2.10)
can be rewritten as

_h=d(h)g

CorHry
where the right-hand side is an alternative form of
marginal user cost and where the denominator can be

thought of as the own interest rate associated with
saving water.

(2.10)
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Egs. (2.5) and (2.7) describe what happens to market
price when the backstop technology is adopted. These
equations can be rewritten as
pi—1 <p, i=12 2.11)
If the shadow price of water in district i is less than the
cost of desalination, then desalination does not occur
on that side. When either district uses desalination, the
price of water on that side must be equal to the per-unit
cost of desalination, i.e., p; — t; = p. Hence with
desalination, p; —7; = p implies that expression (2.3)
can be written as A = p—c(h); the in situ shadow price
of water varies only with average extraction costs, i.e.,
A = —c’(h)h. Next, combine A = p — c(h) — 7 and
A = ¢/(h)h with Eqgs. (2.2) and (2.3), and eliminate
A, A, and A. Using this we see that when desalination
is adopted in district 1,

- [w — (W] (h)
p—ch) = pTI > 0.
Recall from (2.9) that the left-hand side of Eq. (2.12)
is the in situ shadow price of water, i.e. the marginal
benefit of extracting water in the optimal program.
The right-hand side is the marginal user cost once the
aquifer reaches a steady state. Note that unlike the
case of non-renewable resources, the scarcity rent, A,
does not go to zero when the backstop is employed. As
shown in the application, the steady state scarcity rent
can, in fact, be several times larger than the extraction
cost.

Krulce et al. (1997) argue that the optimal head level
satisfying (2.3) is unique and when desalination is used
the optimal head level is maintained at a constant level,
denoted A*. In such a case, extraction rates must be
equal to the net inflow of water to the aquifer and
extraction rates are constant, denoted as g*.

(2.12)

2.1. Aqueduct management

The optimal allocation of aqueduct water is gov-
erned by Eq. (2.6) and must satisfy the following
conditions:

y1(t) = y2(t) =0,
yi(t) =0, »n@ >0,
y1(@®) >0, (@) =0.

pi(t) — 1 = p2(t) — 12,
pl(_t) — 11 > p2(t) — 12,
pi(t) — 11 < p2(t) — 12,

If the equilibrium price paths are moving together then
both sides are receiving aqueduct water. If over a pe-
riod of time equilibrium prices are such that p;(z) —
71 < pa(t) — 1, then at some earlier point in time
district 2 received (and continues to receive) all of the
aqueduct water (s1; = 0). If, instead p1(t) — 71 >
p2(t) — 72, then at some earlier point in time district
1 received all of the aqueduct water (s; = S). As one
might imagine, the higher the transport cost is for one
district relative to the other, the less aqueduct water
the relatively higher transport cost district will receive.
When prices have diverged the allocation rule is
simple: divert all of the aqueduct water to the side with
the highest price. However, when prices are moving
together and the backstop technology has not been
adopted, the allocation rule is a bit more complex.
To see how s behaves in such a case, take the time
derivative of the equilibrium relationship (2.6):

d /[0H d
() =S N g+ by + 51t
dt<8s1> dt[ (g+0bi+s1,0)

—N2(SF by + 5 —51,0)]
=G +b +S)N )+ NI, )

—(by = SONZ(-, ) = N3(-, ). (2.13)

Given that prices are moving together it follows that
(d/dt)(9H/ds1) = 0. Also, since the backstop tech-
nology has not been reached: b1 = b, = 0. Then,

Ni + (¢ +$1)N} = N3 — 51 N?. (2.14)

Price movements in each market are the result of two
effects. Holding water consumption constant, the time
effect N. is the change in price induced by a shift in
district i demand at time z. The direct demand effects
(g + S‘])Nll and —s'1N12 are the respective price re-
sponses in districts 1 and 2 to changes in consumption
levels at time ¢. For either market, if the time ef-
fect dominates the direct demand effects, then prices
increase. Otherwise, prices remain constant or fall.

In equilibrium, the quantity demanded must equal
quantity supplied, or ¢ + s = D!(p1, t). Taking the
time derivative of this equilibrium condition gives ¢ +
= D}pl + Dzl. Substituting this time derivative
into expression (2.14) and rearranging terms gives the
desired behavior of sy:

N2 — [N} + (D!py + DHN]]

. 2.15
N2 2.15)

51 =
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Given that N12 < 0, if the second district’s shift in
demand is large (small) enough relative to the total
changes in the other district’s demand, then the amount
of aqueduct water diverted to district 2 should be in-
creased (decreased). There are potentially many pat-
terns of optimal aqueduct water diversion schemes.
For example, if prices are increasing and demand in
district 2 is always increasing more quickly over time
than demand in district 1, then more and more aque-
duct water will be shifted to district 2. However, even if
prices are increasing and demand in district 1 is shift-
ing more rapidly than that in district 2, it is unclear
whether district 1 should receive an increasing share
of aqueduct water. For instance, if the first district’s
direct demand effects are large enough relative to its
time effects, then it is possible for the time shifts in
the second district to dominate the first district’s net
demand effects. In such a case the first district would
receive increasing quantities of aqueduct water.

If prices move together and reach the backstop at
the same time, then the amount of water to divert to

$/1000 Gal
3r

T

2.5

1.5 |

0.5

either side is arbitrary — the desalination costs saved
by the aqueduct water is the same regardless of its
allocation. If backstop technology costs were higher
on one side than the other, however, then the water
manager is not indifferent about where the aqueduct
water is sent. One would expect that if desalination
were higher in district 2 than district 1, then if district
I reached the backstop technology first then district 1
could possibly receive all of the aqueduct water. Then
after the price in district 2 reached the backstop price
in district 1, district 2 would eventually receive all of
the aqueduct water and keep it even after reaching the
backstop technology.

2.2. The optimal price and quantity trajectories

The choice of g, s1, b1 and by must satisfy several
conditions simultaneously. To facilitate the algorithm
design we observe that Eq. (2.6) can be used to define
s1 in terms of g, by, and b;. The relationship between
these variables is captured in the following aqueduct

Leeward Price

Windvard Priccq@il) @GED ©

) ! Year

2000 2020

2040 2060

Fig. 1. Optimal price trajectories when g1 = 2%, g» = 1.5%.
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response function:
$1(q, b, by) =argmin{IN'(q + b1 + 51, ) = 7o)

—[N2(SF + by 4+ 5 —s1,) + w2]l}
q, b17 b2 = 07
(2.16)

subjectto s; € [0, S1,

where the aqueduct response function gives the opti-
mal rate at which aqueduct water should be diverted
to district 1, given desalination and aquifer extraction
rates. Introducing the aqueduct response function into
the optimal control problem is accomplished by not-
ing that, in equilibrium, water supply in district 1 must
be equal to its quantity demanded, i.e., g + by + 57 =
DY(pi, ), or

g =DY(p1,-) — b1 — (g, by, ba).

Then, let ¢* denote the (possibly implicit) solution to
(2.17), and substitute g* into (2.2). Finally, combining
A= p1—c(h)—7y and A = p;—c’(h)h with Egs. (2.2)
and (2.3) (and eliminating A, A, and k) yields the fol-

(2.17)

Gal /Day

25000
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15000
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lowing system of differential equations:

h(t) = w —1(h(t)) — g*(2), (2.18)
pr@) =[r +1'RENIp1@) — c(h()) — T1]
+w — I(h (@) (h(2)). (2.19)

Eq. (2.18) describes the optimal trajectory of the
aquifer head and Eq. (2.19) is the optimal trajectory
of district 1 water price. The optimal trajectory of s}
is recovered using ¢*, and the optimal trajectory of
district 2 water price is recovered by substituting s}
into that district’s inverse demand curve.

In principle, several types of price trajectories are
possible. For instance, both price trajectories might be
such that desalination is never warranted. This might
happen if demand in both districts grew slowly and
leveled off before prices rose above the cost of desali-
nation. However, if demand in one of the districts was
high enough or grew fast enough, then desalination
eventually will be adopted in that market. If the price
trajectories were such that one district adopted de-
salination before the other, then necessarily, at some

Year

2000 201Q 2020

2030

2040 2050 2060

Fig. 2. Optimal allocation of tunnel water to the Leeward market when g, = 2%, g» = 1.5%.
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earlier point in time that district would have received
all of the aqueduct water. For example, say the relative
acceleration of water demand is higher in the second
district. In such a case, in order to equate prices across
markets the second district would receive more and
more aqueduct water. Eventually, the second district
would get all of the aqueduct water, after which the
second district’s price would begin rising more rapidly
than water prices in the first district. Once the price in
district 2 reached backstop levels, desalination would
begin on that side. As for the price in district 1, it
would eventually either reach backstop levels or level
off at some level below district 2 levels (possibly even
fall). Several alternative scenarios are examined in the
following section based on a situation in Oahu in the
State of Hawaii.

3. Application: optimal water management on
Oahu

To illustrate an application of the above principles,
we reconsider the water management problem inves-

$/1000 Gal
3~

——T——

i
1.5 b

tigated by Moncur et al. (1998), where the relative
merits of diverting a constant amount of surface water
to each side was investigated. However, as the authors
suggested, the optimal allocation of aqueduct water
would likely vary over time. A numerical analysis of
the interbasin transfer problem requires specification
of the leakage function /(h), the extraction cost func-
tion c(k), and the inverse demand functions for the
leeward side (district 1) and the windward side (dis-
trict 2), N'(-, -) and N2(-, -).

Using the hydrological studies of Mink (1980), the
leakage function estimated by Krulce et al. (1997) is
I(h) = 0.2497h? 4+ 0.022h, where [(h) is measured in
mgd (million gallons per day) and A € (0, 33.5). The
extraction cost function used in Krulce et al. (1997)
is c(h) = co(hg/h)", where ¢y = $0.283 is initial
extraction costs in 1991, kg = 15 is the initial head in
1991, and n = 2 is the rate at which extraction costs
approach infinity (see Moncur and Pollock, 1988).

Both windward and leeward water demand comes
from agricultural and urban sources. However, cur-
rent projections suggest leeward urban water demand

> ’ Leeward Price
0.5 |- ™ 4 Windward PriceqmED GED
_-
L L L - ! . Year
2000 . 2020 2040 2060

Fig. 3. Optimal price trajectories when gy = 2% and g2 = 0.4%.
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Fig. 4. Optimal price trajectories when g; = 1.4% and g = 0.5%.

will grow over the foreseeable future, while leeward
agricultural water demand is expected to fall. Accord-
ingly, we decompose leeward demand into residential
and agricultural demand. We assume windward ur-
ban and agricultural demand will grow at the same
rate. We represent leeward demand by Di(py;,t) =
apr e8! (pi+ep,) 7" +aip e812 (pi+cp,) ", where
a1 €81 (pi; + cp,)” " is leeward urban demand.
Windward demand is represented by Dy (py,t) =
oz €8 (py + cp,) 7" from i = 1,2. Here p; is the
time ¢ wholesale price of water in market i, cp, the
distribution cost (net transport costs) in district i, n
the elasticity of demand, g1, g12, and g, are the
growth rates of leeward urban, leeward agricultural,
and windward demand, respectively. The parameters
a11 and op normalize leeward urban and agricul-
tural demand to actual 1991 price and quantity data,
while o) normalizes windward demand. Follow-
ing Moncur et al. (1998), we set cp, = 0.597 and
n = 0.3, and calibrate o] = 93.63, a1 = 107.47,
and ap = 40.43 (see Krulce et al., 1997, p. 1223).
Per-unit transport costs are assumed to be given by

71 = 0.25 and 1, = 0.45. To derive o we observe
that 1991 windward water demand is 38 mgd, imply-
ing ap = 38 x 1.2393 = 40.43. Finally, we assume
SF =38000mgd, S = 28000 mgd, p = 3* and the
real interest rate r is equal to 3% (see Roumasset et al.,
1983). Relatively straightforward manipulations yield

pu=N'(g+bi+s1,0)
93.63 €817 + 107.47 8121\ 1/0-3) 0847
( q+b1+s1 ) e K

P2 =N*(ST + 5 +by —s1,1)

2ot (1/0.3)
- ( 4043¢ ) —1.047.

SF+8+by—s
In the following analysis we consider three scenarios.
In two of the scenarios leeward demand grows at 2%
each year, and windward demand grows at either 1.5

4 See Leitner (1992), while Leitner’s estimate is in $ 1984 and
ours is in $ 1991, we assume technological change just offsets
inflation in the intervening periods.



R.B.W. Smith, J. Roumasset/Agricultural Economics 24 (2000) 61-71 69

or 0.4% each year. In the last scenario leeward de-
mand grows at 1.4% and windward demand grows at
0.5% each year. In each scenario leeward agriculture
is assumed to grow at —1%.

In the first scenario urban water demand on the
leeward side grows at 2% while windward demand
grows at 1.5%. The price and aqueduct water manage-
ment trajectories corresponding to this scenario are
presented in Figs. 1 and 2. In Fig. 1, the optimal price
trajectory for the windward side is given by the dashed
curve, while the optimal price trajectory for the lee-
ward side is given by the heavy, shaded curve. Note
that the leeward price lies above the windward price
until a little after 2002, after which the prices move
together until a little after 2047. Then the windward
price increases more rapidly than the leeward price,
hitting the backstop technology about 2 or 3 years later.
Fig. 2 shows that the optimal aqueduct water diversion
pattern corresponds with what one might expect. In
the first few years the leeward side gets all of the aque-
duct water. However, a little after 2002 the windward

Gal /Day
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side begins receiving some of the aqueduct water,
and continues to receive increasing amounts, until in
about 2047, it gets all available aqueduct water. This
happens because the leeward side can meet increased
demand needs by drawing more and more water out
of its coastal aquifer, while the windward side faces a
relatively fixed source of supply, and hence in order to
meet future increased water demand, must resort to the
aqueduct water. Without the benefit of the aqueduct
source, the value of water would correspondingly rise
more rapidly on the windward side. Accordingly, the
windward side commands an increasingly larger share
of the aqueduct water in order to keep the marginal
value of aqueduct water equal across districts. The
equality breaks down after the corner solution is
reached with all water going to the windward side.
Fig. 3 corresponds to the case where leeward urban
and windward demands grow at 2 and 0.2% per year,
respectively. In this case windward demand grows so
slowly relative to leeward demand that the windward
water price never rises above the leeward water price.

2000 2020 2040

Year
2060 2080

Fig. 5. Reswitching in optimal sharing rules when g = 1.4%, g2 = 0.5%.
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Correspondingly, the windward side never receives
any aqueduct water.

Finally, Figs. 4 and 5 correspond to the case where
urban leeward demand grows at 1.4% each year while
windward demand grows at 0.5% each year. This ex-
ample is presented to show that monotonic diversion
patterns are not necessarily the rule. In Fig. 4 the op-
timal price trajectory on the leeward side is the heavy,
shaded curve, while the optimal price trajectory for the
windward side is the dashed curve. From 1991 until
about 1997 leeward prices are higher than windward
prices. After which the price trajectories are identi-
cal and both prices reach the backstop technology in
2095. In Fig. 5, we see that it is optimal to allocate
the leeward side all of the aqueduct water until about
1997. Then the windward side should begin receiving
a monotonically increasingly share of the tunnel water
until about 2052, after which the windward allocation
should monotonically decrease until 2083. Finally, the
windward side should again receive increasing shares
of the tunnel water until the backstop technology is
reached in 2095.

As with the analytical results presented in Section
2, the illustrative exercises presented here suggest that
the optimal extraction vector and aqueduct sharing
rules are interdependent and, hence the need to coor-
dinate aquifer extraction rates and aqueduct sharing
rules. Failure to do so will inevitably lead to ineffi-
cient water allocations. As a final note, observe that as-
signing water rights and allowing water trading would
tend to ameliorate inefficiencies, but even aside from
externalities, full efficiency would require that future
markets exist for several decades into the future.

4. Conclusion

The model presented here is a step in the direction
of developing a general spatial/intertemporal model of
conjunctive-use water management with multiple wa-
ter sources and transport technologies. The usual as-
sumptions that water sources are at a single location
or that transport possibilities are characterizable by a
matrix of transport coefficients (linear transportation
costs) are highly restrictive and typically misrepresent
interbasin transfer possibilities. The procedure we out-
line requires solving simultaneously for production at
each source and time, and consumption in each dis-

trict in each time period. The method can be gene-
ralized further to distinguish different locations within
districts and to determine flow rates in each part of the
conveyance system at each time.

The model focuses on two water districts, each with
their own sources, but with each having potential ac-
cess to a common, albeit limited, source. The optimal
solution involves allocating each successive unit of
common water to the district with the highest marginal
water value. If water is sufficient, this will lead to
equalization of marginal values across districts. If not,
the entire amount of water will be allocated to one
district or the other, and the efficiency of prices will
diverge across districts. In general, it is not possible
to determine a priori whether the districts will be in-
tegrated in the sense of having the same efficiency
prices or will be analytically separate.

If both districts rely on surface water, then optimal
allocation of each district can be solved separately
in each period and the common water allocated as
described above in each period. This method is not
available if one or both of the districts relies in part
on groundwater. In that case, the periods are interde-
pendent. One must solve simultaneously for the op-
timal path of groundwater extraction and the optimal
allocation path of the common water.

The Hawaii application provides a number of
lessons that may be of general interest. To the extent
that groundwater is underpriced to a greater extent
than surface water, as in the two Oahu districts, then
the groundwater district should receive initial pri-
ority in allocating water from the common source.
However, this assumes that the water authorities
will simultaneously adopt efficiency pricing or some
other mechanism for efficient water allocation. There
is no point in allocating more water to the district
where water is scarce if that district will continue to
waste it.

But while water may be initially scarcer in the
groundwater district, the situation may be rapidly
overturned if new water sources are not available in
the surface-water district. The intertemporal fungi-
bility of groundwater makes it possible to conserve
water now as a device to moderate the otherwise
scarcity-increasing effects of demand growth. Such
an option is not necessarily available in the case of
surface water, unless storage facilities are developed
or some potential water sources are left undeveloped
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until some future date. Without such facilities, de-
mand growth will eventually cause scarcity in the
surface-water district to overtake that of the ground-
water district, and priority for common-water alloca-
tion will switch from the groundwater district to the
surface-water district, as in the Hawaii case.

A third lesson, derivative of the first two, is that re-
liable benefit-cost studies of investments in new wa-
ter facilities (e.g., pumping stations, dams, aqueducts,
tanks, and conveyance structures) cannot be performed
without discovering the time-dependent scarcity value
of water, thus requiring analogous simulations to those
reported here.

The theory and the illustrative exercises underscore
the inevitable inefficiency of attempting to manage two
such water districts independently. One cannot, as in
the Hawaii case, e.g., choose some initial allocation of
the shared source and then attempt to adjust the alloca-
tion over time according to criteria of relative scarcity
in the two districts. The initial allocation itself effects
the dynamic path of efficiency of prices, and relative
scarcity changes over time. Water trading between
the two districts would tend to ameliorate inefficien-
cies, but even aside from externalities, full efficiency
would require future markets for several decades
ahead.

The algorithm discussed in Section 3 renders the in-
tertemporal optimal apportionment problem tractable.
Other extensions that would improve the normative
value of the model for generating recommendations

about optimal management within and across districts
include explicit recognition of differential conveyance
costs as well as instream benefits and other external
effects.
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