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Abstract

Technical, allocative and economic efficiency measures are derived for a sample of swine producers in Hawaii using the
parametric stochastic efficiency decomposition technique and nonparametric data envelopment analysis (DEA). Efficiency
measures obtained from the two frontier approaches are compared. Firm-specific factors affecting productive efficiencies are
also analyzed. Finally, swine producers’ potential for reducing cost through improved efficiency is also examined. Under the
specification of variable returns to scale (VRS), the mean technical, allocative and economic efficiency indices are 75.9%,
75.8% and 57.1%, respectively, for the parametric approach and 75.9%, 80.3% and 60.3% for DEA; while for the constant
returns to scale (CRS) they are 74.5%, 73.9% and 54.7%, respectively, for the parametric approach and 64.3%, 71.4% and
45.7% for DEA. Thus the results from both approaches reveal considerable inefficiencies in swine production in Hawaii. The
removal of potential outliers increases the technical efficiencies in the parametric approach and allocative efficiencies in DEA,
but, overall, contrary to popular belief, the results obtained from DEA are found to be more robust than those from the
parametric approach. The estimated mean technical and economic efficiencies obtained from the parametric technique are
higher than those from DEA for CRS models but quite similar for VRS models, while allocative efficiencies are generally
higher in DEA. However, the efficiency rankings of the sample producers based on the two approaches are highly correlated,
with the highest correlation being achieved for the technical efficiency rankings under CRS. Based on mean comparison and
rank correlation analyses, the return to scale assumption is found to be crucial in assessing the similarities or differences in
efficiency measures obtained from the two approaches. Analysis of the role of various firm-specific factors on productive
efficiency shows that farm size has strong positive effects on efficiency levels. Similarly, farms producing market hogs are
more efficient than those producing feeder pigs. Based on these results, by operating at the efficient frontier the sample swine
producers would be able to reduce their production costs by 38-46% depending upon the method and returns to scale
considered. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction surement of efficiency of production. These techni-
ques can be broadly categorized into two approaches:

Farrell’s (Farrell, 1957) seminal article has led to parametric and nonparametric. The parametric sto-
the development of several techniques for the mea- chastic frontier production function approach (Aigner
et al., 1977; Meeusen and van den Broeck, 1977) and
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956-2811; e-mail: khem@hawaii.edu approach, commonly referred to as data envelopment
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analysis (DEA) (Charnes et al., 1978) are the two most
popular techniques used in efficiency analyses.
Among many authors, Coelli (1995) presents the
most recent review of various techniques used in
efficiency measurement, including their limitations,
strengths and applications in agricultural production.
The main strengths of the stochastic frontier approach
are that it deals with stochastic noise and permits
statistical tests of hypotheses pertaining to production
structure and the degree of inefficiency. The need for
imposing an explicit parametric form for the under-
lying technology and an explicit distributional
assumption for the inefficiency term are the main
weaknesses of the parametric approach. The main
advantages of the DEA approach are that it avoids
parametric specification of technology as well as the
distributional assumption for the inefficiency term.
However, because DEA is deterministic and attributes
all the deviations from the frontier to inefficiencies, a
frontier estimated by DEA is likely to be sensitive to
measurement errors or other noise in the data.
Given the different strengths and weaknesses of the
parametric and nonparametric approaches, it is of
interest to compare empirical performance of the
two approaches using the same data set. However,
relative to the total number of frontier studies found in
the literature, very few studies compare the two
approaches (for example, Ferrier and Lovell, 1990;
Kalaitzandonakes and Dunn, 1995; Drake and Wey-
man-Jones, 1996; Hjalmarsson et al., 1996; Sharma et
al., 1997a). The main objective of this paper is to
estimate the technical, allocative and economic effi-
ciency measures for a sample of swine producers in
Hawaii using the parametric stochastic and nonpara-
metric DEA approaches, and to compare the results
obtained from the two approaches. The majority of
studies aimed at comparing the two techniques have
focused mostly on technical efficiency. Drake and
Weyman-Jones (1996) and Ferrier and Lovell
(1990) are the only studies comparing the two
approaches in terms of technical, allocative and eco-
nomic efficiency measures. Because DEA has not
been applied frequently in agriculture (see Coelli,
1995), this paper also demonstrates its applicability
in agriculture by using this technique in swine pro-
duction. To our knowledge, Chavas and Aliber (1993)
is the only study analyzing technical, allocative and
economic efficiencies in agriculture using DEA.

This paper extends on an earlier paper in comparing
stochastic and DEA frontier analyses of a sample of
swine producers in Hawaii (Sharma et al., 1997a). The
earlier paper primarily focused on the analysis of
output-based technical efficiency. In this study, we
apply the input-based approach to efficiency measure-
ment and extend our analysis to allocative and overall
economic efficiencies. The role of various firm-spe-
cific factors in productive efficiency not considered in
our earlier paper is also examined here.

2. Analytical framework
2.1. Parametric approach

As in Bravo-Ureta and Evenson (1994) and Bravo-
Ureta and Rieger (1991), the parametric technique
used in this paper follows the Kopp and Diewert
(1982) cost decomposition procedure to estimate tech-
nical, allocative and economic efficiencies.

The firm’s technology is represented by a stochastic
production frontier as follows:

Y, =f(Xi;8) + & (1)

where Y; denotes output of the ith firm; X; is a vector
of functions of actual input quantities used by
the ith firm; [ is a vector of parameters to be esti-
mated; and ¢; is the composite error term (Aigner
et al., 1977, Meeusen and van den Broeck, 1977)
defined as

& =Vvi—u 2)

where v;s are assumed to be independently and iden-
tically distributed N (0, 05) random errors, indepen-
dent of the u;s; and the u;s are nonnegative random
variables, associated with technical inefficiency in
production, which are assumed to be independently
and identically distributed and truncations (at zero) of
the normal distribution with mean, w, and variance,
02(|N(, 0%|). The maximum likelihood estimation of
Eq. (1) provides estimators for # and variance para-
meters, o2 = 02 + o> and ¥ = 02/0?. Subtracting v,
from both sides of Eq. (1) yields

Yi=Yi—vi=f(X;8) — u (3)

where Y; is the observed output of the ith firm,
adjusted for the stochastic noise captured by v,
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Eq. (3) is the basis for deriving the technically effi-
cient input vector and for analytically deriving the
dual cost frontier of the production function repre-
sented by Eq. (1).

For a given level of output Y;, the technically
efficient input vector for the ith firm, Xf , 1s derived
by simultaneously solving Eq. (3) and the input ratios
X1/X; = ki(i > 1), where k; is the ratio of observed
inputs, X; and X;. Assuming that the production
function in Eq. (1) is self-dual (e.g., Cobb—Douglas),
the dual cost frontier can be derived algebraically and
written in a general form as follows:

Ci = h(W;, Y ) @

where C; is the minimum cost of the ith firm associated
with output Y i» W; is a vector of input prices for the ith
firm, and « is a vector of parameters. The economic-
ally efficient input vector for the ith firm, X7, is derived
by applying Shephard’s lemma and substituting the
firm’s input prices and output level into the resulting
system of input demand equations:

g‘% = X{(W;,Y;;40) k=1,2,...,minputs (5)
where 1 is a vector of parameters. The observed,
technically efficient and economically efficient costs
of production of the ith firm are equal to W/X;, W!X!
and W/X?, respectively. These cost measures are used
to compute technical (TE) and economic (EE) effi-
ciency indices for the ith firm as follows:

11%9:°(

TE; = - ©®)
w'xe

EE = ™

Following Farrell (1957), the allocative efficiency
(AE) index can be derived from Egs. (6) and (7) as
follows:

WiX;

AE; = WX

®)

Thus the total cost or economic inefficiency of the
ith firm (W;X; — W/X¢) can be decomposed into its
technical (W;X;—W/X!) and allocative (W/X|—W;X?)
components.

2.2. Nonparametric approach

Under the nonparametric approach, DEA (Charnes
et al., 1978, Fare et al., 1985, 1994) is used to derive
technical, scale, allocative and economic efficiency
measures.

Consider the situation with » firms or decision
making units (DMUs), each producing a single output
by using m different inputs. Here, Y¥; is the output
produced and X; is the (mx 1) vector of inputs used by
the ith DMU. Yis the (1 xn) vector of outputs and X is
the (mxn) matrix of inputs of all » DMUs in the
sample. W; is the (mx 1) vector of input prices for the
ith DMU.

The technical efficiency (TE) measure under con-
stant returns to scale (CRS), also called the ‘overall’
TE measure, is obtained by solving the following DEA
model:

min RS
geRS X

subjectto  Y; < YA
ORSX; > X\
A>0 )

where RS is a TE measure of the ith DMU under
CRS and X is an nx1 vector of weights attached to
each of the efficient DMUs. A separate linear pro-
gramming (LP) problem is solved to obtain the TE
score for each of the » DMUs in the sample. If
OCRszl, the DMU is on the frontier and is technically
efficient under CRS. If §“%°<1, then the DMU lies
below the frontier and is technically inefficient. Under
CRS DEA, the technically efficient cost of production
of the ith DMU is given by W/(6°RSX,).

In order to derive a measure of the total economic
efficiency (EE) index, one can solve the following
cost-minimizing DEA model (Fire et al., 1985, 1994)

min WX}
pIDN
1

subjectto  Y¥; < YA
X > X\
A>0 10

where X! is the cost-minimizing or economically
efficient input vector for the ith DMU, given its input
price vector, W;, and the output level, ¥;. The total or
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overall economic efficiency (EE) index for the ith firm
is then computed as

_wix

EE;, = —*L
WiXi

(11)
which is the ratio of the minimum cost to the observed
cost and comparable to the economic efficiency index
derived under the parametric approach Eq. (7). The
allocative efficiency (AE) index, derived from
Egs. (9) and (11), is given by

EE; WiX;
T O T Wi(6Rsx,)

AE; (12)

It should be noted that Eq. (10) also accounts
for input slacks not captured by Eq. (9) above. Fol-
lowing Ferrier and Lovell (1990) this procedure
attributes any input slacks to allocative inefficiency
on the grounds that slack reflects an inappropriate
input mix.'

The CRS or ‘overall’ (TEcrs) measure can be
decomposed into its ‘pure’ TE and scale efficiency
components by solving a variable returns to scale
(VRS) DEA model, which is obtained by imposing
the additional constraint, > > ; \; =1 on Egq. (9)
(Banker et al., 1984). Let OIVRé denote the TE index
of the ith DMU under variable returns to scale
(TEygs), then the technically efficient cost of produc-
tion of the ith DMU under VRS DEA is equal to
W!(6YRSX,).

Because the VRS analysis is more flexible and
envelops the data in a tighter way than the CRS
analysis, the VRS TE measure (§¥%®) is equal to or
greater than the CRS measure (6°%°). This relation-
ship is used to obtain a measure of scale efficiency
(SE) of the ith DMU as®

QFRS

SE; = ims (13)

where SE=1 indicates scale efficiency or CRS and SE
<1 indicates scale inefficiency. Scale inefficiency is

'Some authors have treated slack as a source of technical
inefficiency (see Ali and Seiford, 1993).

2Alternatively, SE can also be computed as EECRS/EEVRS, where
EE®S is the total economic or cost efficiency measure under CRS
and EEY®S is the corresponding measure for VRS (Chavas and
Aliber, 1993; Lund et al., 1993).

due to the presence of either increasing or decreasing
returns to scale, which can be determined by solving a
nonincreasing returns to scale (NIRS) DEA model
which is obtained by substituting the VRS constraint
Do A= Lwith377 A < 1.Let gNRS represent the
TE measure under nonincreasing returns to scale. If
GNRS—9CRS there are increasing returns to scale, and
if G“RS<g™™®S there are decreasing returns to scale
(Fére et al., 1994).

As in the parametric case, the total cost or economic
inefficiency of the ith firm (W/X; — W/X;) can be
decomposed into its ‘pure’ technical,
(W!X; — W/0YRSX;), scale (W/OYRSX, — W/OFRSX;)
and allocative (W¢RSX; — W/X?) components.

2.3. Determining factors affecting efficiency

Analysis of the effects of firm-specific factors on
productive efficiency has generated considerable
debate in frontier studies. The most popular procedure
is to first estimate efficiency scores and then to regress
them against a set of firm-specific factors or to use
nonparametric or analysis of variance (ANOVA) tests.
While Kalirajan (1991) and Ray (1988) defend this
two-step procedure, other authors (Kumbhakar et al.,
1991; Battese and Coelli, 1995) challenge this
approach by arguing that firm-specific factors should
be incorporated directly in the estimation of the
production frontier because such factors may have a
direct impact on efficiency. Despite such criticism, the
two-step procedure is still quite popular in investigat-
ing the relationship between efficiency and firm-spe-
cific variables.

Existing studies aiming to incorporate firm-specific
effects directly into the frontier model are limited to
the parametric approach (Kumbhakar et al., 1991;
Battese and Coelli, 1995). Without prior assumptions
on whether the firm-specific factors have a positive or
negative impact on economic performance (see, for
example, Ferrier and Lovell, 1990), the nonparametric
DEA technique cannot easily incorporate firm-specific
effects directly into the estimation of an efficient
frontier. Because the two-step procedure is equally
applicable to both approaches, we adopt this
approach to analyze the role of firm-specific factors
in the economic efficiency of swine producers in
Hawaii.
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3. Data and empirical procedures
3.1. Data

Data were collected from a sample of 53 commer-
cial swine producers in Hawaii during the fall of 1994.
For the purpose of our study, farms with 10 or more
sows are considered commercial producers. Of the
total of 350 swine farms in Hawaii, about 60% raise
swine commercially and the rest raise swine as a
hobby, for family consumption and for cultural rea-
sons. The sample included about one-third of all
commercial swine producers in Hawaii. Information
on the distribution of farms and sample producers by
size and key characteristics can be found in Sharma et
al. (1997a, b).

Hawaii’s swine industry has experienced a contin-
uous decline in recent years. The number of swine
farms decreased from 650 in 1985 to about 350 in
1994 and the annual hog inventory decreased from
55000 to 34 000 during this period. The market share
of local production decreased from 45% in 1970 to
13.4% in 1994. This decline, which is attributed to
high production costs, especially feed costs, price
competition with imported hogs, limited land avail-
ability, rapid urbanization, and increasing environ-
mental concerns, has posed serious challenges for
the long-term survival of this industry.

The analysis of costs and returns of the sample
producers showed a wide variation in profitability,
with most of the sample producers, especially small
and medium producers, earning a negative net return
from swine production (Sharma et al., 1997b). This
raises the question of the role of productive efficiency
in profitability. We believe that the future of the swine
producers in Hawaii will depend on their ability to
enhance economic performance through improved
productive efficiency.

3.2. Description of variables

Swine production features multiple outputs and
inputs. For the purpose of efficiency analysis, output
is aggregated into one category and inputs are aggre-
gated into four categories, namely, feed, labor, other
variable inputs and fixed input. Because hog prices
vary by types of hogs produced and location of swine
farms, the output variable is adjusted to account for

such price differences. These output and input vari-
ables are described below.’

e Output () represents a weighted output of live pigs
produced (in tons) during 1994*.

e Feed (X;) represents the total quantity of swine
concentrates and other grain-based feeds (in tons).

e Labor (X,) represents the total amount of family
labor and hired labor used in swine production (in
person days).

e Other variable inputs (X3) represent the total of all
variable expenses, except feed and hired labor (in
thousand dollars).

o Fixed input (X,) represents total costs of fixed
inputs including insurance, taxes and depreciation
on pig housing, machinery and other equipment (in
thousand dollars).

The input prices needed for deriving the dual cost
frontier in the parametric approach and for solving the
cost-minimizing DEA model in the nonparametric
approach are defined below.

W, represents the price of feed computed as total
feed expenses divided by X; (in dollars/ton). W, is the
price of labor computed as the weighted average of the
value of family labor assumed to be US$ 6.94/h
(Hawaii Agricultural Labor, 1994) and actual wage
paid for hired labor (in dollars/person day). Because
other variable and fixed inputs are expressed in values,
the computation of their prices is far from satisfactory.
The price of other variable inputs (W3) is computed as
total expenditures on all variable inputs except feed

3Summary statistics of these variables can be found in Sharma et
al. (1997a).

“The weighted average of the pigs produced on the ith farm, ¥;, is
defined by

Y, = Z‘,Y:] Ii rin'i
LS Pi/n)
where s denotes the number of different types of pigs, P,; denotes
the price received by the ith farm for pig type r, Q,; denotes the live
weight of pig type r for the ith farm,
P=3"_ P 0:/0; Qi =3 1_ O, and n denotes the number
of farms in the sample. For our study s=5, where types of pigs
produced were market pigs, roaster pigs, feeder pigs, suckling pigs
and breeding stock. Because of the small share of culled breeding
stock in total returns and the lack of systematic culling practice,
culled breeding stock was not included in the output. It should be
noted that defining the output variable this way may contaminate
input-based technical and allocative inefficiencies with output or
revenue-based allocative inefficiencies.
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and hired labor divided by X5. Similarly, the price of
fixed input (Wy) is computed as total expenditures on
fixed inputs divided by X,. Similar to Ferrier and
Lovell (1990), prices for other variable and fixed
inputs equal US$ 1000 for all farms.

Various farm-specific factors are analyzed to assess
their influence on productive efficiency. Size (Z;)
denotes the size of a farm, defined in terms of the
number of sows. The farmer’s education level is
represented by two dummy variables, Z, and Z; where
Z,=1 for college education, 0 otherwise, and Zs=1 for
high school, O otherwise. Experience (Z,) represents
the farmer’s experience measured in the number of
years he/she has been engaged in swine production.
The sample swine farmers are also differentiated in
terms of the types of pigs produced (Zs) and feeding
regime (Zg) where Zs=1 for market hogs, 0 for feeder
pigs, and Zs=1 for garbage or mixed feeding, 0 for
grain feeding. Finally, location (Z;) is a dummy vari-
able to differentiate farms located on Oahu from those
on Neighbor Islands, with Z; being 1 for Oahu, O for
Neighbor Islands.

3.3. Empirical models

Under the parametric approach, the Cobb—-Douglas
stochastic production frontier is specified as follows’

InY; = Go+ f11InX; + B2 InXpp + F3In X3
+ BaIn Xy + € (14)

where i refers to the ith farm in the sample; Yis output
and Xs are input variables, defined in the previous
section; s are parameters to be estimated; and ¢, is the
composite error term, defined in Section 2.1. Note that
the production frontier in Eq. (14) represents VRS

>The Cobb-Douglas form is chosen because the methodology
used here requires that the production function be self-dual.
Despite its limitations, the Cobb—Douglas form is found to be an
adequate representation of the data, given the specification of the
more flexible translog form (see Sharma et al., 1997a). The
production frontier was also estimated for a sample of 51 farms
after eliminating the two farms associated with the highest and
lowest technical and economic efficiency scores to assess the
sensitivity of the two approaches to the possible outliers. It would
also be interesting to analyze different sub-sets of data obtained by
partitioning the sample farms based on their key characteristics
(such as farm size, location, feed type, etc.) to further examine the
robustness of the two approaches. However, because of a small
sample, such analyses could not be carried out.

technology and the corresponding frontier for CRS
can be obtained by imposing the restriction that the
sum of the output elasticities of inputs equals one (i.e.,.
Z:=1 B = 1).

The dual cost frontier of the production function in
Eq. (14) can be derived as®

InC;=ap+arlnWy +axlnWp + azlnWs
+asInWy + asln¥; (15)

where i refers to the ith sample farm; C is the mini-
mum cost of production; Ws are input prices, defined
in the previous section; Y is the output adjusted for
stochastic noise v as in Eq. (3); and as are parameters.

Under the nonparametric approach, CRS, VRS and
NIRS input-reducing and CRS and VRS cost-mini-
mizing DEA models as presented in Section 2.2 are
estimated for the same number of farms and the same
output and input variables as for the stochastic frontier.

To examine the role of relevant farm-specific fac-
tors in productive efficiency, the following equation is
estimated:

El; = 80 + 61Zi + 62Zip + 83Zi3 + 64Zis + 65Z;s
+ 86Zis + 6727 + wi (16)

where i refers to the ith farm in the sample; EI is the
total economic or cost inefficiency, measured in US$
1000/ton of output produced;’ Zs represent various
farm-specific variables, as defined previously; s are
parameters to be estimated; and w is a random error,
assumed to be normally distributed. Because the
dependent variable in Eq. (16) is a measure of ineffi-
ciency, variables with a negative (positive) coefficient
will have a positive (negative) effect on efficiency
levels.

4. Empirical results
4.1. Parametric frontier results

The maximum-likelihood (ML) estimates of the
parameters of the stochastic production frontier were

6See Sharma (1996) for mathematical details.

"The corresponding equations for technical, allocative, and scale
efficiencies are obtained by replacing total economic or cost
inefficiency (EI) in Eq. (16) with technical, allocative, and scale
inefficiencies, again measured in US$ 1000/ton of output produced.
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Table 1

Ordinary least squares (OLS) estimates of the average production function and ML estimates of stochastic production frontier for sample

swine producers in Hawaii

Variable OLS estimates ML estimates
Coefficient Standard error Coefficient Standard error

Intercept —0.895 0.571 0.606 0.526
In (Feed) 0.391°% 0.069 0.365% 0.065
In (labor) 0.286% 0.103 0.309? 0.088
In (Other variable input) 0.286° 0.085 0.309° 0.078
In (Fixed input) 0.084 0.087 0.063 0.082
R 0.851 - - -

¥ - - 0.867° 0.164
a? - - 0.897 0.790
n - - —1.763 2.241
Log likelihood - - —33.146 -

# Significant at the 1% level.

obtained using the program, FRONTIER 4.1 (Coelli,
1994). These results are presented in Table 1. Also
presented in Table 1 are the OLS results of the average
production function for comparison. The ML results
for the CRS model and for models without the
two possible outliers are not presented due to space
limitations.

As expected, the signs of the slope coefficients of
the stochastic production frontier are positive. Except
for the coefficient for fixed input, these estimated
coefficients are highly significant. The estimate
of the variance parameter, 7y, is also significantly
different from zero, which implies that the inefficiency
effects are significant in determining the level
and variability of output of swine producers in
Hawaii.

The dual cost frontier derived from the stochastic
production frontier, shown in Table 1, is as
follows:®

InC; = 1.836 + 0.3491n W;; + 0.2961n Wp,
+0.2951n W;3 + 0.0601n Wiy
+0.9561nY; amn
The frequency distributions and summary statistics
of the estimated technical, allocative and economic

efficiency indices for the sample swine farms from the
parametric approach are presented in Table 2. The

8The corresponding cost frontiers for the CRS model and for
models without two potential outliers were also derived but are not
presented here due to space limitations.

estimated mean technical, allocative and economic
efficiency indices are 75.9%, 75.8% and 57.1%,
respectively, under VRS and 74.5%, 73.9% and
54.7% under CRS, indicating that there are consider-
able inefficiencies in swine production in Hawaii. The
majority of producers fall within the ranges of 70—
80%, 80—90% and 60—70% of technical, allocative and
economic efficiency indices, respectively.

4.2. DEA frontier results

DEA models were estimated using the program,
DEAP 2.0 (Coelli, 1996). The technical, allocative and
economic efficiency measures estimated from the
DEA approach and their frequency distributions are
summarized in Table 2. The estimated mean TE mea-
sure for the sample swine producers is 75.9% for the
VRS DEA model and 64.3% for the CRS DEA model.
In terms of TE, 17 of the 53 farms investigated are
fully efficient under the VRS model. Under the CRS
model, only 10 farms are fully efficient. The mean
allocative and economic efficiency measures esti-
mated from the DEA frontier are 80.3% and 60.3%,
respectively, for VRS, and 71.4% and 45.7% for CRS.
Thus DEA analyses, especially CRS results, also
reveal substantial inefficiencies in swine production
in Hawaii.

The scale efficiency index for the swine producers
varies from 43.2% to 100%, with a sample mean of
84.1%. In terms of scale efficiency, 13 farms
exhibit CRS. Among the scale inefficient farms, 29
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Table 2
Frequency distributions of technical (TE), allocative (AE), and economic (EE) efficiency measures from the parametric and DEA approaches
Efficiency (%) Parametric approach DEA

TE AE EE TE AE EE
<40 1* (D) 0 (0) 509 309 0(2) 10(25)
40-50 2(3) 22 10 (12) 4(7) 4(3) 12(12)
50-60 3(Q2) 6 (8) 12 (11 5(@) 2(6) 8(4)
60-70 4 (6) 9 (7 18 (13) 12 9) 7(11) 5(3)
70-80 21 (23) 11 (17) 7(7) 4 (3) 6(14) 7(4)
80-90 19 (17) 19 (15) 1() 5() 20(12) 44)
90-100 3(D) 6 (4) 0 (0) 3(0) 11(4) 4(0)
100 0 0 (0) 0 (0) 17 (10) 3(1) 3(1)
Mean (%) 75.9 (74.5) 75.8 (73.9) 57.1 (54.7) 75.9 (64.3) 80.3(71.4) 60.3(45.7)
Minimum (%) 31.3 (29.4) 44.8 (41.3) 27.8 (25.3) 25.5 (14.3) 44.0(37.9) 21.0(11.7)
Maximum (%) 90.7 (90.1) 95.0 (95.4) 81.3 (80.7) 100.0 (100.0) 100.0(100.0) 100.0(100.0)
Standard deviation (%) 12.2 (12.8) 12.5 (13.3) 12.2 (13.1) 22.0 (24.6) 15.0(14.2) 21.4(20.7)

Figures in parentheses are the corresponding values for the CRS.
# Denotes the number of farms.

show increasing returns to scale and 11 show decreas-
ing returns to scale. As expected, most of the large
farms (>75 sows) are characterized by decreasing
returns to scale, while the majority of small and
medium sized farms (<75 sows) show increasing
returns to scale.

The TE measures for the sample swine producers
estimated here from the input-based DEA frontiers are
quite comparable with those estimated from the
output-based frontiers (Sharma et al., 1997a).
Although, the mean scale efficiency from the
output-based DEA frontier (89.2%) is higher than
that from the input-based frontier (84.1%), this dif-
ference is not significant at the 0.05 level. However,
the two frontiers differ considerably with respect to
returns to scale properties. About 21% of sample
farmers show decreasing returns to scale in input-
based DEA analysis compared to 45% in output-based
analysis.

4.3. Comparing parametric and DEA results

The two approaches used here to measure the
technical, allocative and economic efficiency mea-
sures for the sample swine farms are based on different
production frontiers. The parametric approach is
based on a stochastic production frontier and nonpara-
metric data envelopment analysis is based on a non-
stochastic or deterministic frontier. It is expected that

efficiency scores estimated from the DEA frontier
would be less than those obtained from the stochastic
frontier because the DEA attributes any deviation
from the frontier to inefficiency.

The agreements or disagreements in the efficiency
scores estimated from the two approaches are sum-
marized in Table 3. Also presented in Table 3 are
similar results obtained by eliminating two possible
outliers associated with the highest and lowest tech-
nical and economic efficiency indices. Based on
paired z-tests, on average, the technical and economic
efficiencies under CRS are significantly higher in the
parametric approach than in DEA, regardless of the
presence or absence of the possible outliers, while for
VRS models these results are similar for the two
approaches except for a higher TE score in the para-
metric approach without the two outliers. On average,
allocative efficiencies are higher in DEA than in the
parametric approach, except for CRS models with all
the observations in the sample where the allocative
efficiency measure is higher under the parametric
technique. Thus, for the data involved in this study
the assumption on returns to scale is found to be
critical in explaining the differences in efficiency
measures derived from the two procedures. Although,
because of its deterministic property, DEA is believed
to be more sensitive to outliers and other noise in the
data, comparing the results with and without the
possible outliers we find DEA results to be more
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Table 3

Mean comparison of TE, AE and EE measures and Spearman rank correlations of efficiency rankings of sample swine producers based on the

parametric and DEA approaches

Efficiency Sample mean t-ratio? Spearman rank correlation (p)
Parametric DEA
TEcgrs 74.5 (80.5) 64.3 (66.5) 4.84 % (6.17% 0.891% (0.870%)
TEvrs 759 (84.2) 75.9 (71.5) 0.00 (2.82%) 0.718" (0.695%)
AEcgrs 73.9 (72.4) 71.4 (77.4) 1.70° (-3.10% 0.712% (0.690%)
AEvyRs 75.8 (74.6) 80.2 (81.6) —1.98 * (=3.08% 0.327° (0.383%)
EEcgrs 54.7 (58.1) 45.7 (51.5) 5.14 * (2.96% 0.835% (0.671%)
EEvrs 57.1 (62.7) 60.4 (63.0) —1.36 (-0.13) 0.558 * (0.361%)

Subscripts CRS and VRS stand for constant and variable returns to scale, respectively.
Figures in parentheses are the results excluding the two potential outliers (i.e. n=51).

“ Significant at the 1% level.
® Significant at the 5% level.
¢ Significant at the 10% level.

9 Note that the #-ratio is based on the paired-difference #-test as the standard #test is invalid because the individual efficiency scores from the

two methods are not independent.

robust than those obtained from the parametric
approach.’

To further examine the agreements between the
parametric and nonparametric approaches, Spearman
correlation coefficients between the efficiency rank-
ings of the sample swine producers from the two
approaches were also computed. These results are
also presented in Table 3. All the TE, AE and EE
rank correlations are positive and highly significant.
The strongest correlation between the efficiency rank-
ings from the two approaches is obtained for TE under
CRS, while allocative efficiency under VRS shows the
weakest correlation. The removal of the two outliers
has little impact on efficiency rankings of the produ-
cers.

While the sample farms show both decreasing
returns and increasing returns to scale in the DEA
frontier, the null hypothesis of CRS is not rejected in

°The high degree of robustness of DEA can also be shown by
comparing the numbers of technically, allocatively and economic-
ally fully efficient farms and the returns to scale properties with or
without the two outliers. For example, the numbers of technically
fully efficient farms under CRS and VRS in the original sample are
10 and 17, respectively, compared to 9 and 17 without the two
outliers. Similarly, the numbers of allocatively and economically
fully efficient farms for CRS and VRS models were 1 and 3,
respectively, for the original sample compared to 1 and 4 without
outliers. The estimates of scale efficiency (84.1% vs. 85.5%) and
the distributions of farms by returns to scale property were also
very similar for the two analyses.

the stochastic production frontier.!° Furthermore, the
VRS and CRS efficiency rankings of sample swine
farms are more highly correlated in the parametric
approach (p>0.98) than in nonparametric DEA
(0.70<p<0.75).

Compared to previous studies applying the two
approaches to the same data set, the estimated effi-
ciencies presented here are more consistent with the
expectation that efficiency scores derived from the
parametric approach would be higher than those from
nonparametric DEA. However, in terms of rank cor-
relation of the various efficiency measures, the two
approaches are found to be highly comparable. These
results are quite consistent with the study of UK
building societies by Drake and Weyman-Jones
(1996). Based on the analysis of US banks, Ferrier
and Lovell (1990) found higher technical but lower
economic efficiency for the parametric method com-
pared to DEA and insignificant rank correlations
between the estimated efficiencies from the two
approaches. Analyzing a sample of Guatemalan farm-
ers, Kalaitzandonakes and Dunn (1995) reported a
significantly higher level of mean TE under CRS DEA
than under the stochastic frontier. These results con-
trast sharply with this study. These disagreements in

'OThe likelihood test-statistic for the null hypothesis of CRS is
equal to 0.29 compared to 3.84, the 95% critical value for the >
distribution with one degree of freedom.
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empirical studies in comparing the two approaches
can be mainly attributed to differences in the char-
acteristics of the data analyzed, choice of input and
output variables, measurement and specification
errors, and estimation procedures.

4.4. Factors affecting efficiency levels

The parameters in Eq. (16) were estimated using
the OLS procedure for the parametric approach, while
those for the DEA approach were estimated using the
Shazam’s tobit estimation procedure, because the
values of the dependent variable are zero for some
observations in the DEA. These results are presented
in Table 4. Farm size has a negative and significant
effect on inefficiency levels, which suggests that, on
average, large farms operate at higher efficiency levels
than small farms. Better performance among larger
farms is attributable to significantly lower labor use
per unit of output produced and a lower feed price on
large farms than on smaller ones (Sharma et al.,
1997b). Farms that produce market hogs are found
to be more efficient than feeder pig producers and in
most cases the associated coefficients are highly sig-
nificant. Reasons for this difference include signifi-
cantly lower labor use and lower feed price among
market hog producers than feeder pig producers. The

Table 4

effect of the producer’s experience on the efficiency of
swine production is mostly positive but the effect is
either moderate or insignificant. Except for allocative
efficiency, the coefficients for education dummies
show unexpected signs, although they are mostly
insignificant. In most cases, garbage feeders seem less
efficient than grain feeders, and farmers on Oahu seem
more efficient than those on Neighbor Islands. How-
ever, the slope coefficients for these variables are
mostly insignificant. Overall, both in terms of signs
and significance levels of the coefficients, these results
are quite similar for the two approaches.

4.5. Implications

Both approaches reveal considerable inefficiencies
in swine production in Hawaii. Minimum or econom-
ically efficient costs and potential cost reductions at
full efficiency levels by farm size are presented in
Tables 5 and 6 for the parametric and DEA
approaches, respectively.

According to the parametric results, the sample
producers would be able to reduce their actual costs
by 38% by operating at full technical and allocative
efficiency levels. As shown in Table 5, large farms
would reduce their costs by 34% and small and
medium sized farms by 47% by operating at full

Factors affecting productive inefficiencies (US$ 1000/ton of output produced) in swine production in Hawaii

Variable Parametric approach® DEA approach

Name Mean TI Al El PTI SI OTI Al EI
Intercept - 2.027° 1.021° 3.048° 0.907° 2.673° 2.082° 2.480° 3.091%
Size (Z,) 76.50 —0.005°  —0.003*  —0.007*  —0.006°  —0.005°  —0.007°  —0.005°  —0.007
College (Z,) 0.24 0.952°  —0.092 0.859° 1.066° 0.199 1.090°  —0.487 0.829°
High school (Z3) 0.53 0.279 —0.027 0.253 0.544 —0.019 0.537 —0.389 0.355
Experience (Zs) 22.10 —-0.018 —0.002 —0.020°  —0.026° 0.015 —0.019° 0.001 —0.020°
Market hogs (Zs) 0.73 —0.806°  —0.160 -0.966*  —0.069 —2226° —0961*  —0.128 —1.043°
Garbage fed (Zg) 0.43 0.283 0.052 0.335 0.360 —0.029 0.247 —0.519 0.179
Oahu (Z) 0.53 —0.241 —0.051 —0.292 —0.109 —0.773°>  —0.408 —0.126 —0.376
R - 0.23 0.18 0.34 - - - - -
Log-likelihood - - - - -76.38 —40.15 —83.09 —21.77 —84.93

TI: Technical inefficiency, AL: Allocative inefficiency, EI: Economic inefficiency, PTI: Pure technical inefficiency, SI: Scale inefficiency, OTI:
Overall technical inefficiency.
Standard errors are not provided due to space limitations.
? Significant at the 1% level.

® Significant at the 5% level.

¢ Significant at the 10% level.
4 To be consistent with DEA, TI, Al and EI for the parametric approach are based on the CRS specification.
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Table 5

Minimum costs levels and potential cost reductions for sample swine producers by farm size (parametric approach)

Farm size® Observed cost levels ~ Minimum cost levels  Potential cost reductions at full efficiency levels
Technical Allocative Total
(US$ 1000) (%)
Small (<25 sows) 48.23 24.47 12.27 11.49 23.76 49.3
Medium (25-75 sows) 81.04 40.55 25.73 14.76 40.49 50.0
Large (>75 sows) 320.27 208.62 63.33 48.32 111.65 349
All farms 157.52 96.25 35.40 25.87 61.27 38.9

The minimum cost levels and potential cost reductions are based on the CRS formulation to make the parametric results comparable with DEA
results shown in Table 6. Moreover, in the parametric approach the VRS and CRS results are similar.
# Of the 53 farms analyzed, the numbers of small, medium and large farms are 19, 19 and 15, respectively.

Table 6

Minimum cost levels and potential cost reductions for sample swine producers by farm size (DEA approach)

Farm size Minimum cost levels Potential cost reductions at full efficiency levels

Pure technical Scale Allocative Total

(US$ 1000) (%)
Small (<25 sows) 18.88 8.03 7.36 13.97 29.35 60.9
Medium (25-75 sows) 29.37 33.53 5.76 12.38 51.67 63.8
Large (>75 sows) 193.61 45.66 18.87 62.14 126.66 39.6
All farms 85.28 30.66 10.91 30.67 72.24 45.9

# Of the 53 farms analyzed, the numbers of small, medium and large farms are 19, 19 and 15, respectively.

efficiencies. Operating at the full TE level accounts for
about 52%, 64% and 57% of the total cost reduction
for small, medium and large farms, respectively.
These results are quite similar under VRS and CRS
specifications.

Based on DEA efficiency estimates, by reaching
full efficiency levels, the sample producers would
reduce their costs by 46% under CRS and 39% under
VRS. As shown in Table 6, the CRS cost reductions
for small, medium and large farms are estimated to be
about 61%, 64% and 40%, respectively. These num-
bers are slightly smaller for the VRS DEA model.
Operating at full pure technical and scale efficiency
(‘overall’ TE) levels accounts for about 52%, 76% and
51% of the total cost reductions for small, medium,
and large farms, respectively.

Based on these results, the total potential cost
reduction for all commercial swine producers in
Hawaii is estimated to be about US$ 5 million/year
under the parametric technique and US$ 6—7 million/
year under DEA.

5. Conclusions

This paper analyses technical, allocative and eco-
nomic efficiency for a sample of swine producers in
Hawaii using the parametric and nonparametric fron-
tier approaches, and compares the efficiency estimates
obtained from the two approaches. The parametric
method is based on Kopp and Diewert’s cost decom-
position approach for estimating Farrell’s efficiency
measures where a Cobb—Douglas stochastic produc-
tion frontier is estimated and the corresponding dual
cost frontier is derived algebraically. The Kopp and
Diewert’s approach is useful when the input prices are
inadequate to estimate a cost frontier econometrically.
The nonparametric approach involves the estimation
of various input-based data envelopment analysis
(DEA) models. The effect of various factors on the
efficiency levels is examined by estimating a regres-
sion model where various production inefficiencies (in
US$ 1000/ton of output produced) are expressed as a
function of various farm-specific factors.
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The mean technical, allocative and economic effi-
ciencies under variable returns to scale (VRS) are
75.9%, 75.8% and 57.1%, respectively, for the para-
metric approach and 75.9%, 80.3% and 60.3% for
DEA. The corresponding measures for CRS are
74.5%, 73.9% and 54.7%, respectively, for the para-
metric approach and 64.3%, 71.4% and 45.7% for
DEA. On average, the estimated technical and eco-
nomic efficiencies are significantly higher in the para-
metric technique than in DEA for CRS models but
quite similar for VRS models, while allocative effi-
ciencies are generally higher in DEA than in the
parametric method. However, the efficiency rankings
of the sample producers based on the two approaches
are positively and significantly correlated. Contrary to
the expectation that DEA is more sensitive to outliers
and other noise in the data, we find DEA results to be
more robust than those obtained from the parametric
approach. This interesting finding as well as the dis-
agreements in existing studies comparing the two
frontier approaches demonstrates the need for more
empirical work to further examine the performance of
the two approaches using the same data sets.

The results reveal substantial production inefficien-
cies for sample swine producers in Hawaii and hence
considerable potential for enhancing profitability by
reducing costs through improved efficiency. On aver-
age, by operating at full economic efficiency levels the
sample producers would be able to reduce their cost by
38-46% depending upon the method employed and
returns to scale assumption. These reductions in costs
from improvements in efficiency are very important to
enhance profitability of the sample producers, espe-
cially of medium and small producers who earn a
negative net return from swine production. If all farms
were fully efficient in production, Hawaii’s swine
industry would be able to save about US$ 5-7 million
in production costs annually.

Analysis of various firm-specific factors shows that
farm size has a positive and significant effect on
efficiency levels, suggesting that cost inefficiency can
bereduced by exploiting economies of size. The analysis
also reveals that farms which raise hogs for market are
more efficient than feeder pig producers. Results also
show a positive relationship between a producer’s
experience and production efficiencies. However, the
results do not support the hypothesis that education level
has a positive impact on production performance.
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