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Abstract

Nonparametric analysis of technical efficiency for irrigated farms in the Madiun regency in the west-central part of East Java, Indonesia
is conducted using linear programming techniques. This procedure allows the relative technical efficiency for each farm to be determined
and for inefficiencies to be decomposed into pure technical inefficiency and scale inefficiency and does not require restrictions or

assumptions regarding functional form to be placed on the data.

Farmers in Madiun generally are efficient relative to each other. Farmers operating inefficiently do so more often because of scale
inefficiencies rather than pure technical inefficiencies. A majority of the farms operate in the region of decreasing returns to scale rather than
increasing returns to scale. Farmer age, the level of diversification of cropping activities, and high school education were found to be related
to technical efficiency in the rainy season under irrigated conditions. Other socioeconomic factors were not statistically significant.

The results imply that inefficient farms use excessive levels of inputs, particularly nitrogen fertilizer. This is perhaps due to the lingering
effects of past input subsidization policies, particularly of fertilizers, in Indonesia, or to risk-reducing behavior. The results also imply that
current government policies to encourage diversification of cropping practices in Java may lead to greater technical inefficiencies in
production. In addition, extension education targeted to younger farmers with low levels of formal education would improve efficiency.

Nonparametric analysis of technical efficiency for
irrigated farms in the Madiun regency of East Java,
Indonesia is conducted using linear programming
techniques. Though relatively common in high in-
come countries, efficiency analysis in low income
countries has been hampered by lack of data and
poor understanding of the production process and
often is limited to analysis of a single crop. Whole-
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farm analysis of technical efficiency that includes
multiproduct production is rare. The use of nonpara-
metric techniques makes it possible to evaluate tech-
nical, pure technical, and scale efficiencies for multi-
product farms in Madiun and to then identify factors
associated with inefficiencies.

Efficiency may be described as the relation be-
tween ends and means (Afriat) and has application in
production analysis as well as consumption theory
and demand analysis. Economists widely distinguish
between technical efficiency and allocative or price
efficiency, following pioneering work by Farrell in
1957. The concept of technical efficiency relates to
whether a firm uses the best available technology in
its production process (Chavas and Cox, 1988). In

0169-5150,/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.

PII S0169-5150(96)01202-9



114 R.V. Llewelyn, J.R. Williams / Agricultural Economics 15 (1996) 113—126

economic terms, technical inefficiency refers to fail-
ure to operate on the production frontier and gener-
ally is assumed to reflect inefficiencies caused by the
timing and method of application of production in-
puts (Byerlee, 1987). Potential causes of technical
inefficiency are inadequate information or insuffi-
cient technical skills.

A variety of methods have been used to measure
efficiency. The concept of the efficient frontier has
often been used, where deviations from the frontier
are assumed to represent inefficiencies. Various types
of frontier efficiency analysis exist. These methods
differ with respect to the assumptions on the outer
bound of the frontier, which may be deterministic or
stochastic, and to the method of measurement, para-
metric or non-parametric.

For the parametric approach, estimation of pro-
duction functions (or profit or cost functions) con-
sists of specifying a parametric form for the function
and then fitting it to observed data by minimizing
some measure of their distance from the estimated
function. This method attributes variation from the
most efficient farms to technical inefficiency. As
Chavas and Aliber (1993) note, the parametric ap-
proach provides a consistent framework for analyz-
ing efficiency, however, this approach has an impor-
tant weakness, in that the maintained hypothesis of
parametric form can never be detected directly
(Varian, 1984; Banker and Maindiratta, 1988). This
method thus imposes restrictions on the technology
that may not hold and that affect the distribution and
measurement of the efficiency terms (Chavas and
Aliber, 1993). An advantage of the parametric ap-
proach is that it can segregate deviations from the
frontier technology into the systematic or actual inef-
ficiencies of the firm and the random components,
such as weather, that are stochastic and not due to
operator inefficiency. Some stochastic formulations
of frontier production functions have been developed
that sort out the effects due to random errors from
those caused by technical inefficiencies.

An alternative approach is to apply nonparametric
techniques to analyze production efficiency. A deter-
ministic nonparametric frontier model was developed
by Farrell (1957) in his groundbreaking work. This
model cannot separate deviations from the frontier
technology into their systematic and random compo-
nents and thus, attributes all deviations from the

frontier technology to inefficiency of the observed
firm and may overstate inefficiencies. However, this
methodology has the advantage of imposing no a
priori parametric restrictions on the underlying tech-
nology, because it does not require a specific func-
tional form for the frontier to be specified. There-
fore, it does not impose unwarranted structure on the
technology that might create a distortion in the effi-
ciency measures (Fire et al.,, 1985). Also, it can
handle disaggregated inputs and multiple output
technologies and can be used in evaluating technical,
allocative, scale and scope efficiencies.

This study utilizes nonparametric techniques to
provide a direct analysis of technical efficiency of
irrigated food-crop production in East Java, Indone-
sia. A nonparametric, whole-farm, production fron-
tier that includes multiple outputs is estimated for
each farm in each of three distinct cropping seasons:
rainy, middle, and dry. The crops included in this
study are paddy rice, corn, soybeans, peanuts, mung-
beans, cassava, and a pepper-onion intercrop. Rela-
tive overall technical efficiency for each farm is
determined as well as pure technical efficiency and
scale efficiency. Efficiency indices obtained from the
nonparametric analysis are then regressed on socioe-
conomic variables to help identify factors associated
with technical inefficiencies.

1. Agricultural production and efficiency in In-
donesia and Asia

Efficiency analysis of agricultural production in
Indonesia has focused primarily on irrigated rice
production (Widodo, 1986; Erwidodo, 1990) using
stochastic parametric approaches. Widodo used a
stochastic production function methodology with
panel data to estimate average technical efficiencies,
found to be between 83% and 96%. These values are
similar to those found by Dawson et al. (1991) in the
Philippines for lowland irrigated rice. In a similar
study, Erwidodo used two stochastic production
functions, the Cobb-Douglas and the translog, to
examine farm-level efficiency in West Java. Techni-
cal efficiencies for wetland rice production averaged
93.5% and ranged from 88% to 96.4%. This method-
ology revealed no significant difference in the level
of technical efficiency between small and large farms.
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Byerlee cites six other studies that have taken
place in Asia, five of which examined irrigated rice
production and one that looked at corn production,
all using stochastic production frontier methodology.
Average efficiencies for rice production ranged from
47% to 80% in India, the Philippines, and Pakistan.
For corn, the average efficiency in a study by Peng
and Chen in Taiwan (cited by Byerlee, 1987) was
72%. The major factors explaining differences in
efficiency were variables that dealt with farmers’
information and skills, such as education, experi-
ence, and contact with extension agents.

A study of irrigated, high-yielding rice varieties in
India by Kalirajan (1981) used Cobb-Douglas tech-
nology in estimating a profit function to evaluate the
relative efficiency of large and small farmers who
had adopted modern varieties. He concluded that
small farmers were as efficient in adopting the new
technologies as large farmers in terms of both techni-
cal efficiency and allocative efficiency.

In a study of rice production in the Philippines,
Bernsten (1977) included a measure of farmers’
technical knowledge in the production function. The
effect of this variable was significant and positive.
He also found that age, experience, and extension
contact were significant factors in farmers’ effi-
ciency, but education was not significant.

Dawson et al. (1991) evaluated technical, alloca-
tive, and overall economic efficiencies for 22 rice
farms in the Philippines with panel data from the
International Rice Research Institute using a frontier
production function approach. Overall efficiencies
ranged from 84% to 95% across the farms. Azhar
(1991) found technical efficiency in rice and wheat
production in Pakistan to be related positively and
very significantly to education levels, with primary
education providing the greatest increase in effi-
ciency.

Little has been done concerning efficiency of
secondary food-crop production in Indonesia. In ad-
dition, the application of nonparametric techniques to
Indonesian agriculture is virtually nonexistent, and
these methodologies have potential for providing
useful information regarding technical and scale effi-
ciencies in production as well as factors associated
with inefficiencies that may exist. These techniques
are useful where data are more limited and produc-
tion technologies not well understood, since they do

not require a priori specification of a functional
form.

2. Methodology and model development

Although the use of parametric techniques is
prevalent, the use of nonparametric techniques is
more limited, particularly in low income countries,
despite the fact that nonparametric methodologies
can be used in situations where data is more limited
and where production technologies are less well
understood. There are two nonparametric approaches
to production analysis. One is based on the works of
Afriat, 1972; Hanoch and Rothschild, 1972; and
Varian, 1984. This approach deals with four types of
concerns in the neoclassical theory of production:
consistency, restriction of form, recoverability, and
extrapolation, without maintaining any hypotheses of
functional form. This methodology is applied to time
series data and has been used in several studies to
evaluate technical efficiency in agriculture (e.g.
Chavas and Aliber, 1993; Chavas and Cox, 1988).

Alternatively, Farrell decomposed efficiency into
technical efficiency and allocative efficiency. Fare et
al. (1985) introduced a nonparametric method of
calculating efficiency across farms, which extended
Farrell’s approach by relaxing the restrictive assump-
tions of constant returns to scale and of strong
disposability of inputs, the major criticisms of the
method.

Fire et al. note that efficiency by a firm in inputs
does not imply that the firm is necessarily efficient
in outputs. Technical, allocative, and other efficiency
measures of outputs cannot be determined from cor-
responding efficiency measures of inputs or vice
versa because output and input efficiencies focus on
different aspects of production. The type of effi-
ciency that is being evaluated should be clearly
specified.

Technical efficiency may be defined as the ability
of a firm to produce as much output as possible with
a specified level of inputs, given the existing tech-
nology. Graphically, this is illustrated in Fig. 1. Six
observed data points with associated levels of input
and output are shown. The frontier for this produc-
tion process is defined by the line ABC. Observa-
tions A, B, and C lie on the frontier while observa-
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Fig. 1. Technical efficiency illustrated.

tions D, E, and F lie within the frontier. A ray from
the origin is tangent to the frontier at Point B. This
ray represents constant returns to scale for the tech-
nology represented by these data observations. In
this example, Observation B is overall relatively
technically efficient, which implies that this firm is
also purely technically efficient and scale efficient. It
lies on the frontier and has constant returns to scale.

Although a firm may be technically inefficient in
an overall sense, it is possible for it to be purely
technically efficient, while experiencing inefficien-
cies in scale. This is also illustrated in Fig. 1.
Observations A and C are purely technically effi-
cient, since they lie on the frontier, but exhibit scale
inefficiencies. Observation D is both scale inefficient
and purely technically inefficient since it lies below
the frontier. Theoretically, the same level of input
could be used to achieve a higher level of output,
which would allow this producer to be on the fron-
tier between Points B and C. Observation E is purely
technically inefficient since it is not on the produc-
tion frontier, but is scale efficient, because it pro-
duces at input level x2, the scale-efficient level of
input.

The model utilized in this study is based on a
model developed by Grabowski and Pasurka (1987)
to examine relative efficiency of farms in the north-

ern and southern United States prior to the Civil
War. Using this methodology, overall technical effi-
ciency for a farm is determined and then is decom-
posed into pure technical efficiency and scale effi-
ciency for multiproduct, farm-level, crop production
in Madiun, Indonesia. With this approach, a non-
parametric production frontier is constructed, with
inefficiency being measured by the extent to which
firms operate below the frontier. Using this ap-
proach, the cause of the inefficiency can be allocated
as either inappropriate scale (scale inefficiency) or
off-isoquant production (pure technical inefficiency).

It should be noted that this procedure involves
relative technical efficiency, that is, the production
frontier is constructed from the data and each farm’s
performance is compared with the frontier to indicate
overall technical efficiency of the individual farm.
Risk is not included explicitly in the model. The
model assumes that the degree of risk aversion is
consistent across all farms in the sample, but does
not assume the degree of risk aversion, that is,
whether this group of farmers are risk-taking, risk-
neutral, or risk averse. If this assumption of constant
risk preference does not hold, the estimated ineffi-
ciencies will be overstated. It has been suggested that
risk preferences may be different particularly be-
tween large and small farms. However, the regres-
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sion analysis conducted to evaluate factors associ-
ated with inefficiency includes farm size as a possi-
ble factor, but as shown later, this is not statistically
related to inefficiency.

This analysis also assumes homogeneous inputs.
Land is not included explicitly in the model and it is
assumed that variations in soil types and fertility do
not exist. This is a rather strong assumption, but
necessary in order to proceed. Though data for varia-
tion in land quality were not collected, the data for
each of the four villages surveyed were tested sepa-
rately to evaluate whether there might be large dif-
ferences in land quality. These results are reported
below, but no significant differences in technical
efficiency are found to exist between villages. Ho-
mogeneity of other inputs, including labor, chemi-
cals, seed, and management, is assumed as well.
Differences in labor and management quality would
be very difficult to determine and include in the
model.

In the model, it is assumed that x represents a
vector of n inputs, x = (x, x,,..., x,) € RY; that
y represents the output vector of m outputs, y = (y,,
Y3s---s Ym) € RY; and that there are k farms. It is
also assumed that firms face output prices p* € R",
input prices r* € R”", target cost C*>0, and
revenue R* > 0. The matrix of observed inputs, X,
of dimension (n,k) and the matrix of observed out-
puts, Y, of dimension (m,k) form a transformation
set written as:

T={(x,y):y<Yz,Xz<x,zER"} (D

where z is the vector of intensity variables of activ-
ity (x;, y;). The transformation set corresponds to
the total product curve and shows maximum feasible
output for a function exhibiting constant returns to
scale.

For observation (x;,y;), overall technical effi-
ciency can be illustrated as follows:

6" (x;,y;) =max{6:( x,,0,y,) €T} (2)

where 60 is the level of inefficiency and 6, y; is the
actual output of the ith farm. The farm is technically
efficient if 6 equals 1. 6 can be interpreted as the
ratio of potential to actual output or alternatively,
1 /6 is the ratio of efficiency relative to the potential
frontier output. Technical efficiency can be deter-

mined by solving the following linear programming
problem:

Max0
subjectto:

X2 Xt t xS xy
X012y FXpp 2yt it Xy, 2, < Xy,

X2yt X020+t x,, 2, <x,; (3)
Yuzitypzt et ynz—y,020
V2t Y0nzt et Yy — 3,020

Y2t Ym 2t ot Yok 2 = Y020

where there are n input constraints and m output
constraints. The output constraint (y;, z, + ¥, 2, + ...
+ .4 2,) measures the output level of the (hypotheti-
cal) overall technically efficient farm for a particular
output. This is the maximum output that can be
produced by the ith farm, given its actual level of
inputs. For a single output situation, only one output
constraint is needed.

The term, y,,,0, is the actual production of output
m for the ith farm multiplied by the level of ineffi-
ciency, 6. In a multi-output situation, y,, is the
level of m output produced by firm k. Multi-input,
multi-output analysis of technical efficiency is con-
ducted for each firm in each of the three seasons.
This analysis evaluates overall efficiency of the farm
and not efficiency in the production of individual
outputs. If the farm is overall technically efficient,
then 6= 1. However, if the farm is technically inef-
ficient, 8)1. When this is the case, the theoretical
maximum output is greater than the actual output of
the ith farm, making the ith farm inefficient relative
to the production frontier by a factor of 1/6.

This model allows for the decomposition of tech-
nical inefficiency between scale inefficiency (not
producing at constant returns to scale) and pure
technical efficiency (operating off of the isoquant).
To determine the source of the inefficiency, a new
transformation set is needed:

T'={(x,9):y<Yz,Xz<x,z€R* Tk-17,=1}
(4)
where the intensity variables, z, are restricted to

being summed to 1. This modification allows for
increasing and decreasing returns to scale.
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Pure technical efficiency for observation (x;,y,)
can be shown as:

A (x;,y) =max{A:( x;,Ay,) €T’} (5)

and is determined by solving the following linear
programming problem:

MaxA
subjectto: x|z, t X152, + ..t X, 7, < xy;
X2121 F X002y F e T X9 2 S Xy

Xa12) +x”2Z2 + ...+xnkzkgxni 6
Yz Yzt et Yz — YA =0 (6)
YuZi ¥zt ot Y — ¥4 20

Y2 T Y22t ot Yk 2 — YiA 20
21tz + .tz =1.

where the last constraint restricts the intensity vari-
ables to sum to 1. If A" =1, the firm is purely
technically efficient and operating on the production
frontier, indicating that any inefficiencies that exist
are due to scale inefficiencies, that is, the incorrect
level of input use along the frontier. This measure
evaluates the ratio of potential to actual output based
on the transformation set, 7°. Using 8 * and A”, it is
possible to determine scale efficiency for observation
(x;, y;), which can be written as follows:

D" (x;,y) =07 (x,5) /A" (x1.¥) (7)

When @ " (x;, y) is equal to 1, the ith farm
operates at constant returns to scale. If @ *(x;,y,) #
1, the firm is operating at nonconstant returns to
scale. However, using this measure, it is not possible
to know whether a farm operating at nonconstant
returns to scale is operating at increasing or decreas-
ing returns to scale. Thus, another measure is needed.

To accomplish this, the transformation set is mod-
ified again by imposing nonincreasing returns to
scale. The new transformation set can be written as:

T* ={(x,y):y<Yz,Xz<x,z€R* Th-1z7,< 1}

(8)

where the sum of the value of the intensity variables,
z, is restricted so that it is less than 1.

The calculation of efficiency for observation (x;,
y;) is now:

'Y*(Xi’Yi)=max{7:(xi/Y}’i) ET*} (9)

where y* can be calculated by using the following
linear programming problem:

Maxy
subjectto:
X2t X2+ X2, <Xy
X2y F X2t ot X0 2 <X

X2t X2+ et x5, <X, (10)
ynz tynzt et yazn—yv=0
Yuz ¥zt et ¥z =720

YmZ FYmrZot o T Yok 2 = Vi ¥ = 0
1tttz <1

This problem indicates that if @ * # 1, two alter-
natives exist. If @* #1 and 6" =y ", the farm
produces at increasing returns to scale. If @~ # 1
and 6" # y ", then the farm operates at decreasing
returns to scale. A firm operating at increasing re-
turns to scale should increase input use in order to
achieve economies of scale. This would mean mov-
ing from Point A to Point B in Fig. 1 to increase
efficiency. A situation in which farms are operating
at decreasing returns to scale suggests that small
farms are viable and that large farms would be better
off to decrease input levels or at least not increase
them, because to do so would be to further increase
inefficiency associated with returns to scale.

Economic efficiency tests only evaluate actual
productivity relative to potential productivity and do
not imply irrationality on the part of farmers who are
inefficient. The failure of farmers to use the most
efficient techniques of production may be due to the
cost of the acquisition of information for an individ-
ual farmer being greater than the benefits or perhaps
due to fixed assets, property rights, and tenancy, as
well as non-monetary objectives of the farmers
(Byerlee, 1987).

To help identify possible factors related to ineffi-
ciencies, the efficiency indices determined from the
linear programming problems are regressed on ex-
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planatory variables of age, education, farm size, and
tenure using a Tobit analysis to investigate the effect
of these variables on the technical efficiency of the
individual farms.

This analysis can be helpful in targeting extension
activities to deal with technical inefficiencies in pro-
duction. The linear Tobit regression in Eq. (11) is
used to identify possible factors associated with inef-
ficiency. Tobit analysis is used because the depen-
dent variables, overall technical efficiency, pure
technical efficiency, and scale efficiency, are cen-
sored variables, having an upper limit of 1.00. Each
of these indices is regressed on the explanatory
variables of age, education, farm size, percent of
land owned, and diversification. Dummy variables
are used for education, representing junior high
school and high school. The parameters, 3, and 8,,
provide an idea of how much additional levels of
education after the primary level affect efficiency.
The variable percent of land owned is an attempt to
evaluate the effects of land tenure on technical effi-
ciency.

EFF,= a+ f3, Age; + B,( Agei)z +B3ED2,;
+B,ED3, + 5 FS, + 3,OL, + 3,DV, + ¢;
(11)

where:

EFF, is Efficiency index for farmer i.

Age; is Farmer age in years.

ED2; is Education dummy variable =1 if junior
high education, O otherwise.

ED3; is Education dummy variable =1 if high
school education, O otherwise.

FS, is Farm size in hectares for firm i.

OL; is Percent of operated land owned by farmer
i

DV, s Diversification variable expressed by

Herfindah! index.
a.B is Parameters.
€ is Error term.

It is hypothesized that younger, better educated
farmers are more technically efficient, due to better
skills and access to information. Farm size may
positively affect efficiency, if farmers are able to
achieve some economies of scale. Efficiency may be
higher for farmers who own their land, because of
greater incentives for efficiency relative to those who

are renting. Farmers who produce only one crop in a
season may be more technically efficient in produc-
tion than those who are more diversified.

3. Description of data and study area

The study area is the Madiun regency in the
west-central part of East Java, Indonesia, about 170
km west of Surabaya. The total area is 101 086 ha, of
which 44122 ha were tilled with 32407 ha being
irrigated in 1992. Dryland agriculture accounts for
about 24% of cropland in this regency (Kantor
Statistik, 1993). Land holdings are small, averaging
0.72 ha (Kantor Statistik, 1993). Annual rainfall
during 1988-1992 ranged from 1511 mm in 1991 (a
drought year) to 2329 mm in 1989. There are three
cropping seasons annually on irrigated land, March
to June, July to October, and November to February.

Data from 77 farms collected from interviews in
four villages in the Madiun regency of East Java,
Indonesia in 1994 are used in analyzing technical
efficiency of food crop production. A nonparametric,
whole-farm, production frontier that includes multi-
ple crops is estimated for each farm in each of the
three distinct cropping seasons: rainy, middle, and
dry. The crops included in this study represent the
major commodities grown in this area: paddy rice,
corn, soybeans, peanuts, mungbeans, cassava and a
pepper-onion intercrop.

Average age of all respondents was 44.4 years
and ranged from 26 to 76 years. A total of 78% of
the respondents had an elementary school education
or less, 16% were junior high school graduates, and
6% were high school graduates. Average farm size
for the survey was 0.82 ha, slightly larger than the
regency average of 0.72, and varied from 0.13 ha to
2.28 ha. Of the 77 total farms, 14 farms (18%)
included nonirrigated cropping, and these are evalu-
ated separately. A total of 87.0% of the farmers
owned land and 50.6% had land that was cash rented
whereas only 9.1% had a share rent arrangement,
figures comparable with those found in other studies
(Brotonegoro et al., 1986; Sendjaja and Cholig,
1986).

The nine crops in this study covered 72% of the
arable land in the Madiun regency in 1992 (Kantor
Statistik, 1993). A comparison of the proportion of
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crop acreages for the entire regency and for the
farmer sample is shown in Table 1. Rice is the most
commonly planted crop both in the sample and
across all farms in the regency. Corn, soybeans, and
sugar cane are the next most important crops in
terms of harvested acreage both in the sample and
for all farmers in the regency. The regency data do
not provide information about multicropping.

Table 1
Proportion of crops grown in Madiun Regency and in the survey
sample

Madiun Regency (source: Kantor Statistik, 1993)

Arable land area  Food crops grown

(%) (%)
Rice 42 58.1
Comn 6 6.4
Soybeans 9 12.4
Peppers /onions <1 0.5
Peanuts 3 4.5
Mungbeans 2 2.8
Cassava 3 5.6
Sugar cane 7 9.4

Survey farmers

Crops in sample  Acreage in sample

(%) (%)
Rainy season
Rice 68 58
Com 12 13
Peppers /onions 9 6
Sugar cane 14 16
Corn/cassava 5 7
Middle season
Rice 38 35
Corn 21 18
Sugar cane 14 16
Soybeans 17 19
Soybean /mungbean 3 4
Soybean /peanut 6 6
Cassava 3 2
Dry season
Rice 11 9
Pepper /onion 14 8
Soybeans 23 18
Corn 18 16
Corn-soybean 14 10
Corn-mungbean 10 6
Corn-peanut 8 5
Fallow 18 12
Sugar cane 14 16
Other 2 1

The inputs used for crop production include seed,
measured in kilograms; three fertilizer inputs: urea,
TSP, and an aggregated fertilizer input of other
fertilizers used, all in kilograms; an aggregated
chemical input in kilograms of active ingredient per
hectare; aggregated labor input in man-days; and
irrigation in hours per crop. Output data for the
model is yield in kilograms per hectare for each
crop. These values also were determined from the
data collected from the farmer interviews. A more
detailed description of the data is included in Llewe-
lyn (1995).

Data for the regression analysis are also from the
farmer interviews. Farmers were questioned regard-
ing age, education and farm size. Education was
recorded as elementary school (6 years or less),
junior high school (9 years), and high school (12
years). None of the farmers interviewed had attended
post-secondary education. Farm size is recorded in
hectares of land operated, both owned and rented.
The variable for tenure is measured in terms of the
percentage of land owned (i.e. zero to 100). Diversi-
fication was measured using the Herfindahl index
represented as:

DV =Y P? (12)

where P; is the proportion of the farm acreage
involved in a particular enterprise. A value approach-
ing 1.0 indicates specialization whereas smaller val-
ues reflect increasing diversification. For this sam-
ple, values ranged from 0.405 to 1.0 in the rainy and
middle seasons and from 0.337 to 1.0 in the dry
season and averaged 0.919, 0.879, and 0.814 for the
rainy, middle and dry seasons respectively.

4. Analysis and results

Using the linear programming methodology out-
lined earlier, nonparametric analysis of relative tech-
nical efficiency is performed for food crop produc-
tion on irrigated farms in each of the three seasons.
Three linear programs (Eq. (3), Eq. (6), and Egq.
(10)) are solved to provide the values of 6, A, and vy
for each individual farm. Table 2 summarizes the
crops evaluated in each seasonal analysis and the
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number of farms in the sample which produce each
crop. A total of 61 farms is evaluated for technical
efficiency in this analysis.

Average, minimum, and maximum overall techni-
cal efficiency, pure technical efficiency, and scale
efficiency are reported for each season in Table 3, as
well as the number of farms operating at constant,
increasing, and decreasing returns to scale. The aver-
age overall efficiency is calculated by dividing 1 /6
for each farm to obtain the overall efficiency level
for that farm. This level of efficiency then is aver-
aged over all the farms in the sample. A farm that is
technically efficient has an efficiency of 100%. Av-
erage pure technical efficiency is calculated by divid-
ing 1/A for each farm and averaging these values,
and average scale efficiency is determined by divid-
ing A/0 for each farm and averaging these values
for the entire sample. Scale efficient farms operate at
constant returns to scale in inputs (input level x2 on
Fig. 1), whereas those with decreasing returns have
input levels that are too high and those with increas-
ing returns to scale have input levels that are too
low. Scale-inefficient firms may be purely techni-
cally efficient (operating on the frontier) but are not
using the correct level of input.

Table 2
Crops by season and number of farms evaluated for technical
efficiency

Number of farms

Rainy season

Rice 53
Corn 9
Peppers /onions 7
Middle season

Rice 33
Corn 14
Soybeans 13
Soybean /mungbeans 2
Soybean /peanuts 5
Dry season

Rice 9
Comn 14
Soybeans 18
Corn/soybeans 11
Peppers /onions 11
Corn /peanuts 6
Soybean /mungbean 7

Corn/mungbean 8
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Table 3
Efficiency analysis results

Mean SD
Rainy season
Overall technical efficiency * 0.981 0.043
Minimum 0.844
Maximum 1.000
Number technically efficient 44 (72.1%)
Pure technical efficiency ° 0.988 0.029
Minimum 0.876
Maximum 1.000
Number technically efficient 50 (82.0%)
Scale efficiency © 0.992 0.019
Minimum 0.904
Maximum 1.000
Number CRS farms ¢ 45 (73.8%)
Number IRS farms ¢ 1(1.6%)
Number DRS farms ¢ 15 (24.6%)
Middle season
Overall technical efficiency 0.955 0.083
Minimum 0.646
Maximum 1.000
Number technically efficient 41 (67.2%)
Pure technical efficiency 0.977 0.054
Minimum 0.749
Maximum 1.000
Number technically efficient 48 (78.7%)
Scale efficiency 0.977 0.058
Minimum 0.711
Maximum 1.000
Number CRS farms 43 (70.5%)
Number IRS farms 8(13.1%)
Number DRS farms 10 (16.4%)
Dry season
Overall technical efficiency 0.977 0.063
Minimum 0.738
Maximum 1.000
Number technically efficient 50 (82.0%)
Pure technical efficiency 0.989 0.045
Minimum 0.745
Maximum 1.000
Number technically efficient 58(95.1%)
Scale efficiency 0.987 0.040
Minimum 0.746
Maximum 1.000
Number CRS farms 50 (82.0%)
Number IRS farms 1(1.6%)
Number DRS farms 10 (16.4%)

? Calculated using Eq. (3).
® Calculated using Eq. (6).
¢ Calculated using Eq. (7).

¢ Determined using Eq. (7) and Eq. (10).
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Results of the efficiency analysis in the rainy
season are summarized in Table 3. Overall and pure
technical efficiencies are high, as are scale efficien-
cies. The average overall technical efficiency of
98.1% is slightly higher than but quite similar to
values in other studies in Indonesia and Asia that
used a parametric approach in evaluating rice pro-
duction (Widodo, 1986; Erwidodo, 1990; Dawson et
al., 1991). This study had a much larger sample size
than Dawson et al., and slightly larger than the other
two studies. In a small sample, a few inefficient
farms would influence the results more than in a
larger sample.

The range in overall technical efficiency is be-
tween 84.4% and 100%, with 44 of the 61 farms
(72.1%) being overall technically efficient, that is
0= 1. An additional six farms are purely technically
efficient, meaning they operate on the production
frontier but not at constant returns to scale. The
average pure technical efficiency is 98.8%, with a
minimum of 87.6%, indicating that the most purely
technically inefficient farm could only increase out-
put by about 12.4% through more efficient use of
inputs. Average scale efficiency is 99.2% with a
minimum of 90.4%. Little variation in these mea-
sures is evident, with the standard deviations ranging
from 0.019 to 0.043. Constant returns to scale are
evident for 45 of the farms. Increasing returns to
scale hold for only one farm and 15 farms experi-
ence decreasing returns to scale.

In the middle season, average overall efficiency is
95.5% with the minimum efficiency of 64.6%, as
shown in Table 3. Forty-one farms are technically
efficient, with seven of the remaining farms being
purely technically efficient. Forty-three farms have
constant returns to scale, whereas eight have increas-
ing returns to scale and ten have decreasing returns.
The lower efficiencies associated with the middle
season for these farms may be explained by a situa-
tion where rainfall may vary across farms leading to
production responses which would not be captured
by the efficiency analysis. The low rainfall in the dry
season is consistent for all parts of the regency,
while in the rainy season, rainfall is more consistent
across all farms than in the middle season. Rainfall
data by village are not available for analysis.

Relative technical efficiency in the dry season is
summarized in Table 3. Average efficiency is 97.7%,

with the minimum efficiency at 73.8%. Fifty of the
farms are overall technically efficient, with all but
three farms being purely technically efficient. Aver-
age pure technical efficiency is 98.9%, and average
scale efficiency is 98.7%. The 50 overall technically
efficient farms operate at constant returns to scale,
whereas 10 of the 11 remaining farms have decreas-
ing returns to scale, and one farm shows increasing
returns to scale.

Higher fertilizer use, particularly of urea, seems
to be associated with the least efficient farms in each
season, with average urea use of farms found to be
overall technically inefficient higher than the average
for the entire sample, with the least efficient farm in
each season having the highest use of urea. High
fertilizer use may reflect a risk evasive action, though
some studies have found that producers with higher
levels of risk aversion would be less likely to prefer
high levels of nitrogen fertilization (Williams et al.,
1992; SriRamaratnam et al., 1987).

Because of the assumption of homogeneity of
inputs, particularly of land quality, the efficiency
analysis was conducted for each of the four villages
where data were collected. If homogeneous land
quality is incorrectly assumed and land differences
actually account for the measured inefficiencies found
in the above analysis, the average efficiencies for
each village should be 100% or nearly so, since the
frontier for each individual village would be less
than or equal to the aggregate production frontier for
all farms.

However, in each season, the average efficiencies
for each individual village are only slightly higher
than the averages for the aggregate sample and none
are equal to 100%. In the rainy season, the average
overall technical efficiencies for the four villages are
98.2%, 98.8%, 98.7%, and 98.4%, respectively,
compared with the average for the entire sample of
98.1%. The overall technical efficiencies by village
in the middle season average 95.7%, 96.1%, 96.1%,
and 95.8%, respectively, while the average overall
technical efficiency for the dry season for each vil-
lage is equal to 97.9%, 97.8%, 98.2%, and 98.4%.
The average overall efficiency for the entire sample
is equal to 95.5% for the middle season and 97.7%
for the dry season. The results are similar for pure
technical and scale efficiencies for each village as
well. This indicates that assuming homogeneous land
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Regression analysis testing inefficiency for rainy-season farms
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Variable Overall technical efficiency Pure technical efficiency Scale efficiency
Intercept 0.946 0.952 0.993
(4.84) ** "2 297) *** 3.15)
Age 0.0359 0.0356 0.0359
(17.55) *** (1987 *** (2038) ***
Age?® —0.0004 —0.0003 —0.0003
(—15.45) **~ (=17.41) " (-17.89) ***
Farm size 0.0071 0.0031 0.0017
(0.42) 0.21) 0.12)
Percent owned land —0.0003 —0.0003 —0.0002
(—1.36) (—-1.38) (—0.86)
Diversification 0.1388 0.1497 0.1396
(Herfindahl index) (3.32) **” (4.08) *** (CX.7)
Dummy variable 0.0057 0.0014 0.0086
Junior High School (0.24) (0.07) (0.43)
Dummy variable 0.0274 0.057 0.053
High School (0.82) (1.95) * (1.84) *
Sigma 0.0603 0.0528 0.0519
(11.05) (11.05) (11.05)
Log likelihood 84.77 92.77 93.83
Number of observations 61 61 61

# Numbers in parentheses are r-statistics.

* Indjcates significance at & = 0.10.

Table 5

* k%

Regression analysis testing inefficiency for middle-season farms

Indicates significance at a = 0.01.

Variable Overall technical efficiency Pure technical efficiency Scale efficiency
Intercept 0.928 0.993 1.002
(4.12) ***2 5.73) > 6.29) ***
Age 0.0372 0.0391 0.0358
(11.65) *** (16.17) *** (14.11) ***
Age? —0.0004 —0.0004 —0.0004
(-10.61) *** (—14.64) *** (—12.89) ***
Farm size —-0.0145 —0.0057 —0.0146
(—0.43) (-0.22) (-0.55
Percent owned land —0.0002 —0.1030 —0.0001
(—-0.53) (—0.35) (-0.33)
Diversification 0.0920 0.0419 0.1493
(Herfindahl index) (1.45) (0.87) (2.95) ***
Dummy variable 0.0183 0.0177 0.0188
Junior High School (0.49) (0.62) (0.63)
Dummy variable 0.0633 0.0917 0.0435
High School (1.00) (192) * 0.87)
Sigma 0.0977 0.0741 0.0777
(11.05) (11.05) (11.05)
Log likelihood 55.27 72.21 69.25
Number of observations 61 61 61

* Numbers in parentheses are r-statistics.

" Indicates significance at a = 0.10.

* ok K

Indicates significance at

a=00l.
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quality across the regency for this sample of farms
does not distort the results unnecessarily.

5. Factors associated with inefficiency

A censored regression or tobit model is used in
each of the above multiproduct situations to assess
the factors associated with technical inefficiencies.
The Tobit regression defined in Eq. (11) is estimated
using the Tobit procedure in TSP Version 4.2B (TSP
International, 1993). Efficiency measures are re-
gressed on age, farm size, percent of owned land, a
diversification dummy variable, and two dummy
variables representing education levels. Results for
rainy season irrigated farms are presented in Table 4.

In the rainy season, farmers’ age shows a signifi-
cant quadratic relationship with all three measures of
efficiency. Efficiency increases with age, then even-
tually decreases. In addition, diversification, repre-
sented by the Herfindahl index described in Eq. (12),
is shown to have a significant relationship with
technical efficiency. The value of the estimated coef-
ficient is positive, indicating that greater specializa-
tion in production is associated with higher relative

efficiency. As diversification increases and more
crops are grown, efficiency declines. It is possible
that the increased inefficiency with diversification
may be transitory as farmers improve their ability to
grow new crops. Both the age and diversification
variables are statistically significant at « = 0.05.
High school education is found to be related signifi-
cantly in a positive way with pure technical and
scale efficiencies at @ = 0.10. A statistical relation-
ship is not found to exist between education and
overall technical efficiency. All of the other variables
are statistically not significant for any of the effi-
ciency indices.

In the middle season, age again is related signifi-
cantly to efficiency (Table 5). However, the diversi-
fication variable is found to be associated only with
scale efficiency, with greater diversification leading
to lower scale efficiencies. Also, the dummy variable
for high school education is found to be significant
at a=0.10 for the equation with pure technical
efficiency. No other variables are statistically signifi-
cant.

The results for the dry season are similar to those
of the rainy season, as found in Table 6. Farmers’
age again shows a statistically significant quadratic

Table 6
Regression analysis testing inefficiency for dry-season farms
Variable Overall technical efficiency Pure technical efficiency Scale efficiency
Intercept 1.045 1.011 1.045
(7.27) ** =2 (5.80) *** (6.98) ***
Age 0.0328 0.0345 0.0350
(11.63) *** (14.20) * ** (15.57) ***
Age? —0.0003 —0.0003 —0.0003
(-1035) *** (—1264) *** (—13.84) ***
Farm size 0.0323 0.0336 0.0122
(1.23) (1.48) (0.58)
Percent owned land —0.000005 0.0001 —0.1441
(-0.02) (0.39) (—0.06)
Diversification 0.1948 0.1525 0.1604
(Herfindahl index) (352 """ @21 3B.64) """
Dummy variable —0.0038 —0.0096 0.0098
Junior High School (-0.12) (-0.35) (0.39)
Dummy variable 0.0660 0.0624 0.0675
High School (1.34) (1.48) (1.73) *
Sigma 0.0858 0.0737 0.0683
(11.05) (11.05) (11.05)
Log likelihood 63.24 72.46 77.13
Number of observations 61 61 61

? Numbers in parentheses are r-statistics.

" Indicates significance at a = 0.10.

& % %

Indicates significance at o = 0.01.
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type of relationship with efficiency measures. Greater
diversification is found to be associated with lower
efficiency for all three efficiency indices, and high
school education has a significant (& = 0.10) rela-
tionship with scale efficiency but not with overall
technical or pure technical efficiency. Other vari-
ables, such as farm size, percent of land owned, or
junior high school education, are not found to have a
significant association with technical efficiency as
measured for this sample of farmers.

6. Summary and conclusions

Nonparametric analysis of technical efficiency for
irrigated farms in Madiun, Indonesia is conducted
using models based on techniques developed and
used by Grabowski and Pasurka (1987). This proce-
dure allows the relative technical efficiency for each
farm to be determined and for inefficiencies to be
decomposed into pure technical inefficiency (operat-
ing off of the isoquant or production frontier) and
scale inefficiency (not producing at constant returns
to scale in input use). This methodology also allows
for multi-input, multi-output situations and does not
require restrictions or assumptions regarding func-
tional form to be placed on the data. This analysis
provides information on the technical efficiency of
multiproduct food-crop producing farms in Indonesia
and some of the factors associated with inefficiency.

Evaluating farms for each season under irrigated
conditions shows that average overall technical effi-
ciency is 98.1% in the rainy season, while in the
middle season it is 95.5% and is slightly higher at
97.7% in the dry season. In each case, the majority
of farms are technically and scale efficient, operating
at constant returns to scale. Most farms that are scale
inefficient are operating at decreasing returns to scale,
indicating excessive input levels.

Tobit analysis to evaluate inefficiency shows that
farmers’ age and the level of diversification are the
most statistically significant factors associated with
technical efficiency measures. A quadratic relation-
ship between age and efficiency exists in each sea-
son, with efficiency increasing with age initially,
then decreasing. Greater diversification is associated
with lower efficiency levels in the rainy and dry
seasons for each of the three efficiency indices. The

same relationship occurs in the middle season only
for scale efficiency.

In addition, having a high school education is
related positively to higher levels of pure technical
efficiency in the rainy and middle seasons and with
scale efficiency in the rainy and dry seasons but at a
lower confidence level than age or diversification
(@ =10.10). None of the other variables, including
farm size, tenure arrangements, or junior high school
education is statistically significant in any season.

Farmers operating inefficiently are doing so more
often because of scale inefficiencies rather than pure
technical inefficiencies, and the majority of these
farmers are operating at decreasing returns to scale
in inputs rather than increasing returns to scale, often
using higher levels of fertilizer, particularly nitrogen,
than more efficient farmers. In Indonesia, relatively
high fertilizer subsidies have been in place until the
early 1990s and since have declined by over 20%.
The data in this study were collected in 1994, after
the reduction in the fertilizer subsidy began. Some
farmers may still be using higher levels of fertilizer
than are efficient, perhaps due to continuing produc-
tion techniques which began when fertilizers were
subsidized. This may account for the decreasing
returns to scale found to exist. Another possibility is
that this is a risk-reducing strategy, Williams et al.
(1992) and SriRamaratnam et al. (1987) have shown
this may not be true. It should be noted that the
majority of farms in this sample operate at constant
returns to scale, indicating that they are using correct
levels of inputs, relative to other farms in the sample.

Efficiency increases, then eventually declines with
age. This is consistent with what would be expected.
Targeting younger and older farmers for extension
activities could increase their levels of technical
efficiency relative to middle aged farmers.

Higher levels of diversification in cropping prac-
tices are associated with lower technical efficiency,
particularly in the rainy and dry seasons. Farmers
who are more specialized with only one or two crops
grown in a season have higher levels of technical
efficiency. Thus, government programs that have
attempted to divert cropland away from rice produc-
tion toward secondary food crop production may
actually lead to increased technical inefficiency in
production.

Having a high school education is associated with
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higher technical efficiency in production in this study.
Only 7% of the sample of farmers have a high
school education, but these farmers apparently are
able to operate at significantly higher technical effi-
ciency than other farmers. These results imply that
extension education could be effective, particularly if
targeted to farmers who have had limited educational
opportunities. Those with higher education levels
may have access to information that farmers with
only elementary or junior high school education do
not. Providing access to information to farmers with
lower levels of education may help them to increase
technical efficiency in production relative to farmers
with higher levels of education.
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