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BIZONYOS GRAFELMELETI ALGORITMUSOK TANITASA ELEGANSAN
KISS LASZLO
Osszefoglalas

Cikkemben a grdafelmélet néhany algoritmusanak elegans, hatékony, tanitasra és egyéni
tanulasra egyarant kivaloan alkalmas eszkozét mutatom be.

Az alkalmazas Excelben VBA tamogatdssal — késziilt, széles paraméterezési
lehetdségekkel.

Segitségével, lényegében szdamtalan, a témdba tartozé probléma szemléltetheté és
tanulhato.

Kulcsszavak: Oktatdsmodszertan, grdfelmélet, algoritmusok, programozds
Teaching certain graph theory algorithms in an elegant way

Abstract
In this presentation an excellent teaching or studying aid for a number of graph theory
algorithms is shown.

The application is done in Excel using VBA and accepts a variety of parameters.

It can be used to demonstrate and learn practically countless algorithms used in this
area.

Keywords: Teaching methodology graph theory, algorithms, programming
Motté

»annyiba kertil, amennyibe kertil, de megéri, probaljuk meg érdekessé tenni az iskolat.”
Karacsony Sandor

Bevezetés

Hossza ideje foglalkoztatott a kérdés, hogyan lehetne egy olyan alkalmazast késziteni,
amely a grafok abrazolasanak és a grafelméleti algoritmusoknak elegéns tanitasat ¢s
egyéni tanulasat egyarant kivaldan tamogatja. Mindezt lehetbleg olyan eszkdzzel, ami
szinte mindenki szamara rendelkezésre all. A grafok prezentalasanak matrixos, vektoros
volta szinte felkinalta az MS Excel és az azt timogatd VBA hasznalatat.

Sikertilt a probléma megoldasat olyan szintre fejleszteni, amirdl mar elmondhatd, hogy
batran alkalmazhatd lenne az egész magyar kozép és felsdoktatasban. A megallapitas
vonatkozik mind a téméaban megvaldsult alkalmazasokra mind arra a mddszerre és
szemléletre, ahogyan és amilyen szellemben azok elkésziiltek.

Cikkemben a legrovidebb, leghosszabb és kritikus utak (a tobbes szam itt hangstlyos)
algoritmusainak els6sorban grafokon vald szemléltetését tamogatd szamitogépes
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alkalmazas lehetdségeirdl lesz sz6. Ez az alkalmazas az ( Kiss, 2010)-ben és ( Kiss,
2011)-ben ismertetett grafabrazolasi technika és a ( Kiss, 2011,2)-ben bemutatott
vektoros megoldas tovabbfejlesztésével késziilt el.

Az alkalmazas hasznalata

Az eszkdz, amivel a téma oktatasat és az egyéni tanulast végezhetjiik egy MS Excel fajl.
Kihasznaljuk az Excel tablazatkezel6 és a vele egyiitt telepitett VBA programozasi
lehetdségeit.

Az inditas utan a Leiras lap jelenik meg a képernydn, ahol megtudhatjuk, hogy milyen
billentytikombindcidkat hasznalhatunk az egyes problémak megoldasara, illetve
szemléltetésére. CTRL+SHIFT+F = teljes képernydvaltas, CTRL+SHIFT+T =
alapallapotba allitas, CTRL+SHIFT+D = legrovidebb ut algoritmus, CTRL+SHIFT+E =
legrévidebb ut algoritmus Iéptetheté modon, CTRL+SHIFT+K = Kruskal algoritmus,
CTRLASHIFT+I = Kruskal algoritmus Iéptethet6 moddon, CTRLASHIFT+L =
leghosszabb ut algoritmus, CTRL+SHIFT+O = leghosszabb ut algoritmus Iéptethetd
modon.

A legfontosabb paramétereket, mint a grafpontok szama, kezddpont, végpont a Vezérlés
lapon allithatjuk be. Elobbi nem feltétleniil azonos a megadott szomszédsagi matrix
(Szomszédsagi matrix lap) pontjai szamaval, ami lehetdséget ad a feladatok varialasara.
Utébbiak modositasaval természetesen tovabb novelhetjik a feladatvaltozatokat.
Megadhatjuk, hogy a graf iranyitott legyen-e. Ezt a paramétert az alkalmazas csupan
akkor hasznalja, ha csak a grafot szeretnénk megjeleniteni (CTRL+SHIFT+G). Az
algoritmusok iranyitott grafokat feltételeznek. Alapértelmezésben a fent emlitett harom
lap lathaté a fajlban. A megfeleld algoritmus futtatdsa esetén az eredmények a
Legrovidebb utak, Kritikus utak, illetve a Leghosszabb utak lapokon keletkeznek. A
matrixos és vektoros megoldas — 1évén az alkalmazas a (Kiss, 2011,2)-ben ismertetett
tovabbfejlesztése — tovabbra is a Megoldas lapon jelenik meg.

Az alkalmazast az algoritmusok koziil a legrovidebb és leghosszabb utak eldallitasaval
szemléltetjiik. EIobbit az 1-5 abrak és az 1. tablazat mutatja. Minden pont kapott egy
kijelzo téglalapot, ami a potencialjat, és négy ehhez sarkosan illeszked6 téglalapot, ami
az megadott tipusu utakban az 6t megel6z6 pontokat jelzi. (Ez természetesen azt jelenti,
hogy akarmennyi utat nem tudunk szemléltetni, hiszen a megel6z6 pontok szama
korlatozott!) A graf abrazolasanak bizonyos paramétereit, illetve példaul az éppen
feldolgozott ¢él szinét ¢s vastagsagat, amennyiben mast szeretnénk, mint az
alapértelmezés, megvaltoztathatjuk a rejtett Vezérlés graf, illetve Vezérlés DKL
lapokon. A Vezérlés lapokon talalhato paraméterek az eldbbieken 1évo, azokkal azonos
informaciokat hordozd paramétereket feliilbiraljak. A Vezérlés DKL lapon adhatjuk
meg, hogy hany szévegdoboz legyen lathatd (1asd. 2. és 3. abra kiilonb6zdsége), hogyan
dolgozzuk fel az éleket, illetve hogy milyen legyen a végén az utak kijelzése (lasd. 4. és
5. bra kiilonb6z6sége). A mar feldolgozott, illetve az aktualisan vizsgalt ponthoz tartozo
vagast a pontot koriilvevd kor szemlélteti. Az aktudlis szomszédsagi matrixot lathatjuk a
tablazatok bal felsd sarkaban. A leghosszabb utakhoz tartozé informacidkat mutatja a 2.
tablazat és a 6. abra.
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Teljes képernyd valtis

Legrovidebb utak
1-->11

0

v

Telies képernyo valtas

Legrovidebb utak
1-->11

18

o

v

2. abra: Legrovidebb utak keresése 1éptetéssel, a 18-dik algoritmuslépés utan.
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Teljes képernyo valtas

3. abra: Legrovidebb utak keresése 1éptetéssel, a 18-dik algoritmuslépés utan.

1. tablazat: Legrovidebb utak keresése,

23 4 5 6 7 8910/ 11121314 15

matrixok, vektorok, végso allapot.
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Teljes képernyo valtas

Legrovidebb utak
l1-->11
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s6 allapot.

Teljes képernyd viltas

Legrovidebb utak
1-->11

28

5. abra: Legrovidebb utak keresése 1éptetéssel, végso allapot.
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2. tablazat: Leghosszabb utak keresése matrixok, vektorok, végso allapot.
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6. abra: Leghosszabb utak keresése 1éptetéssel, végso allapot.

Osszefoglalas, kovetkeztetés

Fentiekben megismerkedhettiink egy konnyedén hasznalhatd, jol paraméterezheto,
szamtalan feladat megoldasat lehetové tevd eszkozzel. Az elegans abrazolas, az egyes
algoritmuslépések tobbszori attekintése (oda-vissza Iéptetési lehetség) segiti a
megértést. A kritikus Gt ily mddon valo kezelésével egyuttal megteremtettiink a CPM
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(Critical Path Method) tanitasahoz egy olyan alapot, amivel a késdbbiekben nem csupan
teljesen egyszerli feladatok szemléltethetok és oldhatok meg. Ez lehetne tehat a
tovabbfejlesztésnek egy iranya.

Bizom benne, hogy cikkem felkeltette érdeklddésiiket €s sokakban felmeriil az igény az
alkalmazas hasznalatara.
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