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Abstract 

Non parametric analysis of technical efficiency for irrigated farms in the Madiun regency in the west-central part of East Java, Indonesia 
is conducted using linear programming techniques. This procedure allows the relative technical efficiency for each farm to be determined 
and for inefficiencies to be decomposed into pure technical inefficiency and scale inefficiency and does not require restrictions or 
assumptions regarding functional form to be placed on the data. 

Farmers in Madiun generally are efficient relative to each other. Farmers operating inefficiently do so more often because of scale 
inefficiencies rather than pure technical inefficiencies. A rna jority of the farms operate in the region of decreasing returns to scale rather than 
increasing returns to scale. Farmer age, the level of diversification of cropping activities, and high school education were found to be related 
to technical efficiency in the rainy season under irrigated conditions. Other socioeconomic factors were not statistically significant. 

The results imply that inefficient farms use excessive levels of inputs, particularly nitrogen fertilizer. This is perhaps due to the lingering 
effects of past input subsidization policies, particularly of fertilizers, in Indonesia, or to risk-reducing behavior. The results also imply that 
current government policies to encourage diversification of cropping practices in Java may lead to greater technical inefficiencies in 
production. In addition, extension education targeted to younger farmers with low levels of formal education would improve efficiency. 

Nonparametric analysis of technical efficiency for 
irrigated farms in the Madiun regency of East Java, 
Indonesia is conducted using linear programming 
techniques. Though relatively common in high in­
come countries, efficiency analysis in low income 
countries has been hampered by lack of data and 
poor understanding of the production process and 
often is limited to analysis of a single crop. Whole-

' Corresponding author at: Kutisari Indah Selatan IV 148, 
Surabaya, Indonesia. 

1 Contribution no. 96-308-J from the Kansas Agricultural Ex­
periment Station. 

farm analysis of technical efficiency that includes 
multiproduct production is rare. The use of nonpara­
metric techniques makes it possible to evaluate tech­
nical, pure technical, and scale efficiencies for multi­
product farms in Madiun and to then identify factors 
associated with inefficiencies. 

Efficiency may be described as the relation be­
tween ends and means (Afriat) and has application in 
production analysis as well as consumption theory 
and demand analysis. Economists widely distinguish 
between technical efficiency and allocative or price 
efficiency, following pioneering work by Farrell in 
1957. The concept of technical efficiency relates to 
whether a firm uses the best available technology in 
its production process (Chavas and Cox, 1988). In 
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economic terms, technical inefficiency refers to fail­
ure to operate on the production frontier and gener­
ally is assumed to reflect inefficiencies caused by the 
timing and method of application of production in­
puts (Byerlee, 1987). Potential causes of technical 
inefficiency are inadequate information or insuffi­
cient technical skills. 

A variety of methods have been used to measure 
efficiency. The concept of the efficient frontier has 
often been used, where deviations from the frontier 
are assumed to represent inefficiencies. Various types 
of frontier efficiency analysis exist. These methods 
differ with respect to the assumptions on the outer 
bound of the frontier, which may be deterministic or 
stochastic, and to the method of measurement, para­
metric or non-parametric. 

For the parametric approach, estimation of pro­
duction functions (or profit or cost functions) con­
sists of specifying a parametric form for the function 
and then fitting it to observed data by minimizing 
some measure of their distance from the estimated 
function. This method attributes variation from the 
most efficient farms to technical inefficiency. As 
Chavas and Aliber (1993) note, the parametric ap­
proach provides a consistent framework for analyz­
ing efficiency, however, this approach has an impor­
tant weakness, in that the maintained hypothesis of 
parametric form can never be detected directly 
(Varian, 1984; Banker and Maindiratta, 1988). This 
method thus imposes restrictions on the technology 
that may not hold and that affect the distribution and 
measurement of the efficiency terms (Chavas and 
Aliber, 1993). An advantage of the parametric ap­
proach is that it can segregate deviations from the 
frontier technology into the systematic or actual inef­
ficiencies of the firm and the random components, 
such as weather, that are stochastic and not due to 
operator inefficiency. Some stochastic formulations 
of frontier production functions have been developed 
that sort out the effects due to random errors from 
those caused by technical inefficiencies. 

An alternative approach is to apply nonparametric 
techniques to analyze production efficiency. A deter­
ministic nonparametric frontier model was developed 
by Farrell (1957) in his groundbreaking work. This 
model cannot separate deviations from the frontier 
technology into their systematic and random compo­
nents and thus, attributes all deviations from the 

frontier technology to inefficiency of the observed 
firm and may overstate inefficiencies. However, this 
methodology has the advantage of imposing no a 
priori parametric restrictions on the underlying tech­
nology, because it does not require a specific func­
tional form for the frontier to be specified. There­
fore, it does not impose unwarranted structure on the 
technology that might create a distortion in the effi­
ciency measures (Hire et al., 1985). Also, it can 
handle disaggregated inputs and multiple output 
technologies and can be used in evaluating technical, 
allocative, scale and scope efficiencies. 

This study utilizes nonparametric techniques to 
provide a direct analysis of technical efficiency of 
irrigated food-crop production in East Java, Indone­
sia. A nonparametric, whole-farm, production fron­
tier that includes multiple outputs is estimated for 
each farm in each of three distinct cropping seasons: 
rainy, middle, and dry. The crops included in this 
study are paddy rice, com, soybeans, peanuts, mung­
beans, cassava, and a pepper-onion intercrop. Rela­
tive overall technical efficiency for each farm is 
determined as well as pure technical efficiency and 
scale efficiency. Efficiency indices obtained from the 
nonparametric analysis are then regressed on socioe­
conomic variables to help identify factors associated 
with technical inefficiencies. 

1. Agricultural production and efficiency in In­
donesia and Asia 

Efficiency analysis of agricultural production in 
Indonesia has focused primarily on irrigated rice 
production (Widodo, 1986; Erwidodo, 1990) using 
stochastic parametric approaches. Widodo used a 
stochastic production function methodology with 
panel data to estimate average technical efficiencies, 
found to be between 83% and 96%. These values are 
similar to those found by Dawson et al. (1991) in the 
Philippines for lowland irrigated rice. In a similar 
study, Erwidodo used two stochastic production 
functions, the Cobb-Douglas and the translog, to 
examine farm-level efficiency in West Java. Techni­
cal efficiencies for wetland rice production averaged 
93.5% and ranged from 88% to 96.4%. This method­
ology revealed no significant difference in the level 
of technical efficiency between small and large farms. 
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Byerlee cites six other studies that have taken 
place in Asia, five of which examined irrigated rice 
production and one that looked at com production, 
all using stochastic production frontier methodology. 
Average efficiencies for rice production ranged from 
47% to 80% in India, the Philippines, and Pakistan. 
For com, the average efficiency in a study by Peng 
and Chen in Taiwan (cited by Byerlee, 1987) was 
72%. The major factors explaining differences in 
efficiency were variables that dealt with farmers' 
information and skills, such as education, experi­
ence, and contact with extension agents. 

A study of irrigated, high-yielding rice varieties in 
India by Kalirajan (1981) used Cobb-Douglas tech­
nology in estimating a profit function to evaluate the 
relative efficiency of large and small farmers who 
had adopted modem varieties. He concluded that 
small farmers were as efficient in adopting the new 
technologies as large farmers in terms of both techni­
cal efficiency and allocative efficiency. 

In a study of rice production in the Philippines, 
Berns ten ( 1977) included a measure of farmers' 
technical knowledge in the production function. The 
effect of this variable was significant and positive. 
He also found that age, experience, and extension 
contact were significant factors in farmers' effi­
ciency, but education was not significant. 

Dawson et al. (1991) evaluated technical, alloca­
tive, and overall economic efficiencies for 22 rice 
farms in the Philippines with panel data from the 
International Rice Research Institute using a frontier 
production function approach. Overall efficiencies 
ranged from 84% to 95% across the farms. Azhar 
( 1991) found technical efficiency in rice and wheat 
production in Pakistan to be related positively and 
very significantly to education levels, with primary 
education providing the greatest increase in effi­
ciency. 

Little has been done concerning efficiency of 
secondary food-crop production in Indonesia. In ad­
dition, the application of nonparametric techniques to 
Indonesian agriculture is virtually nonexistent, and 
these methodologies have potential for providing 
useful information regarding technical and scale effi­
ciencies in production as well as factors associated 
with inefficiencies that may exist. These techniques 
are useful where data are more limited and produc­
tion technologies not well understood, since they do 

not require a priori specification of a functional 
form. 

2. Methodology and model development 

Although the use of parametric techniques is 
prevalent, the use of nonparametric techniques is 
more limited, particularly in low income countries, 
despite the fact that nonparametric methodologies 
can be used in situations where data is more limited 
and where production technologies are less well 
understood. There are two nonparametric approaches 
to production analysis. One is based on the works of 
Afriat, 1972; Hanoch and Rothschild, 1972; and 
Varian, 1984. This approach deals with four types of 
concerns in the neoclassical theory of production: 
consistency, restriction of form, recoverability, and 
extrapolation, without maintaining any hypotheses of 
functional form. This methodology is applied to time 
series data and has been used in several studies to 
evaluate technical efficiency in agriculture (e.g. 
Chavas and Aliber, 1993; Chavas and Cox, 1988). 

Alternatively, Farrell decomposed efficiency into 
technical efficiency and allocative efficiency. Hire et 
al. ( 1985) introduced a nonparametric method of 
calculating efficiency across farms, which extended 
Farrell's approach by relaxing the restrictive assump­
tions of constant returns to scale and of strong 
disposability of inputs, the major criticisms of the 
method. 

Fare et al. note that efficiency by a firm in inputs 
does not imply that the firm is necessarily efficient 
in outputs. Technical, allocative, and other efficiency 
measures of outputs cannot be determined from cor­
responding efficiency measures of inputs or vice 
versa because output and input efficiencies focus on 
different aspects of production. The type of effi­
ciency that is being evaluated should be clearly 
specified. 

Technical efficiency may be defined as the ability 
of a firm to produce as much output as possible with 
a specified level of inputs, given the existing tech­
nology. Graphically, this is illustrated in Fig. I. Six 
observed data points with associated levels of input 
and output are shown. The frontier for this produc­
tion process is defined by the line ABC. Observa­
tions A, B, and C lie on the frontier while observa-
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Fig. I. Technical efficiency illustrated. 

tions D, E, and F lie within the frontier. A ray from 
the origin is tangent to the frontier at Point B. This 
ray represents constant returns to scale for the tech­
nology represented by these data observations. In 
this example, Observation B is overall relatively 
technically efficient, which implies that this firm is 
also purely technically efficient and scale efficient. It 
lies on the frontier and has constant returns to scale. 

Although a firm may be technically inefficient in 
an overall sense, it is possible for it to be purely 
technically efficient, while experiencing inefficien­
cies in scale. This is also illustrated in Fig. 1. 
Observations A and C are purely technically effi­
cient, since they lie on the frontier, but exhibit scale 
inefficiencies. Observation D is both scale inefficient 
and purely technically inefficient since it lies below 
the frontier. Theoretically, the same level of input 
could be used to achieve a higher level of output, 
which would allow this producer to be on the fron­
tier between Points B and C. Observation E is purely 
technically inefficient since it is not on the produc­
tion frontier, but is scale efficient, because it pro­
duces at input level x2, the scale-efficient level of 
input. 

The model utilized in this study is based on a 
model developed by Grabowski and Pasurka ( 1987) 
to examine relative efficiency of farms in the north-

em and southern United States prior to the Civil 
War. Using this methodology, overall technical effi­
ciency for a farm is determined and then is decom­
posed into pure technical efficiency and scale effi­
ciency for multiproduct, farm-level, crop production 
in Madiun, Indonesia. With this approach, a non­
parametric production frontier is constructed, with 
inefficiency being measured by the extent to which 
firms operate below the frontier. Using this ap­
proach, the cause of the inefficiency can be allocated 
as either inappropriate scale (scale inefficiency) or 
off-isoquant production (pure technical inefficiency). 

It should be noted that this procedure involves 
relative technical efficiency, that is, the production 
frontier is constructed from the data and each farm's 
performance is compared with the frontier to indicate 
overall technical efficiency of the individual farm. 
Risk is not included explicitly in the model. The 
model assumes that the degree of risk aversion is 
consistent across all farms in the sample, but does 
not assume the degree of risk aversion, that is, 
whether this group of farmers are risk-taking, risk­
neutral, or risk averse. If this assumption of constant 
risk preference does not hold, the estimated ineffi­
ciencies will be overstated. It has been suggested that 
risk preferences may be different particularly be­
tween large and small farms. However, the regres-
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sion analysis conducted to evaluate factors associ­
ated with inefficiency includes farm size as a possi­
ble factor, but as shown later, this is not statistically 
related to inefficiency. 

This analysis also assumes homogeneous inputs. 
Land is not included explicitly in the model and it is 
assumed that variations in soil types and fertility do 
not exist. This is a rather strong assumption, but 
necessary in order to proceed. Though data for varia­
tion in land quality were not collected, the data for 
each of the four villages surveyed were tested sepa­
rately to evaluate whether there might be large dif­
ferences in land quality. These results are reported 
below, but no significant differences in technical 
efficiency are found to exist between villages. Ho­
mogeneity of other inputs, including labor, chemi­
cals, seed, and management, is assumed as well. 
Differences in labor and management quality would 
be very difficult to determine and include in the 
model. 

In the model, it is assumed that x represents a 
vector of n inputs, x = (x 1, x2, ... , xn) E R~; that 
y represents the output vector of m outputs, y = (y 1, 
y 2 , ••• , Ym) E R~; and that there are k farms. It is 
also assumed that firms face output prices pk E R~, 
input prices rk E R~, target cost Ck > 0, and 
revenue Rk > 0. The matrix of observed inputs, X, 
of dimension (n,k) and the matrix of observed out­
puts, Y, of dimension (m,k) form a transformation 
set written as: 

(1) 

where z is the vector of intensity variables of activ­
ity (x;, y). The transformation set corresponds to 
the total product curve and shows maximum feasible 
output for a function exhibiting constant returns to 
scale. 

For observation (x;,y), overall technical effi­
ciency can be illustrated as follows: 

(2) 

where () is the level of inefficiency and 0; Y; is the 
actual output of the ith farm. The farm is technically 
efficient if () equals 1. () can be interpreted as the 
ratio of potential to actual output or alternatively, 
1 1 () is the ratio of efficiency relative to the potential 
frontier output. Technical efficiency can be deter-

mined by solving the following linear programming 
problem: 

Max() 
subject to: 

x"z' +x,2z2 + ... +x,kzk ~xli 

X21 z, + X22 Z2 + ··· + x2k zk ~ X2; 

Xn1Z1 +xn2Z2 + ... +xnkZk~Xn; 
y,,z, +y,2z2+ ... +ylkzk-ylifJ~O 

Yz1 z, + Y22 Z2 + ··· + Y2k zk- Yz;O ~ 0 

Ymi z, + Ym2 Z2 + ··· + Ymk Zk- Ym;O ~ 0 

(3) 

where there are n input constraints and m output 
constraints. The output constraint ( Yi! z1 + Y;2 z2 + ... 
+ Y;k zk) measures the output level of the (hypotheti­
cal) overall technically efficient farm for a particular 
output. This is the maximum output that can be 
produced by the ith farm, given its actual level of 
inputs. For a single output situation, only one output 
constraint is needed. 

The term, Ym;O, is the actual production of output 
m for the ith farm multiplied by the level of ineffi­
ciency, fJ. In a multi-output situation, Ymk is the 
level of m output produced by firm k. Multi-input, 
multi-output analysis of technical efficiency is con­
ducted for each firm in each of the three seasons. 
This analysis evaluates overall efficiency of the farm 
and not efficiency in the production of individual 
outputs. If the farm is overall technically efficient, 
then () = 1. However, if the farm is technically inef­
ficient, ()) 1. When this is the case, the theoretical 
maximum output is greater than the actual output of 
the ith farm, making the ith farm inefficient relative 
to the production frontier by a factor of 1 I(). 

This model allows for the decomposition of tech­
nical inefficiency between scale inefficiency (not 
producing at constant returns to scale) and pure 
technical efficiency (operating off of the isoquant). 
To determine the source of the inefficiency, a new 
transformation set is needed: 

T' = {( x,y):y ~ Yz,Xz ~ x,z E Rk+ ,Lk'.'Z; = 1} 
( 4) 

where the intensity variables, z, are restricted to 
being summed to 1. This modification allows for 
increasing and decreasing returns to scale. 
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Pure technical efficiency for observation (x;.Y) 

can be shown as: 

A* ( X;,y;) =max{ A:( X;,Ay;) E T'} (5) 

and is determined by solving the following linear 
programming problem: 

Max A 
subjectto:x 11 z 1 +x12 z 2 + ••• +xlkzksxli 

X21 Z1 + X22 Z2 + ··· + x2k zk :5: X2; 

Xn1 Z1 + Xn2 Z2 + ··· + Xnk Zk :S; Xni 

YllZt + Y12Z2 + ... + Y!kZk- yliA ~ 0 

Y21Z1 + Y22Z2 + ... + Y2kZk- Y2;A ~ 0 

Yml Zt + Ym2 Z2 + ··· + Ymk Zk- Ym;A ~ 0 
z 1 +z2 + ... +zk= 1. 

(6) 

where the last constraint restricts the intensity vari­
ables to sum to 1. If A* = 1, the firm is purely 
technically efficient and operating on the production 
frontier, indicating that any inefficiencies that exist 
are due to scale inefficiencies, that is, the incorrect 
level of input use along the frontier. This measure 
evaluates the ratio of potential to actual output based 
on the transformation set, T'. Using (} • and A*, it is 
possible to determine scale efficiency for observation 
(x;. y), which can be written as follows: 

(7) 

When (]> * ( x i• y) is equal to 1, the ith farm 
operates at constant returns to scale. If(]> • (x;.Y;)-:/= 
1, the firm is operating at nonconstant returns to 
scale. However, using this measure, it is not possible 
to know whether a farm operating at nonconstant 
returns to scale is operating at increasing or decreas­
ing returns to scale. Thus, another measure is needed. 

To accomplish this, the transformation set is mod­
ified again by imposing nonincreasing returns to 
scale. The new transformation set can be written as: 

T* = {( x,y) :y :5: Yz,Xz :5: x,z E Rk+ ,}:k•~ 1 z; :s; 1} 
(8) 

where the sum of the value of the intensity variables, 
z, is restricted so that it is less than 1. 

The calculation of efficiency for observation (x;. 
y) is now: 

y* (x;,y;) = max{y:(x;.'YY;) E T*} (9) 

where y * can be calculated by using the following 
linear programming problem: 

Maxy 

subject to: 

xll Z1 + X12 Z2 + ··· + xlk zk :5: xli 

X21 Z1 + X22 Z2 + ··· + x2k zk :5: X2; 

Xnl Zt + xn2 Z2 + ··· + Xnk Zk :5: Xni 

Ytt Z1 + Y12Z2 + ... + YtkZk- Y!i'Y~ 0 

Y21 Zt + Y22 Z2 + ... + Y2k Zk- Y2;'Y ~ 0 

Ym1Z1 + Ym2Z2 + ... + YmkZk -ymi'Y~ 0 
z 1 + z 2 + ... + zk s 1. 

( 10) 

This problem indicates that if (]> * =F 1, two alter­
natives exist. If (]> * -:/= 1 and (} • = y *, the farm 
produces at increasing returns to scale. If (]> * =F 1 
and (} * =F y * , then the farm operates at decreasing 
returns to scale. A firm operating at increasing re­
turns to scale should increase input use in order to 
achieve economies of scale. This would mean mov­
ing from Point A to Point B in Fig. 1 to increase 
efficiency. A situation in which farms are operating 
at decreasing returns to scale suggests that small 
farms are viable and that large farms would be better 
off to decrease input levels or at least not increase 
them, because to do so would be to further increase 
inefficiency associated with returns to scale. 

Economic efficiency tests only evaluate actual 
productivity relative to potential productivity and do 
not imply irrationality on the part of farmers who are 
inefficient. The failure of farmers to use the most 
efficient techniques of production may be due to the 
cost of the acquisition of information for an individ­
ual farmer being greater than the benefits or perhaps 
due to fixed assets, property rights, and tenancy, as 
well as non-monetary objectives of the farmers 
(Byerlee, 1987). 

To help identify possible factors related to ineffi­
ciencies, the efficiency indices determined from the 
linear programming problems are regressed on ex-
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planatory variables of age, education, farm size, and 
tenure using a Tobit analysis to investigate the effect 
of these variables on the technical efficiency of the 
individual farms. 

This analysis can be helpful in targeting extension 
activities to deal with technical inefficiencies in pro­
duction. The linear Tobit regression in Eq. (II) is 
used to identify possible factors associated with inef­
ficiency. Tobit analysis is used because the depen­
dent variables, overall technical efficiency, pure 
technical efficiency, and scale efficiency, are cen­
sored variables, having an upper limit of I.OO. Each 
of these indices is regressed on the explanatory 
variables of age, education, farm size, percent of 
land owned, and diversification. Dummy variables 
are used for education, representing junior high 
school and high school. The parameters, B3 and 84 , 

provide an idea of how much additional levels of 
education after the primary level affect efficiency. 
The variable percent of land owned is an attempt to 
evaluate the effects of land tenure on technical effi­
ciency. 

2 
EFF; =a+ j31 Age;+ j32 ( Age;) + j33ED2; 

where: 
EFF; 
Age; 
ED2; 

ED3; 

a,B 

+ f34 ED3; + j35 FS; + j36 0L; + j31 DV; + E; 

(11) 

is Efficiency index for farmer i. 
is Farmer age in years. 
is Education dummy variable = I if junior 
high education, 0 otherwise. 
is Education dummy variable = I if high 
school education, 0 otherwise. 
is Farm size in hectares for firm i. 
is Percent of operated land owned by farmer 
i. 
is Diversification variable expressed by 
Herfindahl index. 
is Parameters. 

E; is Error term. 
It is hypothesized that younger, better educated 

farmers are more technically efficient, due to better 
skills and access to information. Farm size may 
positively affect efficiency, if farmers are able to 
achieve some economies of scale. Efficiency may be 
higher for farmers who own their land, because of 
greater incentives for efficiency relative to those who 

are renting. Farmers who produce only one crop in a 
season may be more technically efficient in produc­
tion than those who are more diversified. 

3. Description of data and study area 

The study area is the Madiun regency in the 
west-central part of East Java, Indonesia, about 170 
km west of Surabaya. The total area is 101 086 ha, of 
which 44 122 ha were tilled with 32 407 ha being 
irrigated in 1992. Dryland agriculture accounts for 
about 24% of cropland in this regency (Kantor 
Statistik, 1993). Land holdings are small, averaging 
0.72 ha (Kantor Statistik, 1993). Annual rainfall 
during 1988-1992 ranged from 1511 mm in 199I (a 
drought year) to 2329 mm in 1989. There are three 
cropping seasons annually on irrigated land, March 
to June, July to October, and November to February. 

Data from 77 farms collected from interviews in 
four villages in the Madiun regency of East Java, 
Indonesia in 1994 are used in analyzing technical 
efficiency of food crop production. A nonparametric, 
whole-farm, production frontier that includes multi­
ple crops is estimated for each farm in each of the 
three distinct cropping seasons: rainy, middle, and 
dry. The crops included in this study represent the 
major commodities grown in this area: paddy rice, 
com, soybeans, peanuts, mungbeans, cassava and a 
pepper-onion intercrop. 

Average age of all respondents was 44.4 years 
and ranged from 26 to 76 years. A total of 78% of 
the respondents had an elementary school education 
or less, 16% were junior high school graduates, and 
6% were high school graduates. Average farm size 
for the survey was 0.82 ha, slightly larger than the 
regency average of 0.72, and varied from 0.13 ha to 
2.28 ha. Of the 77 total farms, I4 farms (18%) 
included nonirrigated cropping, and these are evalu­
ated separately. A total of 87.0% of the farmers 
owned land and 50.6% had land that was cash rented 
whereas only 9.I% had a share rent arrangement, 
figures comparable with those found in other studies 
(Brotonegoro et al., 1986; Sendjaja and Choliq, 
1986). 

The nine crops in this study covered 72% of the 
arable land in the Madiun regency in I992 (Kantor 
Statistik, 1993). A comparison of the proportion of 
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crop acreages for the entire regency and for the 
farmer sample is shown in Table 1. Rice is the most 
commonly planted crop both in the sample and 
across all farms in the regency. Com, soybeans, and 
sugar cane are the next most important crops in 
terms of harvested acreage both in the sample and 
for all farmers in the regency. The regency data do 
not provide information about multicropping. 

Table I 
Proportion of crops grown in Madiun Regency and in the survey 
sample 

Madiun Regency (source: Kantor Statistik, 1993) 

Arable land area Food crops grown 
(%) (%) 

Rice 42 58.1 
Com 6 6.4 
Soybeans 9 12.4 
Peppers I onions <I 0.5 
Peanuts 3 4.5 
Mung beans 2 2.8 
Cassava 3 5.6 
Sugarcane 7 9.4 

Survey farmers 

Crops in sample Acreage in sample 
(%) (%) 

Rainy season 
Rice 68 58 
Com 12 13 
Peppers/ onions 9 6 
Sugarcane 14 16 
Com/cassava 5 7 
Middle season 
Rice 38 35 
Com 21 18 
Sugarcane 14 16 
Soybeans 17 19 
Soybeanjmungbean 3 4 
Soybean/peanut 6 6 
Cassava 3 2 
Dry season 
Rice II 9 
Pepper/ onion 14 8 
Soybeans 23 18 
Com 18 16 
Com-soybean 14 10 
Com-mungbean 10 6 
Com-peanut 8 5 
Fallow 18 12 
Sugarcane 14 16 
Other 2 

The inputs used for crop production include seed, 
measured in kilograms; three fertilizer inputs: urea, 
TSP, and an aggregated fertilizer input of other 
fertilizers used, all in kilograms; an aggregated 
chemical input in kilograms of active ingredient per 
hectare; aggregated labor input in man-days; and 
irrigation in hours per crop. Output data for the 
model is yield in kilograms per hectare for each 
crop. These values also were determined from the 
data collected from the farmer interviews. A more 
detailed description of the data is included in Llewe­
lyn (1995). 

Data for the regression analysis are also from the 
farmer interviews. Farmers were questioned regard­
ing age, education and farm size. Education was 
recorded as elementary school (6 years or less), 
junior high school (9 years), and high school ( 12 
years). None of the farmers interviewed had attended 
post-secondary education. Farm size is recorded in 
hectares of land operated, both owned and rented. 
The variable for tenure is measured in terms of the 
percentage of land owned (i.e. zero to 100). Diversi­
fication was measured using the Herfindahl index 
represented as: 

n 

DV = EP/ ( 12) 
i= 1 

where P; is the proportion of the farm acreage 
involved in a particular enterprise. A value approach­
ing 1.0 indicates specialization whereas smaller val­
ues reflect increasing diversification. For this sam­
ple, values ranged from 0.405 to 1.0 in the rainy and 
middle seasons and from 0.337 to 1.0 in the dry 
season and averaged 0.919, 0.879, and 0.814 for the 
rainy, middle and dry seasons respectively. 

4. Analysis and results 

Using the linear programming methodology out­
lined earlier, nonparametric analysis of relative tech­
nical efficiency is performed for food crop produc­
tion on irrigated farms in each of the three seasons. 
Three linear programs (Eq. (3), Eq. (6), and Eq. 
(10)) are solved to provide the values of 0, A, and 'Y 
for each individual farm. Table 2 summarizes the 
crops evaluated in each seasonal analysis and the 
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number of farms in the sample which produce each 
crop. A total of 61 farms is evaluated for technical 
efficiency in this analysis. 

Average, minimum, and maximum overall techni­
cal efficiency, pure technical efficiency, and scale 
efficiency are reported for each season in Table 3, as 
well as the number of farms operating at constant, 
increasing, and decreasing returns to scale. The aver­
age overall efficiency is calculated by dividing 1 I 8 
for each farm to obtain the overall efficiency level 
for that farm. This level of efficiency then is aver­
aged over all the farms in the sample. A farm that is 
technically efficient has an efficiency of 100%. Av­
erage pure technical efficiency is calculated by divid­
ing 1/ A for each farm and averaging these values, 
and average scale efficiency is determined by divid­
ing A/ (J for each farm and averaging these values 
for the entire sample. Scale efficient farms operate at 
constant returns to scale in inputs (input level x2 on 
Fig. 1), whereas those with decreasing returns have 
input levels that are too high and those with increas­
ing returns to scale have input levels that are too 
low. Scale-inefficient firms may be purely techni­
cally efficient (operating on the frontier) but are not 
using the correct level of input. 

Table 2 
Crops by season and number of farms evaluated for technical 
efficiency 

Number of farms 

Rainy season 
Rice 53 
Corn 9 
Peppers/ onions 7 
Middle season 
Rice 33 
Corn 14 
Soybeans 13 
Soybeanjmungbeans 2 
Soybeanjpeanuts 5 
Dry season 
Rice 9 
Corn 14 
Soybeans 18 
Corn/ soybeans 11 
Peppersjonions 11 
Com/peanuts 6 
Soybeanjmungbean 7 
Cornjmungbean 8 

Table 3 
Efficiency analysis results 

Rainy season 
Overall technical efficiency a 

Minimum 
Maximum 
Number technically efficient 
Pure technical efficiency b 

Minimum 
Maximum 
Number technically efficient 
Scale efficiency c 

Minimum 
Maximum 
Number CRS farms d 

Number IRS farms d 

Number DRS farms d 

Middle season 
Overall technical efficiency 
Minimum 
Maximum 
Number technically efficient 
Pure technical efficiency 
Minimum 
Maximum 
Number technically efficient 
Scale efficiency 
Minimum 
Maximum 
Number CRS farms 
Number IRS farms 
Number DRS farms 
Dry season 
Overall technical efficiency 
Minimum 
Maximum 
Number technically efficient 
Pure technical efficiency 
Minimum 
Maximum 
Number technically efficient 
Scale efficiency 
Minimum 
Maximum 
Number CRS farms 
Number IRS farms 
Number DRS farms 

a Calculated using Eq. (3). 
b Calculated using Eq. (6). 
c Calculated using Eq. (7). 

Mean 

0.981 
0.844 
1.000 

44(72.1%) 
0.988 
0.876 
1.000 

50 (82.0%) 
0.992 
0.904 
1.000 

45 (73.8%) 
I ( 1.6%) 

15 (24.6%) 

0.955 
0.646 
1.000 

41 (67.2%) 
0.977 
0.749 
1.000 

48 (78.7%) 
0.977 
0.711 
1.000 

43 (70.5%) 
8(13.1%) 

10 (16.4%) 

0.977 
0.738 
1.000 

50 (82.0%) 
0.989 
0.745 
1.000 

58 (95.1 %) 
0.987 
0.746 
1.000 

50 (82.0%) 
I (1.6%) 

10 (16.4%) 

d Determined using Eq. (7) and Eq. (I 0). 

121 

SD 

0.043 

0.029 

0.019 

0.083 

0.054 

0.058 

0.063 

0.045 

0.040 
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Results of the efficiency analysis in the rainy 
season are summarized in Table 3. Overall and pure 
technical efficiencies are high, as are scale efficien­
cies. The average overall technical efficiency of 
98.1% is slightly higher than but quite similar to 
values in other studies in Indonesia and Asia that 
used a parametric approach in evaluating rice pro­
duction (Widodo, 1986; Erwidodo, 1990; Dawson et 
al., 1991). This study had a much larger sample size 
than Dawson et al., and slightly larger than the other 
two studies. In a small sample, a few inefficient 
farms would influence the results more than in a 
larger sample. 

The range in overall technical efficiency is be­
tween 84.4% and 100%, with 44 of the 61 farms 
(72.1 %) being overall technically efficient, that is 
8 = 1. An additional six farms are purely technically 
efficient, meaning they operate on the production 
frontier but not at constant returns to scale. The 
average pure technical efficiency is 98.8%, with a 
minimum of 87.6%, indicating that the most purely 
technically inefficient farm could only increase out­
put by about 12.4% through more efficient use of 
inputs. Average scale efficiency is 99.2% with a 
minimum of 90.4%. Little variation in these mea­
sures is evident, with the standard deviations ranging 
from 0.019 to 0.043. Constant returns to scale are 
evident for 45 of the farms. Increasing returns to 
scale hold for only one farm and 15 farms experi­
ence decreasing returns to scale. 

In the middle season, average overall efficiency is 
95.5% with the minimum efficiency of 64.6%, as 
shown in Table 3. Forty-one farms are technically 
efficient, with seven of the remaining farms being 
purely technically efficient. Forty-three farms have 
constant returns to scale, whereas eight have increas­
ing returns to scale and ten have decreasing returns. 
The lower efficiencies associated with the middle 
season for these farms may be explained by a situa­
tion where rainfall may vary across farms leading to 
production responses which would not be captured 
by the efficiency analysis. The low rainfall in the dry 
season is consistent for all parts of the regency, 
while in the rainy season, rainfall is more consistent 
across all farms than in the middle season. Rainfall 
data by village are not available for analysis. 

Relative technical efficiency in the dry season is 
summarized in Table 3. Average efficiency is 97.7%, 

with the minimum efficiency at 73.8%. Fifty of the 
farms are overall technically efficient, with all but 
three farms being purely technically efficient. Aver­
age pure technical efficiency is 98.9%, and average 
scale efficiency is 98.7%. The 50 overall technically 
efficient farms operate at constant returns to scale, 
whereas 10 of the 11 remaining farms have decreas­
ing returns to scale, and one farm shows increasing 
returns to scale. 

Higher fertilizer use, particularly of urea, seems 
to be associated with the least efficient farms in each 
season, with average urea use of farms found to be 
overall technically inefficient higher than the average 
for the entire sample, with the least efficient farm in 
each season having the highest use of urea. High 
fertilizer use may reflect a risk evasive action, though 
some studies have found that producers with higher 
levels of risk aversion would be less likely to prefer 
high levels of nitrogen fertilization (Williams et al., 
1992; SriRamaratnam et al., 1987). 

Because of the assumption of homogeneity of 
inputs, particularly of land quality, the efficiency 
analysis was conducted for each of the four villages 
where data were collected. If homogeneous land 
quality is incorrectly assumed and land differences 
actually account for the measured inefficiencies found 
in the above analysis, the average efficiencies for 
each village should be 100% or nearly so, since the 
frontier for each individual village would be less 
than or equal to the aggregate production frontier for 
all farms. 

However, in each season, the average efficiencies 
for each individual village are only slightly higher 
than the averages for the aggregate sample and none 
are equal to 100%. In the rainy season, the average 
overall technical efficiencies for the four villages are 
98.2%, 98.8%, 98.7%, and 98.4%, respectively, 
compared with the average for the entire sample of 
98.1 %. The overall technical efficiencies by village 
in the middle season average 95.7%, 96.1 %, 96.1 %, 
and 95.8%, respectively, while the average overall 
technical efficiency for the dry season for each vil­
lage is equal to 97.9%, 97.8%, 98.2%, and 98.4%. 
The average overall efficiency for the entire sample 
is equal to 95.5% for the middle season and 97.7% 
for the dry season. The results are similar for pure 
technical and scale efficiencies for each village as 
well. This indicates that assuming homogeneous land 
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Table 4 
Regression analysis testing inefficiency for rainy-season farms 

Variable Overall technical efficiency Pure technical efficiency Scale efficiency 

Intercept 0.946 0.952 0.993 
(4.84) ' ' 'a (2.97) ' ' ' (3.15) ' •• 

Age 0.0359 0.0356 0.0359 
( 17.55) ••• (19.87) '.' (20.38) ••• 

Age 2 -0.0004 -0.0003 -0.0003 
( - 15 .45) ' • ' ( -17.41) ... (- 17.89) ••• 

Farm size 0.0071 0.0031 0.0017 
(0.42) (0.21) (0.12) 

Percent owned land -0.0003 -0.0003 -0.0002 
(- 1.36) (- 1.38) ( -0.86) 

Diversification 0.1388 0.1497 0.1396 
(Herfmdahl index) (3.32) ' •• (4.08) ' ' ' (3.87) •• ' 

Dummy variable 0.0057 0.0014 0.0086 
Junior High School (0.24) (0.07) (0.43) 
Dummy variable 0.0274 0.057 0.053 
High School (0.82) ( 1.95) ' ( 1.84) • 
Sigma 0.0603 0.0528 0.0519 

( 11.05) ( 11.05) ( 11.05) 
Log likelihood 84.77 92.77 93.83 
Number of observations 61 61 61 

a Numbers in parentheses are /-statistics. 
', Indicates significance at a = 0.1 0. ' ' ' Indicates significance at a = 0.0 1. 

Table 5 
Regression analysis testing inefficiency for middle-season farms 

Variable Overall technical efficiency Pure technical efficiency Scale efficiency 

Intercept 0.928 0.993 1.002 
(4.12) •• ,. (5.73) ••• (6.29) ••• 

Age 0.0372 0.0391 0.0358 
(11.65) •• ' ( 16.17) • ' • (14.11) • ' • 

Age 2 -0.0004 -0.0004 -0.0004 
(-10.61). '. (- 14.64) • ' • (- 12.89) ' ' ' 

Farm size -0.0145 -0.0057 -0.0146 
(- 0.43) ( -0.22) ( -0.55) 

Percent owned land -0.0002 -0.1030 -0.0001 
(- 0.53) (- 0.35) ( -0.33) 

Diversification 0.0920 0.0419 0.1493 
(Herfindahl index) (I .45) (0.87) (2.95) ••• 

Dummy variable 0.0183 0.0177 0.0188 
Junior High School (0.49) (0.62) (0.63) 
Dummy variable 0.0633 0.0917 0.0435 
High School (1.00) ( 1.92) • (0.87) 
Sigma 0.0977 0.0741 0.0777 

( 11.05) (11.05) (11.05) 
Log likelihood 55.27 72.21 69.25 
Number of observations 61 61 61 

a Numbers in parentheses are /-statistics. 
' Indicates significance at a = 0.1 0. ' ' ' Indicates significance at a = 0.0 I. 
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quality across the regency for this sample of farms 
does not distort the results unnecessarily. 

5. Factors associated with inefficiency 

A censored regression or tobit model is used in 
each of the above multiproduct situations to assess 
the factors associated with technical inefficiencies. 
The Tobit regression defined in Eq. (11) is estimated 
using the Tobit procedure in TSP Version 4.2B (TSP 
International, 1993 ). Efficiency measures are re­
gressed on age, farm size, percent of owned land, a 
diversification dummy variable, and two dummy 
variables representing education levels. Results for 
rainy season irrigated farms are presented in Table 4. 

In the rainy season, farmers' age shows a signifi­
cant quadratic relationship with all three measures of 
efficiency. Efficiency increases with age, then even­
tually decreases. In addition, diversification, repre­
sented by the Herfindahl index described in Eq. (12), 
is shown to have a significant relationship with 
technical efficiency. The value of the estimated coef­
ficient is positive, indicating that greater specializa­
tion in production is associated with higher relative 

Table 6 
Regression analysis testing inefficiency for dry-season fanns 

Variable Overall technical efficiency 

Intercept 1.045 
(7.27) ' ''a 

Age 0.0328 
(I 1.63) ' ' ' 

Age2 -0.0003 
( -10.35) •• ' 

Fann size 0.0323 
(1.23) 

Percent owned land -0.000005 
( -0.02) 

Diversification 0.1948 
(Herfindahl index) (3.52) ' ' ' 
Dummy variable -0.0038 
Junior High School (- 0.12) 
Dummy variable 0.0660 
High School (1.34) 
Sigma 0.0858 

(I 1.05) 
Log likelihood 63.24 
Number of observations 61 

a Numbers in parentheses are t-statistics. 

efficiency. As diversification increases and more 
crops are grown, efficiency declines. It is possible 
that the increased inefficiency with diversification 
may be transitory as farmers improve their ability to 
grow new crops. Both the age and diversification 
variables are statistically significant at a = 0.05. 
High school education is found to be related signifi­
cantly in a positive way with pure technical and 
scale efficiencies at a = 0.1 0. A statistical relation­
ship is not found to exist between education and 
overall technical efficiency. All of the other variables 
are statistically not significant for any of the effi­
ciency indices. 

In the middle season, age again is related signifi­
cantly to efficiency (Table 5). However, the diversi­
fication variable is found to be associated only with 
scale efficiency, with greater diversification leading 
to lower scale efficiencies. Also, the dummy variable 
for high school education is found to be significant 
at a = 0.10 for the equation with pure technical 
efficiency. No other variables are statistically signifi­
cant. 

The results for the dry season are similar to those 
of the rainy season, as found in Table 6. Farmers' 
age again shows a statistically significant quadratic 

Pure technical efficiency Scale efficiency 

1.011 1.045 
(5.80) ' •• (6.98) ••• 

0.0345 0.0350 
(14.20) '' ' (15.57) ' '. 
-0.0003 -0.0003 

(- 12.64) •• ' (-13.84) ... 
0.0336 O.OI22 

( 1.48) (0.58) 
0.0001 -0.1441 

(0.39) ( -0.06) 
0.1525 0.1604 

(3.21) •• ' (3.64) '.' 
-0.0096 0.0098 

( -0.35) (0.39) 
0.0624 0.0675 

(1.48) (1.73) • 
0.0737 0.0683 

(I 1.05) (11.05) 
72.46 77.13 

61 61 

* Indicates significance at a = 0.1 0. ' * ' Indicates significance at a = 0.0 I. 
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type of relationship with efficiency measures. Greater 
diversification is found to be associated with lower 
efficiency for all three efficiency indices, and high 
school education has a significant (a= 0.1 0) rela­
tionship with scale efficiency but not with overall 
technical or pure technical efficiency. Other vari­
ables, such as farm size, percent of land owned, or 
junior high school education, are not found to have a 
significant association with technical efficiency as 
measured for this sample of farmers. 

6. Summary and conclusions 

Nonparametric analysis of technical efficiency for 
irrigated farms in Madiun, Indonesia is conducted 
using models based on techniques developed and 
used by Grabowski and Pasurka (1987). This proce­
dure allows the relative technical efficiency for each 
farm to be determined and for inefficiencies to be 
decomposed into pure technical inefficiency (operat­
ing off of the isoquant or production frontier) and 
scale inefficiency (not producing at constant returns 
to scale in input use). This methodology also allows 
for multi-input, multi-output situations and does not 
require restrictions or assumptions regarding func­
tional form to be placed on the data. This analysis 
provides information on the technical efficiency of 
multiproduct food-crop producing farms in Indonesia 
and some of the factors associated with inefficiency. 

Evaluating farms for each season under irrigated 
conditions shows that average overall technical effi­
ciency is 98.1% in the rainy season, while in the 
middle season it is 95.5% and is slightly higher at 
97.7% in the dry season. In each case, the majority 
of farms are technically and scale efficient, operating 
at constant returns to scale. Most farms that are scale 
inefficient are operating at decreasing returns to scale, 
indicating excessive input levels. 

Tobit analysis to evaluate inefficiency shows that 
farmers' age and the level of diversification are the 
most statistically significant factors associated with 
technical efficiency measures. A quadratic relation­
ship between age and efficiency exists in each sea­
son, with efficiency increasing with age initially, 
then decreasing. Greater diversification is associated 
with lower efficiency levels in the rainy and dry 
seasons for each of the three efficiency indices. The 

same relationship occurs in the middle season only 
for scale efficiency. 

In addition, having a high school education is 
related positively to higher levels of pure technical 
efficiency in the rainy and middle seasons and with 
scale efficiency in the rainy and dry seasons but at a 
lower confidence level than age or diversification 
(a= 0.1 0). None of the other variables, including 
farm size, tenure arrangements, or junior high school 
education is statistically significant in any season. 

Farmers operating inefficiently are doing so more 
often because of scale inefficiencies rather than pure 
technical inefficiencies, and the majority of these 
farmers are operating at decreasing returns to scale 
in inputs rather than increasing returns to scale, often 
using higher levels of fertilizer, particularly nitrogen, 
than more efficient farmers. In Indonesia, relatively 
high fertilizer subsidies have been in place until the 
early 1990s and since have declined by over 20%. 
The data in this study were collected in 1994, after 
the reduction in the fertilizer subsidy began. Some 
farmers may still be using higher levels of fertilizer 
than are efficient, perhaps due to continuing produc­
tion techniques which began when fertilizers were 
subsidized. This may account for the decreasing 
returns to scale found to exist. Another possibility is 
that this is a risk-reducing strategy, Williams et al. 
( 1992) and SriRamaratnam et al. ( 1987) have shown 
this may not be true. It should be noted that the 
majority of farms in this sample operate at constant 
returns to scale, indicating that they are using correct 
levels of inputs, relative to other farms in the sample. 

Efficiency increases, then eventually declines with 
age. This is consistent with what would be expected. 
Targeting younger and older farmers for extension 
activities could increase their levels of technical 
efficiency relative to middle aged farmers. 

Higher levels of diversification in cropping prac­
tices are associated with lower technical efficiency, 
particularly in the rainy and dry seasons. Farmers 
who are more specialized with only one or two crops 
grown in a season have higher levels of technical 
efficiency. Thus, government programs that have 
attempted to divert cropland away from rice produc­
tion toward secondary food crop production may 
actually lead to increased technical inefficiency in 
production. 

Having a high school education is associated with 
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higher technical efficiency in production in this study. 
Only 7% of the sample of farmers have a high 
school education, but these farmers apparently are 
able to operate at significantly higher technical effi­
ciency than other farmers. These results imply that 
extension education could be effective, particularly if 
targeted to farmers who have had limited educational 
opportunities. Those with higher education levels 
may have access to information that farmers with 
only elementary or junior high school education do 
not. Providing access to information to farmers with 
lower levels of education may help them to increase 
technical efficiency in production relative to farmers 
with higher levels of education. 
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