

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

The impact of prices and macroeconomic policies on agricultural supply: a synthesis of available results

Nlandu Mamingi ¹

Department of Economics, The University of the West Indies, Cave Hill Campus, P.O. Box 64, Bridgetown, Barbados

Accepted 23 October 1996

Abstract

This paper reviews the literature dealing with the link of agricultural prices and macroeconomic policies to agricultural supply with particular emphasis on Sub-Saharan Africa. Although the study echoes the stylized facts on price elasticities underlined in previous literature reviews, the paper points out that our understanding of the quantitative dimensions of agricultural supply response is weak given the importance of this assumed response for growth, poverty alleviation, and the environment. Indeed, issues such as simultaneity of variables, data pooling, omission of variables, and asymmetry in supply responses to price changes have not been adequately addressed in many instances. © 1997 Elsevier Science B.V. All rights reserved.

1. Introduction

The objective of this paper is to evaluate our knowledge of the link of agricultural prices and macroeconomic policies to agricultural supply. In other words, the study focuses on how the literature deals with the following key question: Are agricultural incentives effective in boosting agricultural supply? In that respect, this literature review supplements the previous ones as it highlights questions that were left out or insufficiently dealt with. The paper concentrates on econometric studies and emphasizes developing countries with special reference to Sub-Saharan Africa.

The overall framework of the study can be laid out as follows. Macroeconomic policies (monetary policy, fiscal policy, trade and exchange rate policies) affect agricultural prices through their effects

on the real exchange rate. Agricultural prices, along with non-price factors including exogenous shocks, determine agricultural output or supply.

The issue of agricultural supply response is a very important one as it has an impact on growth, poverty, and the environment. Not surprisingly this issue is central in many structural adjustment programs in less developed countries (LDCs). Indeed, the size of agricultural supply response is informative about whether "a policy of taxing agriculture through lower farm prices or through overvalued exchange rates and industrial policies will generate resources for investment in other sectors of the economy...or whether ² such policies will retard agricultural growth and create food and input bottlenecks which eventually bring down the rate of growth of the economy as a whole" (Chhibber, 1989, p. 55). Moreover, the agricultural supply response, mainly

¹ Tel.: (246) 425 1310, ext. 256; fax: (246) 425 1014.

² Underlined and added by us.

in the form of area expansion, is also useful since it could be informative about the seriousness of environmental problems.

The remainder of the paper is organized as follows. Section 2 deals with issues in the theory and specification of agricultural supply models. Section 3 reviews some empirical studies. Section 4 contains concluding remarks and recommendations.

2. Issues in the theory and specification of agricultural supply models

Agricultural supply response represents the agricultural output response to change in agricultural prices or, more generally, to agricultural incentives. Agricultural supply response can be analyzed from the point of view of aggregate output or supply, subsectoral output (i.e. crop output and livestock output) and individual crop (i.e. cotton and tea). The level of aggregation depends on the objective of the study as well as the availability of data. Moreover, agricultural output or supply³ can be captured in any of the following: (a) acreage or area under cultivation; (b) yield or product per acreage unit; and (c) product of acreage and yield.

This section focuses on some issues in the theory and specification of agricultural supply models that are not sufficiently highlighted in the literature. The emphasis is, however, more on model specification than on theory. The first issue concerns impact of prices and exchange rates on agricultural supply. The second issue deals with other determinants of agricultural supply. The third issue is related to the problem of simultaneity of variables. The fourth issue concerns the asymmetric (or irreversible) nature of supply responses to price changes, and the fifth deals with 'to pool or not to pool' question.

2.1. On the effect of prices and exchange rates

Prices and exchange rates are very important in dictating the pace of agricultural growth at the micro level as well as at the macro level.

2.1.1. Microspecification

The most influential model to capture crop supply is the Nerlove model. Basically, the Nerlovian model is a dynamic model that states that output (quantity or area) is a function of expected price, output (area) adjustment, and some exogenous variables. Thus, a typical Nerlovian model can be written as follows (see, for example, Askari and Cummings, 1977, pp. 257-258):

$$\begin{aligned} A_t^D &= c + a_1 P_t^e + a_2 Z_t + u_t \\ P_t^e &= P_{t-1}^e + \beta (P_{t-1} - P_{t-1}^e) \\ A_t &= A_{t-1} + \gamma (A_t^D - A_{t-1}) \end{aligned} \quad (1)$$

where A_t = actual area under cultivation at time t ; A_t^D = area desired to be under cultivation at time t ; P_t = actual real producer price at time t ; P_t^e = expected real producer price at time t ; Z_t = other exogenous factors affecting supply at time t ; and β , γ = expectation and adjustment coefficients, respectively.

Several questions can be raised at this stage. One of them is how to measure real output price. The issue here is the choice of the relevant deflator. Askari and Cummings (1977) elaborate very well on that. The real output price can be either one of these or none: "(a) the price of the crop actually received by farmers; (b) the ratio of the price of the crop received by farmers to some consumer price index; (c) the ratio of the price of the crop received by farmers to some price index of the farmers' inputs; (d) the ratio of the price of the crop received by farmers to some index of the price of competitive crops (or the price of the most competitive crop)" (Askari and Cummings, 1977, p. 258).

With suitable definition of price, the above equations lead to the following:

$$Q_t = c_0 + c_1 Q_{t-1} + c_2 (P_{c,t}/P_{d,t}) + c_3 Z_t + u_t \quad (2)$$

where $t = 1, 2, \dots, n$, is the time index, Q is agricultural output in general (area or yield per acreage or total yield), P_c is the price of the crop, P_d is the price of the deflator and other variables are defined as above. A point not sufficiently underlined in the literature is that by estimating Eq. (2), one imposes a restriction on the coefficients of nominal output price and the deflator price (they should be equal to c_2 in absolute value). This is rather the

³ Agricultural supply and agricultural output are most often interchangeable here.

exception than the rule. In fact, Eq. (2) can be estimated in an unrestricted form with nominal output price and potential deflators underlined above:

$$Q_t = c_0 + c_1 Q_{t-1} + c_2 P_{ct} + c_{21} P_{it} + c_{22} P_{at} + c_{23} P_{co} + c_{24} P_{u_t} + c_3 Z_t + u_t \quad (2')$$

where P_i is the input price, P_a represents the price of alternative crops, P_{co} stands for the price of consumer goods usually captured by the consumer price index (CPI), P_u is the price of urban labor or wages, and other variables are defined as above. The suitable deflator (if any) can be revealed by testing the unrestricted form Eq. (2') against various restricted forms of type Eq. (2). Note that even if one knows today's actual price, the latter may become irrelevant in the future.

The question concerning formation of price expectation is also an important one. In general, many authors use some distributed lags to capture price expectation. The lag structure, however, may vary from one type of crop to another. In general, one would expect perennial crops to have longer lags than annual crops. This lag structure differential is clearly an issue when one tries to explain aggregate output. Note also that price expectation itself can change due to an external shock. Finally, it is hard to sort out whether adjustment or expectation is taking place if the expectation coefficient and the adjustment coefficient are both equal to one (see Mundlak, 1985).

The model is a little bit vague about the components of Z . Theoretically Z includes variables describing marketing, credit, mechanization, land reform, research, irrigation, weather, and soil quality. Nevertheless, in the Nerlove model, weather measurement (i.e. rainfall) and time trend (capturing structural change or advance in technology) seem to be the favorite candidates. Note that contrary to many Nerlovian models, weather as rainfall should not necessarily enter the model in a linear fashion as too much rain can be a nuisance. Moreover timing of rain matters too. The inclusion of time trend instead of specific variables is generally justified on the ground of lack of availability of data or multicollinearity among variables. Time trend as variable capturing the effect of omitted variables should be a variable of last resort as we are really interested in tracing the impact of each specific variable.

Although the presence of lagged output in the basic equation usually gives rise to a very high R^2 and possibly reduces or eliminates autocorrelation, this variable competes with capital stock if included. Specially, the presence of capital stock makes the output lagged one period loose its explanatory power (Mundlak, 1985). The question of including capital stock and excluding lagged output is an important one. On the one hand, the inclusion of capital stock can help justify the inclusion of other variables. On the other hand, the exclusion of lagged output is inconsistent with the Nerlove model, which is based on price expectation and output adjustment.

The role of exchange rate is not explained at all at this level of aggregation. In fact, exchange rate affects crop supply generally through its effect on price incentives.

To sum up, at the micro level area (acreage) or output (total yield) for a given crop can be determined as follows:

$$Q = F \left(\begin{smallmatrix} + & - & - & - & - & +/- \\ P_c, P_i, P_a, P_{co}, P_u, Z \end{smallmatrix} \right) \quad (3)$$

where variables are defined as above.

The sign in Eq. (3) indicates the nature of the impact of the variable in matter in crop production. An increase in the price of the crop is an incentive to produce more. An increase in the input price increases the cost of production hence becomes a disincentive to produce more. An increase of the price of the most alternative crop is a disincentive to produce more of the main crop. An increase in the price of consumer goods as well as wages negatively affects crop production. The impact of other factors on the crop production is to be analyzed on a case by case basis.

2.1.2. Using macro and policy variables

Agricultural price incentives are influenced by macroeconomic policies (trade policies, exchange rate policies, policies towards capital movements, and fiscal policies). The policies affect the farmer's real income, and terms of trade between rural and urban as well as the terms of trade between tradeables and non-tradeables (Jaeger and Humphreys, 1988).

Central to these policies is the real exchange rate (RER), that is, the ratio of prices of tradeable to

non-tradeable goods (or vice versa). Indeed, macroeconomic policies generally result in the *RER* effect, which ultimately affect output price and hence agricultural supply. The behavior of the real exchange rate is, in many LDCs, rather harmful to agricultural incentives as exchange rates are overvalued. Indeed, overvalued exchange rates make local products, including agricultural products, less competitive with imports and less profitable as exports. (Abt associates, Inc., 1989).

Exchange rate policies refer to policies aiming at altering the nominal exchange rate in view of modifying the real exchange rate. In many LDCs, this modification usually takes the form of a devaluation which, in fact, is consistent "with smaller, greater, or equivalent real devaluations, depending on the adjustment in the price of non-tradeable or home goods that result from the nominal devaluation" (Valdés and Pinckney, 1989, p. 44). Successful devaluations bring about an increase in producer incentive as they increase the price of tradeable relative to non-tradeable goods.

An unsustainable budget deficit (as a result of expansionary fiscal policy) can affect agricultural production through its effect on exchange rate. Indeed, an unsustainable budget deficit puts pressure on money supply which in turns affects the price level. If the domestic price inflation exceeds the trading partner's price inflation, then an appreciation of exchange rate results (Cleaver, 1985).⁴ The latter appreciation generally results in a decrease of producer incentive as the price of tradeable goods decreases with respect to non-tradeable goods. Note that an expansionary fiscal policy is also more likely to affect investment; that is, it is more likely to lead to investment cuts in some sectors. Given the rural-urban bias that exists in most developing countries, investment is usually cut in the agricultural sector.

Capital movements can substantially influence the *RER*. A policy of heavy over-seas borrowing can lower the *RER* as happened in Argentina and Chile in the 1970s and early 1980s. Conversely, a policy of large overseas investment can raise the *RER*.... The

connection between capital flows and the *RER* can be sketched as follows: for any given level of international reserves, equilibrium in the balance of payments requires a higher balance in the capital account which thereby lowers the current account. In other words, a larger net inflow of capital will induce a lower *RER*, reducing the surplus in the current account. (Valdés and Pinckney, 1989, p. 47.)

Once more, the question of interest is how to measure real output price. Generally, here it is the ratio of nominal output price to consumer price index.

Another important issue is how to capture real exchange rate. Recall, it is the price ratio of tradeable to non-tradeable goods; that is, $RER = P_T/P_n$ where P_T is the price of tradeable goods and P_n is the price of non-tradeable goods. The literature underlines that there are serious difficulties in making operational this definition, as adequate data on the two prices are hard to find. Instead, the following proxy is used: $RER = e \cdot WPI/CPI$ where CPI is the domestic consumer price index, WPI is the US (or foreign) wholesale price index, and e is the official nominal exchange rate measured as the number of local currency per unit of US dollar (or foreign currency). An increase of the *RER* is a depreciation and the converse is an appreciation. In fact, what is at stake here is the real exchange misalignment which is the difference between actual real exchange rate and equilibrium real exchange rate, equilibrium real exchange rate (ERER) being defined as the real exchange rate that prevails in the long run when there is no distortion. Misalignment due to overvaluation represents an incentive distortion since by raising the price of non-tradeable goods with respect to that of tradeable goods, it brings about misallocation of productive resources.

Note that since CPI on which the *RER* is generally based is not comparable across countries for reasons enumerated below, the *RER* is really a country index. This aspect has been often overlooked in the literature.

The linkage between macroeconomic policies and real producer prices can be expressed in terms of direct and indirect effects (see the seminal study by Krueger et al., 1988). The direct effect is captured by the proportional difference between the producer

⁴For a more elaborated relationship between government spending and the *RER*, see Valdés and Pinckney (1989).

price (farmgate price) and the border price (adjusting for distribution, storage, transport, and other marketing cost). A negative difference means a tax on exportable goods or on producers and a positive one represents a subsidy on imports (Krueger et al., 1988). Taxes represent distortions that are harmful to the agricultural sector. It has been argued that in many developing countries, especially Sub-Saharan Africa, these distortions (taxes, mainly) have been deliberately set up by governments through price fixation or control.

The above direct effect is the same concept as the nominal protection coefficient (NPC) which is the ratio of the farmgate price to the border price after adjusting for all the relevant costs underlined above. Clearly, the NPC compares the farmgate price to the maximum that could be offered to producers (border price less than the costs advocated above). A ratio of less than one indicates that agriculture is being taxed. The NPC has been criticized on the ground that as a measure of incentive distortion it ignores the exchange rate impact on policy distortion, and it also ignores the effect of exchange rate misalignment or implicit taxation. That is, the NPC will underestimate the degree of agricultural taxation when exchange rates are overvalued at the same time it will be unable to provide an unambiguous answer as to the relative importance of one source to the net effects change over time in the sources of variation—farmgate price, international price, and exchange rate (Jaeger, 1992). The real protection coefficient (RPC) is used to meet the above criticisms. It is an NPC calculated at the equilibrium exchange rate.

The indirect effect has two components. The first is the impact of the unsustainable portion of the current deficit and industrial protection policies on the real exchange rate and thus on the price of agricultural commodities relative to nonagricultural nontradables. The second is the impact of industrial protection policies on the relative price of agricultural commodities relative to that of nonagricultural tradeable goods. (Krueger et al., 1988, p. 255.)

Another approach showing the linkage between macroeconomic policies (represented by real exchange rate) and real output price is that of the World Bank. Following the World Bank (1994, p.

271), the real producer price is decomposed as follows:

$$\begin{aligned} \text{RPP} &= P_F/\text{CPI} = P_F/P_B e e\text{WPI}/\text{CPI} P_B/\text{WPI} \\ &= \text{NPC RER } p_B \end{aligned} \quad (4)$$

where RPP is the real producer price for export crops, P_F is the farmgate producer price, P_B is the border price in dollars, e is the nominal exchange rate defined as above, NPC is the nominal protection coefficient, RER is the real exchange rate, and p_B is the real price of country's exports (at the border).

Eq. (4) reveals that it is really hazardous to include both RER and RPP in the same equation as the real producer price already contains information on the RER.⁵

Note that Eq. (4) can be redefined in terms of equilibrium exchange rate as follows:

$$\begin{aligned} \text{RPP} &= P_F/\text{CPI} = P_F/P_B e e/E \text{EWPI}/\text{CPI} P_B \\ &= \text{RPC ERER } p_B \end{aligned} \quad (4')$$

where E is the equilibrium exchange rate, RPC is the real protection coefficient, and ERER is the equilibrium real exchange rate. Recall that neither E nor ERER is observable.

In the pursuit of profits, farmers have to bear the cost of inputs. Nominal output price incentive is annihilated if input costs are high. Hence, input prices are a very important element of agricultural production. The prices of the following inputs are particularly relevant: fertilizers, pesticides, improved and high yield varieties of seeds, tractors, and cars. Moreover, urban wages and the price of consumer goods have a serious impact on agricultural output prices. An increase in input prices increases input costs and decreases the incentive to produce more, *ceteris paribus*. This is generally the case for external inputs, such as fertilizers, pesticides, improved and high yield varieties of seed and machinery which, as imported goods, at least in many LDCs, see their prices raised by policies that protect industry. On the other hand, in many countries there is a fair amount of subsidization of these inputs as in the case of an overvaluation of currency which artificially reduces

⁵ If one decides to use both variables, then one variable must be cleaned up for the effect of the other.

the cost of imported inputs. This brings about an overuse of these inputs which most likely leads to inefficiency over time and may well create environmental problems. Apart from that, some of the inputs may have a negative effect in the long run even when they become available to rural dwellers at low cost. For example, some pesticides can bring about health problems which impinge on future productivity or might result in death. The prices of consumer goods are important to the extent that they enter the consumer price index. As the relevant output price incentive is the real output price (generally, nominal price over some consumer price index), an increase in the price of consumer goods brings about a decrease in real output price which in turn constitutes a disincentive to produce more. The same story can be told about wages. In fact, in many LDCs governments fix the nominal output price to make sure that goods are affordable at a reasonable price in urban areas and wages offered to urban dwellers have an adequate purchasing power.

In short, agricultural output price can boost production by increasing the returns of inputs. Agricultural output price is affected by market forces and/or by government intervention through trade policy (export tax or subsidies), exchange rate policy, taxes and subsidies and direct government intervention (i.e. price controls). That is, real output price is subject to two types of distortions: direct taxation represented by trade tariffs and government fixation of prices, and indirect taxation captured by currency overvaluation as well as protection of non-agricultural sectors.

2.2. *On the impact of other determinants*

Apart from pure agricultural incentives captured by prices, there are other factors that affect supply response whose omission generally brings about omitted variable bias. One set of such factors is public inputs: irrigation and some type of human and physical capital—i.e. adult literacy, life expectancy, research, extension, road density, and roads paved (see Binswanger et al., 1987). Irrigation water is expected to affect positively agricultural output through its effect on productivity. Adult literacy, by helping individuals to assimilate or to adopt technical advance faster, is positively related to agricultural

output. An increase in life expectancy represents a measurement of health which affects output through productivity.

Population density has an impact on agricultural production. It is expected to be positively linked to agricultural output through land use intensification (Boserup hypothesis) or increase in cropping frequency (Krautkraemer, 1994).⁶ In fact, household composition in terms of active people may well alter the positive impact of population density on agricultural production.

Income level has a positive impact on agricultural output to the extent that the higher the farmer's income the higher the level of production, *ceteris paribus*. This is mainly explained by the fact that with a higher income the farmer can easily acquire the much needed inputs that can help boost productivity.

Technology or spending on research is perhaps the key variable if one has to raise substantially output in the regions such as Sub-Saharan Africa. Indeed, an increase in research in the sense of technology advance can help reach the twin goals of agricultural output growth and environmental conservation through land use intensification. A caution, however, is in order since some of the advances can lead to overuse of inputs such as fertilizers which, in the long run, may reduce agricultural productivity.

Rural infrastructure is very important in the agricultural production setting to the extent that a deficient infrastructure can wipe out all other production incentives. Indeed, "adjusting prices may not be all that is needed to increase the output and incomes of target groups. More often than not, the poor in developing countries are located in areas with little access to roads, transports, communication, agriculture services, marketing facilities, and so on. Improving prices may be a necessary condition for restoring incomes, but not a sufficient one. If farmers cannot get the supplies and services they need, infrastructure investments may be required to give these farmers the capacity to increase output and yields" (Demery

⁶ Krautkraemer (1994, p. 401) uses "a renewable resource model of soil fertility with a convexity with the net benefit function" to show that "as population grows and the demand for food increases, more frequent cropping becomes economical."

and Addison, 1987, p. 13). Nevertheless, better infrastructure can also be a double edged sword to the extent that it can lead to deforestation which in turns affects soil quality and productivity over time. Better extension and irrigation services are also positively linked to agricultural output.

Exogenous shocks such as weather, civil strifes, or wars are also important in explaining aggregate output. Good weather has a positive impact on agricultural supply. Weather, in fact, constitutes one of the most important 'risk' factors that farmers must take into account in the crop selection. It means that, under some circumstances, the farmer will choose not the crop with the highest return, but the crop which is the most drought-resistant (Bond, 1983). There is a role for irrigation here as the latter can temper the negative effect of rain shortfall, for example. Wars and civil strifes do not create an ideal environment to boost agricultural output. The experience of quite a number of African countries (e.g. Somalia and Mozambique), where famine was sustained by wars and/or civil strifes, is striking. Last but not least, land characteristics or soil quality is positively related to agricultural production or supply.

To sum up, many factors determine the path of agricultural supply. The non-inclusion of important determining factors brings about estimate biases.

2.3. Simultaneity issue

The examination of the literature reveals that few authors have dealt with the issue of simultaneity. To recall, most of the studies on supply response use a specification of the following type:

$$Q_t = \alpha + P_t \beta + X_{jt} \gamma_j + u_t \quad (5)$$

where Q_t is the agricultural supply, t is the time period, P_t is some price measurement, j is a variable index, X_{jt} represents other explanatory variables, α is a constant term, and u_t is the usual error term.

Eq. (5) implies that there is a unidirectional causality from right-hand side variables to agricultural supply; that is, price and other explanatory variables are uncorrelated with the error term, u_t . In reality, it may well be the case that price and supply

are simultaneously determined in which case estimates in Eq. (5) suffer from demand/supply simultaneity bias. Nevertheless, simultaneity in the sense of simultaneous determination of price and quantity is not a problem if demand is completely inelastic. This situation is very unlikely. In any case, it is advisable to examine prices on individual basis as in Lopez et al. (1991). Here are some hints. The price of agricultural exportables (export crops) in a given country is most likely exogenous as it depends on the world price and production and the latter do not depend on the country's production. Nevertheless, the price of a given export crop is probably endogenous if the country's share of the world production is substantial. The price of agricultural exportables is most likely exogenous if it is fixed by the government. The price of agricultural importables is exogenous. The price of agricultural non-tradeables (i.e. staple foods) is endogenous as it depends by and large on domestic supply/demand conditions prevailing in the market. Wage, the price of labor, is endogenous as it depends on the minimum wage structure, the price of agricultural non-tradeables, the price of agricultural exportables, education, and technical change.

It has been argued that endogeneity is not a problem if Eq. (5) is part of a recursive system (current production depends on lagged price and other exogenous variables and this quantity, once produced, is a major factor determining current price; Tomek and Robinson, 1972, p. 323). This is particularly plausible for some types of commodities such as annual crops and some types of livestock.

In fact, there is not only price endogeneity at stake here, but also the endogeneity of other explanatory variables. Indeed, with the exceptions of pure exogenous shocks, the other explanatory variables are by and large endogenous. For example, soil quality depends on past soil quality, the techniques of cultivation, and external inputs such as fertilizers (see Salehi-Isfahani, 1993). Road variable depends on population density and economic conditions of the location.

Failure to deal properly with the simultaneity problem gives rise to inconsistent estimates. Hence, the recourse to some exogeneity tests (i.e. Hausman exogeneity test) should become the rule rather than the exception to decide on the simultaneity issue.

2.4. Asymmetric agricultural supply responses to price changes

Agricultural supply is defined as the response of agricultural output to changes in prices, all other factors held constant. The implicit idea is that a price increase and a price decrease lead to the same output change (in absolute value). The agricultural supply in this sense is said to be symmetric or reversible, as a price decrease will bring the supply at its original level. In reality, the fact that 'fixed assets' or precisely, 'sticky assets' such as land, trees, buildings, or equipment that were acquired when prices were high, are not thrown away when the prices are low, at least in the short run, implies that price increase and price decrease do not give rise to a similar change in output (Johnson, 1958). This is particularly true for perennial crops; the output change resulting from price decrease is less than that from price increase. The supply response is then said to be irreversible or asymmetric. Technological innovation can also explain this phenomenon (see Cochrane, 1955; Jaforullah, 1993).

The irreversibility concept, although theoretically sound, has not been widely applied as the quantification of price increases and price decreases is not straightforward. Tweeten and Quance (1969, 1971), Wolffram (1971), Trail et al. (1978), and Burton (1988) attempt to capture such price segmentation (see Hallam, 1990; Mamingi, 1996). The neglect of the latter can lead to misspecification bias.

2.5. Pooling issues

Data pooling brings about at least two sets of problems that are not always understood or well dealt with in the literature. The first problem concerns modeling and/or method of estimation. The second problem is data comparability.

2.5.1. Modeling

Following the literature, most of the authors model supply response in a single equation (or multiple equations) as follows:

$$Q_{it} = \alpha_i + P_{it} \beta + X_{itj} \gamma_j + u_{it} \quad (6)$$

where $i = 1, 2, \dots, n$ stands for country (or region), $t = 1, 2, \dots, T$ is the time period index, $j = 1, 2, \dots, g$ is a variable index, Q is some output measure-

ment, P is some price variable, X is a set of other explanatory variables, α_i are country specific variables, and u_{it} is the usual error term.

Eq. (6) states that the slope (i.e. marginal effect or elasticity) is the same across countries. The model becomes a pure cross section model if $t = 1$ or average values of variables over the period are used. Note that when necessary, time specific variables can be added to Eq. (6).

The following two issues are important when estimating Eq. (6). The first basic question is whether the pooling of several countries or regions holds. For example, does it make sense to pool land-scarce countries with land-abundant countries, developed countries (DCs) with less developed countries (LDCs), high yield countries with low yield countries? In simple terms, the question is whether the countries face the same binding constraints. The 'pooling' test⁷ and some prior information are very useful to have an insight into the problem.

If pooling is not accepted then the equality of slopes across countries does not hold. Put another way, the common slope as the mean estimate of individual slopes is no longer a good statistic as it is affected by outliers.⁸

In our view, either one tests formally for pooling or if possible, one starts with a random coefficient model. The latter can be presented as follows:

$$Q_{it} = \alpha_i + P_{it} \beta_t + X_{itj} \gamma_{tj} + u_{it} \quad (7)$$

This model exploits cross-country properties and time series properties.

Bias resulting from improper pooling can blur our understanding of how key agricultural factors affect agricultural supply.

2.5.2. Comparability of variables across countries

The second set of issues is how to capture variables for international comparisons. Aggregate output and prices are the most troublesome variables for international comparison.

⁷ It is curious that all the works reviewed below did not formally test for 'to pool or not to pool.'

⁸ Note that the presence of country dummies in the within regressions (OLS with country specific variables) is not necessarily an avenue for explaining varying slope estimates. The real issue is whether some panel members (countries, regions, etc.) behave like outliers.

Concerning output, Rao and Sharma (1991) point out two approaches: (a) the aggregate output repricing method; and (b) the purchasing power parity (PPP) or implicit exchange rate method.

The aggregate output repricing method "suggests revaluation of the quantity vectors of different countries using a single set of prices for different commodities. These prices may be expressed either in a numeraire currency, in which case the value of output is expressed in that currency, or in the form of relative prices, such as wheat-relatives, in which case the total output in each country is expressed in terms of the numeraire commodity" (Rao and Sharma, 1991, p. 199).

The crucial problem of the determination of international prices in the aggregate output repricing method has been adequately dealt with by Summers and Heston (1988). To answer the criticism according to which wheat is not all that important in a number of countries, some authors use the Fisher multilateral quantity and price index to make output comparable across countries.

The purchasing power parity (PPP) approach uses the exchange rate as the conversion factor; that is, the output value in country j is the value of output in the country expressed in the country's currency times the exchange rate of the country. Naturally, the conversion factor must be selected appropriately and should depend on the prices and quantities of the agricultural commodities (Rao and Sharma, 1991). Failure to take this into account introduces serious biases in the measurement. Recent advances by Summers and Heston (1988) solve some aspects of this problem by using the purchasing power parity of currency.⁹

Prices and exchange rates are not always easily comparable across countries. To recall, real output price is the ratio of nominal output price to other prices. At the micro level, we argued that there are several candidates as deflator, all depending on the farmer's behavior. At the aggregate level, the usual candidate is the consumer price index (CPI).

There are two sets of problems here. First, CPI, on which RER and real producer price are based, is not strictly comparable across countries as it is generally based on different baskets, different weights and different base periods. Second, misalignment is not taken into account in the nominal exchange that helps convert foreign currency into local currency (or vice versa). As the empirical studies reveal, few authors pay attention to this problem.

Similarly to the case of cross-border output comparison, some authors use a wheat equivalent measurement to solve the above twin problems. This approach has not always been successful (see, for example, the Binswanger et al., 1985, comments on the Peterson, 1979, paper). On the contrary, the use of multilateral Fisher index combined with that of the implicit purchasing power parity exchange rate à la Summers-Heston, represent a valuable approach in this context (see Binswanger et al., 1985, 1987).

3. Review of empirical studies

This section is a review of empirical studies. It focuses on short-run and long-run price elasticities. It is somehow a supplement to previous literature reviews (Askari and Cummings, 1977; Bond, 1983; Chhibber, 1989; Rao, 1989; Ogbu and Gwetibouo, 1990).¹⁰ To evaluate different studies, we check whether they adequately deal with the issues raised above. The first part of the section deals with quantity studies; that is, those whose output is expressed in total yield or yield per acreage unit. The second part is concerned with studies using acreage as output.

3.1. Review of quantity studies

Table 1 reports the results of the inquiry for aggregate, subsectoral, and individual crop outputs. The following trend emerges from the table. First, the short-run price elasticities are small for aggregate (and subsectoral) output. Second, although small, the

⁹ "Purchasing Power Currency (PPC) is understood as the number of units required to purchase the same amount of goods and services as say, one US dollar would buy in the United States." (World Bank, 1993, p. 2).

¹⁰ Most remarks made here also concern studies found in these literature reviews.

individual crop elasticities are larger than those of aggregate output. Third, where they are derived, long-run elasticities are larger than short-run elasticities. Fourth, price elasticities are, by and large, positive.

Although not reported in the table, most other determining factors included in the models are found to be very important. To corroborate, the elasticities are 0.293 and 0.122 for precipitation and research ha^{-1} , respectively, in Peterson (1979). The elasticities are 2.31 and 0.93 for land quality and average rainfall, respectively, in Van Schalkwyk and Groenewald (1993). The impacts are -1.2 to -1.5, 0.11 to 0.15, and 0.74 to 1.0 for the degree of public involvement in input supply, the percent of government current expenditure, and population growth, respectively, in Cleaver (1985).¹¹ The elasticities are 0.1, 0.08, 0.057, 0.1, for road density, extension, GDP, and rural population density, respectively, and other quantitative effects are 1.298, 0.496, 1.325, 0.631 for irrigation, roads paved, life expectancy, and adult literacy, respectively, for crop output in Binswanger et al. (1987). Rice cultivation responds positively to rainfall (0.77) and to high-yielding varieties (0.31) in Bapna et al. (1984). Drought negatively affects cereals (-0.32), cassava (-0.14), maize (-0.23), and sorghum (-0.30); primary education has a positive impact on rice (1.23), and cultivated area per capita is negatively linked to rice (-1.1) and maize (-0.85) in Cleaver and Schreiber (1994).¹² Production variable (0.729), the deviation of actual production from trend (0.489), and misalignment following Edwards' approach (-0.451) are, aside from price, important in explaining wheat supply in Argentina (Pick and Vollrath, 1994). In the models using the Nerlove methodology, the lagged dependent variable is always significant where included and so are time trend and weather.

Despite the existence of some stylized facts (price elasticities) underlined above (facts also uncovered in many previous literature reviews) there are a

number of issues ignored or insufficiently dealt with that can substantially alter the stylized facts.

With the exceptions of Cleaver (1985) and Cleaver and Schreiber (1994), all studies include some type of output price (nominal or real) in their basic regressions. Cleaver as well as Cleaver and Schreiber use the nominal protection coefficient instead. Cleaver explains agricultural growth by nominal protection coefficient (or rate of currency depreciation), the public involvement in input supply, the public consumption to GDP in 1970-1981 and the average annual rate of population growth. If one agrees with Eq. (4) or Eq. (4'), then nominal protection coefficient does not fully capture real producer price. The same remark holds for Cleaver and Schreiber, who explain change in crop yields of some food crops in Sub-Saharan Africa by nominal protection, drought, primary education, the sum of area under temporary crops arable land per capita of rural population and area under permanent crops per capita of rural population.

Concerning exchange rates, with the exceptions of Cleaver (1985) in one of his models, Jaeger (1992), and Pick and Vollrath (1994), all authors do not include exchange rates in their set of explanatory variables. This is mainly explained by Eq. (4) or Eq. (4') which basically states that the real producer price already contains information on the real exchange rate. Thus, Jaeger (1992) who uses simultaneously real effective exchange rates and real producer prices along with disaster variable and weather to explain agricultural exports at the aggregate as well as the individual crop level, is rather suspicious. This may well explain why he obtains from time to time a wrong sign for the impact of exchange rate (i.e. an appreciation of real effective exchange rate of 100% gives rise to a 33% increase in the agricultural exports of annual crop exporter countries) or an insignificant real producer price (this is the case for tree crop exporter countries).¹³ In his framework, the simultaneous inclusion of the two variables can

¹¹ Cleaver (1985) has two models: one with nominal protection coefficient and another with real currency depreciation. The other variables are the same in both models.

¹² Note that the coefficients are not elasticities here.

¹³ If the real effective exchange rate is excluded, the impact of the real producer price shows up; it is 11.5% instead of 1.7% and is significant.

be justifiable if one variable is cleaned up for the effect of the other. The Pick and Vollrath (1994) study seems fine since it captures real exchange rate by misalignment and real output price by nominal export price. The use of real currency depreciation in Cleaver (1985) would be fine if combined with other missing variables in Eq. (4').

Binswanger et al. (1987) are a model of good study in terms of variable coverage. Indeed, although external shocks factors are missing here, the study nevertheless contains the major explanatory variables that we can think of: real producer price, irrigation, road density, roads paved, life expectancy, adult literacy, research, extension, GDP, rural population density, and agroclimatic potential. Bapna et al. (1984) is also similar to the above study in terms of variable coverage.

Peterson (1979), in his cross-section study dealing with developed (DCs) and less developed countries (LDCs), includes output price, weather (long-run annual precipitation), and technology (research publication for each country) as explanatory variables. There is probably a certain amount of misspecification bias due to the omission of important variables such as life expectancy, adult literacy, and irrigation that have changed over time. For example, by adding irrigation in Peterson's model, Chhibber (1989) finds that the price elasticity passes from 1.27 to 0.97.

Cleaver (1985) contains some misspecification problems. It is known that weather changes, as well as land quality, in Africa are quite important in explaining agricultural growth. Another problem of misspecification is that the nominal protection coefficient or the currency depreciation rate used by the author only captures part of the real producer price. Indeed, as Eq. (4) or Eq. (4') shows, if one uses nominal protection coefficient, then two other variables are left out: real exchange rate and real foreign price. If one uses currency depreciation rate, then nominal protection coefficient and real foreign price are left out.

Life expectancy, income, roads (density and quality), research, extension, soil quality, population growth, and country dummy variables are important explanatory variables that can be included in Jaeger (1992).

Lopez et al. (1991) explain agricultural export supply in Malawi and Tanzania by the price of

agricultural exportables, the price of agricultural non-tradeables, the wage rate, an index of weather, and an index of technical change. All the prices are normalized by the price of agricultural importables. Population growth (or density), human capital, and road variable may well be missing variables in these regressions. Note that their high R^2 can most likely be explained by the inclusion of lagged prices aside current prices.

Gunawardana and Oczkowski (1992) is an interesting study which explains paddy supply by the price ratio (guaranteed price of paddy to fertilizer price), irrigation, credit, concessional sales of rice. This is one of the rare studies where credit variable directly appears as an explanatory variable. Although they obtain a very high R^2 (0.97 for yield), the inclusion of other important variables (e.g. population density) may well change the short-run and the long-run elasticities.

Van Schalkwyk and Groenewald (1993) use price ratio, land quality, average rainfall, and dummies (to capture structural change over time) to explain agricultural supply in South Africa. Missing variables in this framework may include roads, human capital, and population growth. As for the previous study, the high R^2 may be explained by the inclusion of lagged variables.

Cleaver and Schreiber (1994) fail to consider in their models, among others, population growth, population density, and life expectancy. Moreover, as underlined above, another source of misspecification originates from the use of nominal protection coefficient instead of real producer prices; that is, some exchange rate variable and real foreign price are missing. Note that some of the high R^2 may be due to the presence of country dummy variables.

Pick and Vollrath (1994) contain some omitted variables in some equations (i.e. human capital). The models with severe omitted variables show up with low R^2 . This is the case for Nigeria (0.36).

As underlined implicitly above, there is some difficulty in evaluating the Nerlove model in terms of omitted variable misspecification. Lagged output (or area) usually explains a great part of variation of output (large contribution to R^2). Yet the inclusion of lagged output and time trend does not give us the impact of several variables of interest.

Lopez et al. (1991) is the best empirical work in

Table 1
Price elasticities with quantity as dependent variable

Region/period	Data/method	Author	Output	Price and lags	Exch. rate var.	Price SRE	Price LRE	Exch. RE
53 countries 62-64/68-70	Cross-S IV	Peterson (1979)	Q_w	$P_{w,t}$			1.27-1.66 *	
31 SSA 70-81	Cross-S OLS	Cleaver (1985)	rQ	$NP_{C,t}$		0.02 * ^a	n.a.	
31 SSA 70-81	Cross-S OLS	Cleaver (1985)	rQ	$RP_{D,t}$				0.15 * ^a
58 countries 69-78	Panel within	Binswanger et al. (1987)	Q_{mf} (aggregate)	$P_{mf,t}$		-0.05 *	n.a.	
58 countries 69-78	Panel within	Binswanger et al. (1987)	Q_{mf} (crop)	$P_{mf,t}$		0.06 *	n.a.	
58 countries 69-78	Panel within	Binswanger et al. (1987)	Q_{mf} (livestock)	$P_{mf,t}$		-0.18 *	n.a.	
21 SSA 70-87	Panel 3SLS	Jaeger (1992)	Q_{tec}	$P_{cpi,ma}$	RE rate	0.20 *	n.a.	-0.10 *
14 SSA 70-87	Panel 3SLS	Jaeger (1992)	Q_{etc}	$P_{cpi,ma}$	RE rate	0.017	n.a.	-0.25 *
7 SSA 70-87	Panel 3SLS	Jaeger (1992)	Q_{acr}	$P_{cpi,ma}$	RE rate	0.94 *	n.a.	0.33 *
7 SSA 70-87	Panel 3SLS	Jaeger (1992)	Cocoa	$P_{cpi,ma}$	RE rate	0.22 *	n.a.	-0.35 *
14 SSA 70-87	Panel 3SLS	Jaeger (1992)	Coffee	$P_{cpi,ma}$	RE rate	0.23 *	n.a.	0.05 *
11 SSA 70-87	Panel 3SLS	Jaeger (1992)	Cotton	$P_{cpi,ma}$	RE rate	0.67 *	n.a.	-0.68 *
4 SSA 70-87	Panel 3SLS	Jaeger (1992)	Tea	$P_{cpi,ma}$	RE rate	-0.04	n.a.	0.126
Tanzania 64-84	T series Nerlove	Mshomba (1989)	Tea	$P_{cpi,t}$		0.35 *	n.a.	
Tanzania 65-84	T series Nerlove	Mshomba (1989)	Cotton	$P_{cpi,t-1}$		0.26 *	0.38 *	
Cameroon 47-64	T series Nerlove	Behrman (1968)	Cocoa	$P_{cpi,t,t-n}$		0.68 *	1.81 *	
Nigeria 49-64	T series Nerlove	Oni (1969)	Palm oil	$P_{n,t}$		0.29-0.35	0.29-0.35	
Tanzania 45-67	T series Nerlove	Gwyer (1971)	Sisal	$P_{n,t,t-i}$		0.21-0.28 *	0.48-0.49 *	
Ghana 63-81	T series Nerlove	Bond (1983)	Q_{tec}	$P_{cpi,t}$		0.20 *	0.34 *	
Kenya 66-80	T series Nerlove	Bond (1983)	Q_{tec}	$P_{cpi,t}$		0.10 *	0.16 *	
Kenya 72-90	T series Nerlove	Sharma (1992)	Q_{tec}	TT_{t-1}		0.08 *	0.16 *	
Tanzania 70-88	T series 2SLS	Lopez et al. (1991)	Q_{tec}	$P_{im,t,t-1}$		0.47 *	n.a.	
Malawi 70-87	T series 2SLS	Lopez et al. (1991)	Q_{tec}	$P_{im,t,t-1}$		0.56 *	n.a.	
S. Africa 76, 81, 88	Panel OLS	Van Schalkwyk and Groenewald (1993)	APE	$P_{j,t}$			0.92 *	
India 54-77	T series Nerlove	Chhibber (1989)	AO	TT_{t-1}		0.28-0.29 *	0.39-0.43 *	
India	Pooled GLS-SUR	Bapna et al. (1984)	Rice	$P_{n,s,lags}$		0.33 *	n.a.	
	Pooled GLS-SUR	Bapna et al. (1984)	Sorghum	$P_{n,s,lags}$		0.77 *	n.a.	
Sri Lanka 52-87	T series OLS	Gunawardana and Oczkowski (1992)	Paddy	$P_{gpi,t-1}$		0.09 *	0.11 *	
10 SSA 80-89	Panel within	Cleaver and Schreiber (1994)	Cereals ^b	$NP_{C,t-4}$		0.14 *	n.a.	
	Panel within	Cleaver and Schreiber (1994)	Rice ^b	$NP_{C,t-4}$		0.75	n.a.	
	Panel within	Cleaver and Schreiber (1994)	Cassava ^b	$NP_{C,t-4}$		-0.31	n.a.	
9 SSA 80-89	Panel within	Cleaver and Schreiber (1994)	Maize ^b	$NP_{C,t-4}$		0.11	n.a.	
	Panel within	Cleaver and Schreiber (1994)	Sorghum ^b	$NP_{C,t-4}$		0.17 *	n.a.	
6 SSA 80-89	Panel within	Cleaver and Schreiber (1994)	Wheat ^b	$NP_{C,t-4}$		0.14	n.a.	
Argentina 71-88	T series OLS	Pick and Vollrath (1994)	Wheat	$P_{x,t}$	Misal.	64,3 * ^a	n.a.	-0.45 *
Indonesia 71-88	T series OLS ^c	Pick and Vollrath (1994)	Coffee	$P_{x,t}$	Misal.	27,9 * ^a	n.a.	-0.54 *
Venezuela 71-88	T series OLS	Pick and Vollrath (1994)	Coffee	$P_{x,t}$	Misal.	20,7 * ^a	n.a.	-0.78
Nigeria 71-88	T series OLS	Pick and Vollrath (1994)	Cocoa	$P_{x,t}$	Misal.	21,8 ^a	n.a.	-0.18

our sample as far as the issue of simultaneity of variables is concerned. The authors have the following reduced form:

$$\begin{aligned} Q^{AX} &= f(P^{AX}, P^{AN}, w, h, t) \\ P^{AN} &= f(P^{AX}, w, E, P^N, h, t) \\ P^N &= f(P^{AX}, P^{AN}, w, E, q, h, t) \\ w &= f(P^{AX}, P^{AN}, P^N, w_M, t) \\ E &= f(P^{AX}, q, w_M, E^G, t) \end{aligned}$$

where Q^{AX} is the agricultural supply of exportables, P^{AX} is the price of agricultural exportables, P^{AN} is the price of agricultural non-tradeables, P^N is the price of non-tradeables, w is the wage rate, h is an index of weather, t is an index of technical change, q represents the external terms of trade of the country (excluding agricultural export prices), w_M is the minimum wage, E stands for total domestic expenditures, and E^G represents government expenditures. With the exceptions of t and q all the variables are normalized by the prices of agricultural importables.

The price equations result from the respective demand/supply equalities. P^{AN} is endogenous because it largely depends on supply and demand conditions prevailing in the market and so is P^N . The wage rate is supposed to be determined by a combination of market and institutional forces. Aggregate real expenditures are affected by both policy and external variables.

It is worth underlining that the issue of simultaneity is further complicated when using variable ratios whose components follow different behaviors in terms of endogeneity/exogeneity.

Binswanger et al. (1987) address the issue of simultaneity by deriving output and factor demands (fertilizers and urban wages) from profit maximization. In our view, most of the explanatory variables in their model are truly endogenous (irrigation, roads, research, and population growth). Most likely, population growth in Cleaver's (1985) model is endogenous. Misalignment is an endogenous variable in Pick and Vollrath (1994).

The problem of data comparability is not equally explained in many papers using cross section or pooled data. Peterson uses real producer price defined as the ratio of an overall wheat equivalent price for each country during each period (1962-64 and 1968-1970) by the weighted average domestic currency price of commercialized fertilizer. Although this indeed validates comparisons across countries possible, wheat and fertilizer are not all that important in many countries. Worse, in some countries fertilizers are subsidized. Certainly, results are sensitive to the definition of variables adopted. For example, in attempting to explain the Peterson (1979) high elasticity, Binswanger et al. (1985) find that by using prices based on the multilateral Fisher index coupled with purchasing power currency, the Peterson (1979)

Notes to Table 1:

^a Numbers are not elasticities.

^b Output is change in crop yield (number in short-run elasticity column is not an elasticity).

^c OLS with serial correlation correction.

SSA, Sub-Saharan African countries; Cross-S, cross-section data; Panel, panel data; T series, time series data; IV, instrumental variables method; Within, OLS with country dummies; 2SLS, two stage least squares; 3SLS, three stage least squares; Gls-Sur, generalized least squares and seemingly unrelated regression methods; Nerlove, Nerlove method; Q_w , quantity using wheat equivalent; rQ , growth rate of agricultural output; Q_{mf} , quantity using multilateral Fisher index; Q_{tec} , total export crops; Q_{etc} , total export crops for tree crop exporter countries; Q_{acr} , total export crops for annual crop exporter countries; APE, agricultural production equivalent, which is gross value of agricultural production in each district deflated by the index of producers' prices; AO, agricultural output; P_w , price using wheat equivalent deflated by fertilizer price; NPC, nominal protection coefficient; P_{mf} , price using multilateral Fisher index; P_{cpi} , nominal output price of agricultural export deflated by consumer price index; $P_{cpi,ma}$, as above but using a moving average (t and $t-1$); P_n , nominal output price; with s.lag, sum of lags $t-1$ and $t-2$; P_j , is the weighted output/input ratio; TT, agricultural terms of trade; P_{im} , the price ratio of agricultural exportables to agricultural importables; P_{gpi} , is the ratio of guaranteed price to fertilizer price; $P_{x,t}$, export price; RDP, rate of currency depreciation; Exch. rate var, exchange rate variable; RE rate, real effective exchange rate; Exch. RE, exchange rate elasticity; Price SRE, short-run price elasticity; Price LRE, long-run price elasticity; Misal., misalignment measure following Edward's approach; n.a., non-available.

* Significant at the 10% level, at least.

elasticity falls in the range 0.02 to 0.45 instead of 1.27 to 1.65.

Cleaver (1985) uses the nominal protection coefficient or the currency depreciation rate. But as seen above, if the NPC is defined as the ratio of farmgate price to the product of foreign price times nominal exchange rate, then direct comparability becomes a problem as some nominal exchange rates are distorted in some countries. The real protection coefficient defined from the equilibrium exchange rate is more appropriate in this framework. This remark also holds for Cleaver and Schreiber (1994).

Jaeger (1992) defines real producer price as the ratio of nominal producer price to consumer price index. The problem is that consumer price index is not directly comparable across countries for reasons advocated above. Instead of the consumer price index, some measurement based on purchasing power currency à la Summers-Heston is preferable. For the same reason, comparability of real effective exchange rate is problematical as it is based on consumer price index.

'To pool or not pool' has not been formally tested in panel data studies. Jaeger (1992) can be implicitly considered as an exception when he divides his 21 countries into tree crop exporter countries (14 countries) and annual crop exporter countries (seven countries). By doing so, the results change drastically, underlying that it is not recommended to pool both sets of countries. Although Peterson (1979) affirms that he does not find significant differences between DCs and LDCs countries, Chhibber (1988) indicates that there is a significant difference if one disaggregates further such as in comparing low yield countries with high yield countries. Binswanger et al. (1987) do not raise the issue of 'to pool or not to pool.' It is possible that some of the 'bizarre' results that they obtain are simply due to the wrong level of pooling.

3.2. Review of area responses

This part concentrates on area responses to price changes without neglecting the impact of other important factors.

With the exception of Binswanger et al. (1987), all the studies examined below (see Table 2) are concerned with individual crop area responses and

are of time series nature. Maitha (1970) estimates the area response for Kenyan coffee that depends on real producer price (Fisher lag: 1 to 4), lagged quantity of coffee, a dummy variable and a time trend. Frederick (1969) explains cotton area expansion by the relative price of cotton to price of coffee lagged one period (the two prices are also used separately in one regression) and a time trend. The Seini (1985) final model of cotton area contains nominal lagged cotton price, lagged groundnut price and lagged area. Kere et al. (1986) regress acreage under wheat on the price of wheat (nominal or deflated by the price of the most competing crop) lagged one period, lagged yield of wheat, monthly rainfall, and a time trend. Binswanger et al. (1987) use price of crop output, price of livestock, price of fertilizers, urban wages, irrigation, road density, roads paved, life expectancy, adult literacy, research, extension, GDP, rural density, and country dummies to explain crop area (defined as the sum of harvested area of individual crops as reported by FAO). Gunawardana and Oczkowski (1992) have paddy area that depends on price ratio (paddy/fertilizer), irrigation, credit, concessional sales of rice, and area lagged.

Olayemi and Oni (1972) is the only study that deals with an asymmetry in price response for Sub-Saharan Africa. The objective is to assess how Western Nigerian cocoa farmers respond to different scenarios of price changes. The information collected from field interviews allows to run two types of regression: cocoa acreage on rising price and cocoa acreage on falling price. Trail et al. (1978) is a study on asymmetric area response to price changes applied to the United States late summer onion crop. The authors compare the symmetric supply response with the irreversible supply response captured by the two versions of the Wolffram (1971) technique presented above. Jaforullah (1993) exploits the asymmetric supply framework to explain sugar cane supply in the mill zones of Bangladesh over the period 1947-81. The variables of interest are: lagged area, price of sugar cane per hectare relative to that of jute, yield of sugar cane relative to that of jute, relative risk of sugar cane to jute, and two dummy variables (one reflecting the opening up of new sugar cane mills in the planted area of sugar cane and the other the effect of government ban on the production of jute in the mills zone).

Table 2
Agricultural area elasticities

Crop and regions	Period (data type)	Author	Method	Price variable	SRE	LRE	Lags
Coffee							
Kenya (industry)	1946–64 (Time S)	Maitha (1970)	Nerlove type	P_r	0.15 *	0.38 *	$P_{r,t-1,t-4}$
Cotton							
Uganda–Buganda	1922–38 (Time S)	Frederick (1969)	OLS	P_{cof}	0.25–0.67 *	0.25–0.67 *	$P_{cof,t-1}$
Ghana	1968–81 (Time S)	Seini (1985)	Nerlove	P_n	0.55 *	1.32 *	$P_{n,t-1}$
Wheat							
Kenya (Nyandurua)	1965–83 (Time S)	Kere et al. (1986)	Nerlove	P_n	0.65 *	1.38 *	$P_{n,t-1}$
Cocoa							
Western Nigeria	1970 (Cross-S)	Olayemi and Oni (1972)	OLS	P_{in}^i P_{in}^d	1.217 *		$P_{in,t}$ $P_{in,t}^d$
Onion							
USA	1952–74 (Time S)	Trail et al. (1978)	OLS	P_{ip}	0.105 *		$P_{ip,t-1}$
	1952–74 (Time S)	Trail et al. (1978)	OLS	P_w^i	0.09 *		$P_w^i,t-1$
	1952–74 (Time S)	Trail et al. (1978)	OLS	P_w^d	0.068 *		$P_w^d,t-1$
				P_{mW}^i	0.442 *		$P_{mW,t-1}$
				P_{mW}^d	0.086 *		$P_{mW,t-1}^d$
Paddy							
Sri Lanka	52–87 (Time S)	Gunawardana and Oczkowski (1992)	OLS	P_f	0.05 *	0.06 *	$P_{f,t-1}$
Sugar cane							
Bangladesh	1951–81 (Time S)	Jaforullah (1993)	NLS	P_{ip}	0.30 *	0.45 *	$P_{ip,t}$
	1951–81 (Time S)	Jaforullah (1993)	NLS	P_{mW}^i	0.32 *	0.41 *	$P_{mW,t}$
				P_{mW}^d	0.15 *	0.20 *	$P_{mW,t}^d$
Crop area							
58 DCs and LDCs	1969–78 Panel	Binswanger et al. (1987)	Within	P_i	0.011 *		$P_{i,t}$

Time S, time series data; Cross-S, cross-section data; Panel, panel data; NLS, nonlinear least squares; P_r , the ratio of nominal price of coffee to the import price index; P_{cof} , the ratio of cotton price to coffee price; P_n , nominal price of cotton which is used separately with the price of groundnut; P_{in}^i and P_{in}^d , rising and falling prices, respectively, from direct interviews (see Olayemi and Oni, 1972); P_{ip} , the regular real price; P_w^i and P_w^d , rising and falling prices, respectively, à la Wolffram (1971); P_{mW}^i and P_{mW}^d , rising and falling prices, respectively, using modified Wolffram technique; P_f , the ratio of guaranteed price to subsidized fertilizer price; P_i , output price quoted in domestic currency unit converted using purchasing power parity (PPP) exchange rate deflated to 1980 prices using the price index for the OECD as a whole; SRE, short-run price elasticity; LRE, long-run price elasticity; Lags, lags used for price.

* Significant at the 10% level, at least.

Table 2 reports the results of the inquiry. The findings underlined in the previous part are uncovered here. Particularly, short-run elasticities are low; long-run price elasticities are higher than short-run price elasticities. The novelty here is that the few studies using the asymmetric approach seem to reveal asymmetric area responses to price changes with area responding more to rising price than to falling price. In brief, area expansion responds to agricultural incentives.

When included, other factors are important in determining the pace of area change. For example, the elasticities are -0.036 , -0.091 , 0.026 , -0.037 ,

-0.046 , and 0.026 for the price of fertilizers, urban wages, road density, research, GDP, and rural population density, respectively, and other estimates are 0.425 , 1.272 , and -0.138 for irrigation, life expectancy, and adult literacy, respectively, in Binswanger et al. (1987).¹⁴ For studies using the Nerlove model, lagged output (area) is significant where included and so are weather (rainfall) and technological change (captured by time trend).

¹⁴ Some of the variables are wrongly signed for diverse reasons.

As for quantity studies, there are a number of issues that can be raised. The problem of omitted variables seems to be present in some studies. By using only lagged price of cotton and coffee as explanatory variables, the Frederick (1969) study is most likely misspecified. The studies based on the Nerlove methodology could be misspecified, as some relevant prices are missing. Irrigation, roads, and human capital could well be important in Trail et al. (1978). Population density is most likely important in explaining paddy area in Gunawardana and Oczkowski (1992).

Simultaneity is an issue in some of the models. In Binswanger et al. (1987) roads, urban wages, and population growth are probably endogenous.

Concerning the pooling issue, what was said about Binswanger et al. (1987) in the previous section holds here. Regarding the asymmetric response of price changes, with the exceptions of Olayemi and Oni (1972), Trail et al. (1978), and Jaforullah (1993), all other authors fail to deal with this issue. Olayemi and Oni (1972) indicate that the short-run rising price elasticity is 1.217 and that of falling price is 0.643. The authors formally test the hypothesis of price segmentation and confirm that Nigerian farmers are more responsive to price increase than to price decrease. A shortcoming, however, is that the ex-ante response may deviate from the ex-post one. Trail et al. (1978) obtain the following short-run elasticities: 0.105 for symmetric supply function; 0.90 and 0.068 for increasing price and decreasing price, respectively, in the context of the Wolffram technique; and 0.442 and 0.086 for increasing price and decreasing price, respectively, in the context of the modified Wolffram technique. The latter is the best model. The authors model the case of short-run asymmetry and long-run symmetry by using an Almon lag model. Jaforullah (1993), among others, obtain the following elasticities with the modified Wolffram technique: 0.15, 0.32, 0.20, and 0.41 in the short run (price falling and rising) and long run (price falling and rising), respectively. Misspecified reversible function gives rise to an elasticity of 0.12 and 0.28 in the short run and long run, respectively.

The results from asymmetric area responses are important in the debate concerning the potential deleterious environmental effect of price increases and price decreases.

4. Conclusion

The objective of this paper was to review the literature dealing with the impact of prices and macroeconomic policies on agricultural supply.

The paper uncovers some stylized facts underlined in other literature reviews. First, farmers are everywhere rational; that is, in developed as well in developing countries, farmers expand their production as output prices increase. Nevertheless, this first relational regularity between agricultural supply and prices does not tell us the whole story about agricultural supply. A host of policy variables (i.e. overvalued currency and budget deficit) and other factors (i.e. climate, quality of soil, and level of technology) that also affect the level of agricultural supply can, under some circumstances, reinforce, decrease or annihilate the price effect. A deficient infrastructure, for example, as is the case in many third world countries, can wipe out the price incentive to produce more.

Second, for individual crops, the short-run own price elasticity is smaller than the long-run elasticity. The main reason is that while in the short run some factors are fixed, in the long run all factors are variable. Third, for aggregate output, the short-run price elasticity is smaller than the long run; in fact, aggregate supply is almost inelastic in the short run. The quasi-inelasticity of the aggregate supply is largely explained by immobility of capital, land, and labor in the short run.

Policy implications of the different stylized facts concerning the relationship between prices (and non-prices) and agricultural output are well known and understood. The rationality of farmers, for example, implies that measures should be taken to eliminate price distortion since an increase in output price leads to an increase in agricultural output. At the same time one should not neglect other incentive elements. Indeed, in developing countries in general and Sub-Saharan Africa in particular, non-price factors are equally if not more important than output price in agricultural production. One such factor is infrastructure.

While the literature does a good job detecting the nature of relationships between determining factors and agricultural output, it fails to perform well quantifying the strength of relationships. In other words,

this literature review stresses that our understanding of the quantitative dimensions of agricultural supply response is surprisingly weak given the importance of this assumed response to growth, poverty and the environment. Indeed, issues such as simultaneity bias, omitted variable bias, inaccurate data pooling, and asymmetry in supply responses to price changes have not been adequately addressed in many instances. As policy recommendations should be based not only on the qualitative nature of the relationship between determining factors and agricultural supply but also on the quantitative dimension, the above shortcomings should be taken into account in future studies.

Acknowledgements

I wish to thank Kenneth Chomitz for valuable advice, David Wheeler and Christopher Udry for useful comments. I am also indebted to one anonymous referee and to the editor of this journal for very insightful comments. Any remaining errors are mine.

References

Abt associates, Inc., 1989. Agricultural Policy Analysis: A Manual for A.I.D. Agricultural and Rural Development Officers. AID Evaluation Special Studies, 61, Washington, DC.

Askari, H. and Cummings, J., 1977. Estimating agricultural supply responses in the Nerlove model: a survey. *Int. Econ. Rev.*, 18: 257-292.

Bapna, S.L., Binswanger, H.P. and Quizon, J.B., 1984. Systems of output supply and factor demand equations for semi-arid tropical India. *Indian J. Agric. Econ.*, 39: 179-213.

Behrman, J.R., 1968. Monopolistic cocoa pricing. *Am. J. Agric. Econ.*, 50: 702-719.

Binswanger, H., Mundlak, Y., Yang, M.C. and Bowers, A., 1985. On the determinants of cross-country aggregate agricultural supply. World Bank, Washington, DC, mimeo.

Binswanger, H., Mundlak, Y., Yang, M.C. and Bowers, A., 1987. On the determinants of cross-country aggregate agricultural supply. *J. Econometrics*, 36: 111-131.

Bond, M.E., 1983. Agricultural responses to prices in Sub-Saharan Africa. *Int. Monetary Fund Staff Pap.*, 30: 703-726.

Burton, M., 1988. Irreversible supply functions revisited. *J. Agric. Econ.*, 39: 113-120.

Chhibber, A., 1988. Raising agricultural output: price and non-price factors. *Finance Dev.*, 25: 44-47.

Chhibber, A., 1989. The aggregate supply response: a survey. In: S. Commander (Editor), *Structural Adjustment & Agriculture: Theory and Practice in Africa and Latin America*. Overseas Development Institute, London, pp. 55-68.

Cleaver, K.M., 1985. The impact of price and exchange rate policies on agriculture in Sub-Saharan Africa. Working Paper, 728, World Bank, Washington, DC.

Cleaver, K.M. and Schreiber, G.A., 1994. Supplement to reversing the spiral: the population, environment, and agriculture nexus in Sub-Saharan Africa. World Bank, Washington, DC.

Cochrane, W., 1955. Conceptualizing the supply relation in agriculture. *J. Farm Econ.*, 37: 1161-1175.

Demery, L. and Addison, T., 1987. The alleviation of poverty under structural adjustment. World Bank, Washington, DC.

Frederick, K.D., 1969. The role of market forces and planning in Uganda's economic development, 1900-1938. *East. Afr. Econ. Rev.*, 1: 47-62.

Gunawardana, P.J. and Oczkowski, E.A., 1992. Government policies and agricultural supply response in Sri Lanka. *J. Agric. Econ.*, 43: 231-242.

Gwyer, G.D., 1971. Long- and short-run elasticities of sisal supply. *East. Afr. Econ. Rev.*, 3: 19-29.

Hallam, D., 1990. *Econometric Modelling of Agricultural Commodity*. Routledge, London, 191 pp.

Jaeger, W., 1992. The effects of economic policy on African agriculture. World Bank Discussion Papers, Africa Technical Department Series 147.

Jaeger, W. and Humphreys, C., 1988. The effect of policy reforms on agricultural incentives in Sub-Saharan Africa. *Am. J. Agric. Econ.*, 70: 1036-1043.

Jaforullah, M., 1993. Asymmetric supply response: evidence from Bangladesh. *J. Agric. Econ.*, 44: 490-495.

Johnson, G.L., 1958. Supply functions: some facts and notions. In: E.O. Heady, H.G. Dresslin, H.R. Jensen and G.L. Johnson (Editors), *Agricultural Adjustment Problems in a Growing Economy*. Iowa State University Press, Ames, pp. 74-93.

Kere, P.A., Mwangi, W.M. and Ongutu, A., 1986. The supply responsiveness of wheat farmers in Kenya. *East. Afr. Econ. Rev.*, 2: 151-155.

Krautkraemer, J.A., 1994. Population growth, soil fertility, and agricultural intensification. *J. Dev. Econ.*, 44: 403-428.

Krueger, A.O., Schiff, M. and Valdés, A., 1988. Agricultural incentives in developing countries: measuring the effect of sectoral and economywide policies. *World Bank Econ. Rev.*, 2: 255-271.

Lopez, R., Ali, R. and Larsen, B., 1991. How trade and economic policies affect agriculture. Working Paper, 719, World Bank, Washington, DC.

Maitha, J.K., 1970. Productivity response to price: a case study of Kenyan coffee. *East. Afr. Econ. Rev.*, 2: 31-37.

Mamingi, N., 1996. On the impact of prices and macroeconomic policies on agricultural supply and the environment: a synthesis. World Bank, Washington, DC, mimeo.

Mshomba, E.R., 1989. Price elasticity of supply of Tanzania's major export crops. *East. Afr. Econ. Rev.*, 5: 9-20.

Mundlak, Y., 1985. The aggregate agricultural supply. World Bank, Washington, DC, mimeo.

Ogbu, O.M. and Gwetibouo, M., 1990. Agricultural supply re-

spouse in sub-Saharan Africa: a critical review of the literature. *Afr. Dev. Rev.*, 2: 83-99.

Olayemi, J.K. and Oni, S., 1972. Asymmetry in price response: a case study of Western Nigerian cocoa farmers. *Niger. J. Econ. Soc. Stud.*, 14: 347-355.

Oni, S.A., 1969. Production response in Nigeria agriculture: a case study of palm produce, 1949-1966. *Niger. J. Econ. Soc. Stud.*, 11: 81-91.

Peterson, W.L., 1979. International farm prices and the social cost of cheap food policies. *Am. J. Agric. Econ.*, 61: 12-21.

Pick, H.D. and Vollrath, L.T., 1994. Real exchange rate misalignment and agricultural export performance in developing countries. *Econ. Dev. Cult. Change*, 42: 555-571.

Rao, J.M., 1989. Agricultural supply response: a survey. *Agric. Econ.*, 3: 1-22.

Rao, P.D.S. and Sharma, K.C., 1991. On the aggregation problem in international comparisons of agricultural production aggregates. *J. Dev. Econ.*, 35: 197-204.

Salehi-Isfahani, D., 1993. Population pressure, intensification of agriculture, and rural-urban migration. *J. Dev. Econ.*, 40: 371-384.

Seini, W., 1985. The economic analysis of the responsiveness of peasant cotton farmers to the price incentives in Ghana. *Tech. Publ. Ser., Univ. Legon, Ghana*, 51: 77-81.

Sharma, K.L., 1992. Aggregate farm supply response in Kenya. *East. Afr. Econ. Rev.*, 8: 92-101.

Summers, R. and Heston, A., 1988. A new set of international comparisons of real product and price Levels estimates for 130 countries, 1950-1985. *Rev. Income Wealth*, 34: 1-25.

Tomek, W.G. and Robinson, K.L., 1972. *Agricultural Product Prices*. Cornell University Press, Ithaca, 376 pp.

Trail, B., Colman, D. and Young, T., 1978. Estimating irreversible supply functions. *Am. J. Agric. Econ.*, 60: 528-531.

Tweeten, G.L. and Quance, C.L., 1969. Positivistic measures of aggregate supply elasticities: some new approaches. *Am. J. Agric. Econ.*, 51: 342-352.

Tweeten, G.L. and Quance, C.L., 1971. Techniques for segmenting independent variables in regression analysis: reply. *Am. J. Agric. Econ.*, 53: 359-360.

Valdés, A. and Pinckney, T.C., 1989. Trade and macroeconomic policies: impact of agricultural growth: evidence to-date. *East. Afr. Econ. Rev.*, 5: 42-61.

Van Schalkwyk, H.D. and Groenewald, J.A., 1993. An estimate of aggregate supply response in South African Agriculture. *Dev. South. Afr.*, 10: 549-558.

Wolffram, R., 1971. Positivistic measures of aggregate supply elasticities: some new approaches - some critical notes. *Am. J. Agric. Econ.*, 53: 356-359.

World Bank, 1993. Purchasing power of currencies: comparing national incomes using ICP Data. International Economics Department, World Bank, Washington, DC.

World Bank, 1994. *Adjustment in Africa: Reforms, Results, and the Road Ahead*. Oxford University Press, New York, 284 pp.