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Abstract

The paper develops and illustrates the application of criteria for ranking risky investment alternatives that are
based on their certainly equivalent (ce) outcomes and determines expressions for approximating the ce outcomes by
means of the central moments of their distribution. The paper develops criteria on the basis of the ce outcomes for
determining a complete ranking of risky investment alternatives that can represent the choice of many — though not

all — risk-averse agents.

The application of means and variances for
ranking risky investment alternatives has long
been realized in the economic and financial liter-
ature (Markovitz, 1952, 1959; Levy, 1974; Tobin,
1958; Tsiang, 1972). It has also been realized,
however, that criteria that apply to these statistics
are only approximations which may often be mis-
leading (Borch, 1969; Feldstein, 1969; Meyer,
1977, 1987) or represent the choice of only a
small group of agents. Nevertheless, their simplic-
ity and intuitive appeal made the expected value-
variance (E-V) criteria widely used. (See also
Hadar and Russel, 1969; Hanoch and Levy, 1969;
Levy and Markowitz, 1979; Samuelson, 1970;
Baron, 1977.)

The theoretical work in this area has generally
focused on criteria for establishing the ranking of
investment alternatives that can represent the
choice of all ‘ordinary’ agents — through the
Stochastic Dominance (SD) rules — or criteria
that represent the choice of a well defined (and
necessarily limited) subgroup of agents whose
utility structure can be clearly identified. The SD

criteria are notoriously incomplete however, since
they can only identify those alternatives that
would not be selected by ordinary risk-averse
agents but they cannot establish priorities be-
tween the alternatives that may be selected. Cri-
teria that are based on the expected utility (gu)
for a specific class of utility functions are often
much too limiting.

This paper develops and illustrates the appli-
cation of criteria for ranking risky investment
alternatives that are based on their certainty
equivalent (ce) outcomes and determines expres-
sions for approximating the ce outcomes be means
of the first two — or three — central moments of
their distribution. Clearly, the ranking of invest-
ment alternatives by their cE outcome is consis-
tent with their ranking by their eu. By comparing
the ce outcomes, however, we can determine not
only whether one investment alternative would be
preferred over another but also by how much
would the agent be better off in selecting the one
rather than the other. In other words, these crite-
ria provide cardinal measures of desirability.
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The main goal of the paper is to develop, on
the basis of the CE outcomes, criteria for deter-
mining a complete ranking of investment alterna-
tives that can represent the choice of many —
though not all — risk-average agents. These crite-
ria will allow us to exclude from the ‘efficient set’
of alternatives (i.e. alternatives that cannot be
ranked by the SD criteria) those alternatives that
may be selected only by the most risk-averse or
the least risk-averse agents, and leave in the
‘choice-set’ only those alternatives that are likely
to be selected by most ‘ordinary’ agents thereby
considerably reducing the choice set from which
the most desirable alternative is likely to be se-
lected by the large majority of agents.

1. Cardinal ranking criteria and the approxima-
tions methods

Let Y=(y,...,y,) €Q" be a set of possible
‘outcomes’ (i.e., present values of future net re-
turns) of a given investment alternative. To sim-
plify the notations — and without liming the gen-
erality — assume all the outcomes to be equally
probable and non-negative. Let u denote the
expected outcome of (i.e., the present value of
the expected return from) that investment and let
yg denote the ‘certainty equivalent (ce) outcome.

To illustrate the proposed criterion and de-
scribe the method of approximation, let us turn
to Fig. 1. Consider the set of (two) possible out-
comes (y,, y,) indicated by point A. The mean
value of these two (equally likely) outcomes is
determined in Fig. 1 at the intersection of the
(positive) 45° ray from the origin with the (nega-
tive) 45° ray that crosses through A at E. The
agent’s preferences are assumed to be repre-
sented by a continuously differentiable and
(strictly) concave utility function that has the ex-
pected utility property. In the figure, these pref-
erences are shown by the indifference curve that
crosses through A. The intersection of that indif-
ference curve with the (positive) 45° ray from the
origin at B determines the ce outcome yg.

A comparison of the investment alternative
given by the outcomes at A with another alterna-
tive given by the outcomes at A° shows that the

45° ]

former has a higher mean (u > ©°) but also a
higher spread. In the two-dimensional illustra-
tion, the higher spread is indicated by the steeper
slope of the ray OA, which shows the ratio be-
tween the two outcomes, relative to that of OA°.
Furthermore, the outcomes at A do not dominate
the outcomes at A° in the sense of the first
criterion of stochastic dominance (i.e. Pareto-
dominance) since y{ <y, but y3 <y,. The choice
between these two investment alternatives clearly
depends on the degree to which agents are risk-
averse. Risk-neutral agents would select the in-
vestment alternative that offers the highest ex-
pected outcome and prefer A over A°. The differ-
ence (u — u°) expresses their potential gains from
this choice in money terms. Extreme risk-averse
agents would select the alternative that offers the
highest outcome in the worst case and prefer A°
over A. The difference (y{ —y;) expresses their
potential gains from this choice in money terms.

In general, these two portfolios are included in
the efficient set from which the final choice of the
most desirable alternative would be made. To
identify that choice we must have more knowl-
edge on the agent’s preferences and, in particu-
lar, on the degree to which he is risk-averse.
Without that knowledge, we cannot determine
whether the alternative with the outcomes at A
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would be preferred over the one at A°, no matter
how much larger y, is than y3 and how small is
the difference between y{ and y,. In other words,
the ranking of investment alternatives on the
basis of the SD criteria only, is incomplete and
often not very helpful. These, of course, are fa-
miliar problems in the theoretical analysis of
choices among risky investment alternatives which
every textbook in financial analysis must en-
counter early on. If we have some knowledge on
the agent’s preferences, however, e.g., if we know
that he is neither risk-neutral nor the most ex-
treme (Max-Min) risk averse, or if we know the
range within which his true degree of relative risk
aversion is likely to be, we should be able to use
that knowledge in order to determine a more
complete ranking of investment portfolios and
thus a smaller ‘efficient’ set — by excluding those
alternatives that ordinary agents are not likely to
select.

To identify that criterion, consider agents hav-
ing a ‘rational’ preference ordering (i.e., com-
plete, transitive and reflexive) that can be repre-
sented by an appropriate utility function having
the expected utility property. To represent
‘ordinary’ risk-averse agents, Arrow (1965) added
the following requirements:

(i) U'(y)>0
(i) U"(y) <0

d u”
(i) d—y(——U,((i)))@
A Uy
@ -0

Ordinary agents are thus assumed to be strictly
risk-averse, having non-increasing absolute risk-
aversion and non-decreasing relative risk aver-
sion. By referring back to the figure, notice that
outcomes along the (negative) 45° line that cross
through A (strictly) inside the segment [A, Al
represent mean-preserving (strict) reductions in
spread. If the initial spread of the outcomes at A
is not ‘too large’, we can apply a Taylor-series
approximation of Y# around the expected out-
come u, and, assuming that we can disregard the
remainder beyond the second-order (an assump-

tion that I will relax later on), we can present the
expected utility as a function of the first two
central moments of the distribution:

BU(Y?) = U(p) +3U"(n) - V(Y) (1)

where V(YY) is the variance of the outcomes at A,
and = indicates an approximation.

The (certain) outcome yg can be expressed as
a fraction of the mean, ie., yg=(a-p):a<l.
The smaller that fraction is, the more risk-averse
is the agent. @ =1 represents an agent who is
risk-neutral, whereas a = (y,/u) represents
agents that select portfolios on the basis of the
Max-Min rule. The expression [(1 — «) - u] repre-
sents the loss in utility, expressed in terms of
money, on account of the spread — and the risk —
of the outcomes at A. ! Applying a Taylor-series
approximation of the expected utility at B around
E, we get;

Ulyg) =U(p) +(a=1)-un-U(y)
YE<y<u (2)

Define the index I, as that value which exactly
equates:

U(ye) =U(p) =1y 1 U'(w) (3)
With a strictly positive and strictly concave utility

function: I, > (1 — @). By combining (1) and (3)
we can express that index as:

Iy=3C*(Y) R(n) (4)
where

UII
R(u) = - U,g:;u

is the coefficient of relative risk aversion at wu,
and C*(Y)=[V(Y)/u?] is the second central
moment of the distribution of the outcomes. That
index thus establishes an upper bound on the
true value of (1 — &). To establish a lower bound

" The fraction (1—a) is often referred to as Atkinson’s
measure of inequality (or spread) — see Atkinson (1970).
Extending this analogy, notice that:
0<(l-a)<(pn—y)/n
In the event that w is taken to represent the ‘poverty-line’,
then (1 — «) is bounded from above by the maximum ‘poverty

>

gap’.
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on that value notice that, by definition and by the
properties (i) and (ii) of the utility function:

Uy)
(I-a)<(1l-a)—— U ()
=IA<(1—a)% YE<y<pu

By expanding U'(yg) about u, assuming that
U"” > 0, we therefore get:

(1-a)<Iy<[(1-a)+(1-a) R(w)|] (5)

Hence, the smaller the spread of the outcomes
and the less risk-averse the agent, the more accu-
rate the approximation of (1 — &) by means of the
index I,. The condition U”(y) >0 is necessary
and sufficient to secure property (iii) of the utility
function. Tsiang (1972) termed this property
“skewness preference”, which characterises ‘nor-
mal’ risk-averse agents. By inserting (4) into (5),
and granted that /(YY) =0 implies « = 1, we can
therefore conclude that, for ordinary agents:

+y1+4-R(u) I, —1

2°R(p)

Iy,>(1-a)> (6)

and therefore:

J1+4-R(p) 1, —1
2R( )

The index [,, which evaluates the utility losses
(expressed in terms of money) on account of the
risk, can be used to establish criteria for ranking
alternative risky prospects, as we shall see in the
following propositions. To simplify the notations,
the criteria are spelled out in the propositions for
agents having a constant coefficient of relative
risk aversion, although in the proofs themselves
the more general criteria are determined. For the
same reason, I also assume at this stage that the
second-order approximation is sufficiently close,
and discuss only later approximations of a higher
order.

m(l=1I,) <yg <p|l-

1.1. Proposition 1

Consider the ranking of two risky investments
Y and Y° - where u > u® and V(Y) > V(Y°) -

that is determined by ‘ordinary’ risk-averse agents
having a constant coefficient of relative risk aver-
sion.

— A sufficient condition for eu(Y) > eu(Y°) is:

| 404 V(Y®°
IR(1) ) (MO ) <(r—we) (D
— A necessary condition for eu(Y') > eu(Y °) is:
. V(Y
%R(u){[ (n—n )R( Nidtel ( )
Ho
V(Y®°
. )}<(/-L_,U~o) (8)
o

Proof. A necessary and sufficient condition for

U(yg) > U(yyp) is, by definition:
U(p) = Iy - U'(1) > U(po) = IR - 1o U'(1o)

9
But, with a strictly concave utility function:

U(p) > U(po) + (r— 1) " U'(r)
and

U'(pr) <U'(ko)

Hence, a sufficient condition for (9) is:
(m=no) >1In 1 =13 1o (10)
By inserting the corresponding approximations of
I, and I [as in (4)] into the latter inequality we
get the following sufficient condition: 2
V(Y) R( 1 V(Y°)

>__—_
(b= o) >3 B k) =3

R(po)

(1)

2 Notice that this condition does not depend on how close
the approximation I, is to the true value of (1 — @). Rather, it
depends on how close is the approximation of the index I,
itself by means of the first two central moments, which is
determined (4). If the outcomes are skewed, we may have to
use a third-order approximation — which I discuss later. It is
then showed that (12) establishes a sufficient condition if, in
addition: (uC? — 11yC3) > 0, where C* and Cj are the third
central moment of the corresponding distributions.
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If we assume R(u) = R(p,), we get from (11) the
sufficient condition (7).

To determine the necessary condition, insert
into the inequality in (9) the following inequality:

U(pr) <U(mo) + (1= o) " U'(1o)
to obtain the necessary condition, given by:

(k—po)>1 'MM—1°'MO (12)
0 4 U'(ko) 4

For an ordinary risk-averse agent, the ratio
[U'(w)/U' ()] is strictly positive and smaller
than 1. If we assume also U"” > 0, then the bounds
of this ratio would be given by:

U'(w) (B — ko)
1> >1-
U'(1o) Ko

It should be noted, though, that the expression
that specifies the lower bound may well be nega-
tive. In that case, that value of the lower bound
does not add any relevant information since we
already know that for ordinary agents this ratio
must be non-negative. In other words, in that
case the only relevant necessary condition is sim-
ply pu > pu,, whereas the additional condition in
(8) is redundant. In the event that the lower
bound in (13) is strictly positive, however, we can
insert that lower limit into (12) and obtain the
following necessary condition:

R( k) (13)

(= uo)

Mo

(n=no)>1Ip pdll— R(po) | = IR 1o

(14)

By inserting the corresponding values of I, and
I? into (14) and assuming R(w) = R(u,), we get
the necessary condition in (8). Q.E.D.

Borch (1969) has warned us, however, that the
criteria put forward in the proposition should be
applied with caution since it may well be the case
that all the outcomes in Y are larger than the
outcomes in Y°, i.e., that Y dominates Y° ac-
cording to the first criterion of SD. For the
proposition to have any meaning this possibility
must be considered first and only when it is ruled
out can the criteria be applied. The following
proposition determines necessary and sufficient

conditions for eu(Y) > eu(Y °) by a proper appli-
cation of the upper and lower bounds on (1 — a)
and thus also on the value of Y that has been
determined in (6):

1.2. Proposition 2

Consider the ranking of two risky investments
Y and Y° - where p > pu, and V(Y) > V(Y°) -
that is determined by an ordinary risk-averse
agent having a constant coefficient of relative risk
aversion.
— A sufficient condition for eu(Y) > gu(Y °) is:

(k= o) > 31C* R(p)
- 2RM(OM) (fiv2 R () -1)
(15)

— A necessary condition for eu(Y) > eu(Y °) is:

H 2 2
(M_#o)>m(‘/1+2'R (w)-C* -1

—210C3 - R() (16)
Since the restriction on the value of R(uw) which
is implicit in the derivation of the necessary con-
dition for eu(Y) > eu(Y°) in (8) may place undue
restrictions on the scope of the analysis (i.e., on
the agents group of agents for which these condi-
tions are relevant), I will focus mainly on the
sufficient condition (7) and on the two conditions
(15) and (16) in Proposition 2 and leave the
discussion on the necessary condition (8) mainly
to the endnotes. > The key for determining the
specific functional form of these conditions is the
underlying assumption that the approximations of
the indices I, and Iy by means of the first two
central moments is indeed sufficiently close. If
the outcomes are highly skewed, however, these

3Notice, for instance, that, if V(Y°)=0, the necessary
condition (8) becomes:

() V(Y) R(w)

Ko [26m0+V(Y) R*(n)]
This condition thus establishes the ranking of the risky alter-
native Y vis-a-vis the certain alternative Y°.
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approximations may no longer be adequate, and
approximations by central moments of a higher
order should be used, properly changing the con-
ditions of the propositions. Thus, for example,
with a constant relative risk-aversion, the approx-
imation of the index I, by means of the first
three central moments would be given by: *

L, =3C*(Y) - R(p) —5C3(Y)
"R(w)[1+R(w)] (17)

where C?(Y) and C3(Y) are the second and the
third central moments of the distribution. With
this approximation, the sufficient condition in
Proposition 1 becomes:

R(w) [V(Y)  V(Y°)
(1 —po) > ) " - o
_R(p) - [1-R(p)]

(/«LC3 - /'LOCS)
(18)

Clearly, if wC?®> u,C3, the sufficient condition
in (7) is still relevant — although we may lose vital
information by ignoring the third central moment
of the distributions.

The criteria established in the propositions for
ranking risky investment alternatives by compar-
ing their eu should obviously be identical to the
criteria established by comparing their ce out-
comes. For the alternatives under consideration
we can make use of our earlier notations to
specify these criteria in the following form:

6

yg > yg if, and only if: a > a8, where B =pu,/1

Indeed, the sufficient condition for U(yg)>
U(y$) which has been established in Proposition
1 can also be obtained directly by inserting the
approximations I, =(1 —a) and IQ=(1-—«q,)
into the condition a > a,B, yielding: (1 —1,) >
B(1 —12). In general we do not know, however,
how close these approximations are, and we need
the detailed procedure developed in the proofs of

4 To prove this, notice that R'(x) = 0 implies:

U(p) 1
oy = RO [+ RG]

the propositions in order to determine that these
indeed are necessary and sufficient conditions.
To the extent possible, we should also make more
accurate approximations of I, and I via central
moments of a higher order.

The second-order approximation of the index

I, is proportional to the index =" =3V (Y)-
R(w). That index has been termed by Pratt (1964,
p. 134) “proportionate risk premium”, the ‘risk-
premium’ itself being defined as: 7= = 3[V(Y) - r],
where r =R(u) - u is the coefficient of absolute
risk aversion (p. 125). I, itself is therefore a
unit-free measure of the proportionate risk-pre-
mium. The sufficient condition established by this
index in (7) closely resembles — but is different
from — the criterion suggested by Baumol (1963)
for ranking investment portfolios, which is based
on an ad-hoc expected utility function of the
form: eu(Y) = u — ko, where o is the standard
deviation of the outcomes and k represents the
agent’s risk-aversion. By this criterion, eu(Y) >
eu(Y °) if, and only if:
uw—ko>p,—koy
In contrast, the condition in (7) can be written as:
p=5r(w) V(Y)>upo—3r(m)  V(Y°)
And this condition is sufficient but not necessary
for eu(Y) > eu(Y°). In fact, it may well be the
case that the two criteria will determine contra-
dicting rankings of the same investment alterna-
tives. °

The following properties of the criteria in the
propositions should be noted:

(1) The sufficient conditions (7) and (15) indi-
cate that, up to the second-order approximation,

> In other words, if we define k = 1R(u) in order to present
the two criteria in the same functional form, then it may be
the case that the following inequalities hold:

ﬁ—ﬁ]w—umk[z—ﬁ]
I ©

Ko Ko

k

In that case, Eu(Y) > eu(Y °) according to Baumol’s criterion
whereas the inequality on the right hand side of the latter
expression establishes the necessary condition for u(Y°) >
eu(Y).
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i.e., provided that moments of a higher order can
be safely disregarded, the two conditions:

V) _vere)
m Ko

jointly, are sufficient to establish the superiority
of Y over Y, for a all positive R(n), i.e. for all
‘ordinary’ risk-averse agents having a constant
coefficient of relative risk aversion. In that case
we can say that, for these agents, Y stochastically
dominates Y °.

B> g and

(ii) If we use the third-order approximation,
the sufficient condition (18) determines the fol-
lowing joint sufficient conditions for stochastic
dominance of Y over Y°:

K> o

V(Y V(Yy®°
) < ) and  pC*>u,C¢
M Ko

These conditions thus indicate that Y may
have a higher mean and a lower variance but
than Y° some agents may still prefer Y° over Y
in the event that uC? < p,C3, so that the suffi-
cient condition (18) is not satisfied.

(iii) I, rises with both V(Y) and R(u) when it
is approximated by the second-order approxima-
tion. When we use the third-order approximation,
we find:

i,
dR(u)

If C*<0 then I, still rises with R(u); if C*> 0,
however, and the agent is ‘highly risk-averse’ — in
the sense that:

3C?

yc 1)

then a further rise in R(w) will lower the value of
that index. To examine the seeming ‘paradox’
that this may raise, consider again the sufficient
conditions in (11) and (18). If we focus on the
second-order approximation only and evaluate
the two investment alternatives Y and Y° where
w>ul and uC*> u,C¢, then these conditions
lead to the following conclusion: If an agent,

= 3C?—{CA(1+2R(w))

R(p) > 3

having a (constant) coefficient of relative risk
aversion %, ranks: eu(Y)>©eu(Y°), then all
agents having a coefficient of risk aversion equal
to or lower than %, will also agree with that
ranking. This, indeed, is the result we normally
expect. Consider however, the third-order ap-
proximation, and assume that both uC?> u,C2g
and pC?> p1,C3. From (18) we can find a value
of % © such that the less risk-averse agents —
agents having a coefficient of relative risk aver-
sion lower than &% — may rank Y° higher than Y
(in the sense that the necessary conditions for
eu(Y°) > eu(Y) will be satisfied) whereas the
more risk-averse agents — having a_coefficient of
relative risk aversion higher than % — may rank
Y (that has the larger variance) higher than Y°.
The reason is that when the outcomes are skewed,
the variance may not be an adequate indicator of
the risk.

(iv) I, is a well defined cardinal measure in
the sense that its value does not change as an
effect of linear transformations of the utility func-
tion.

(v) 1, is scale-independent if, and only if, R(w)
is constant.

2. Ranking investment alternatives for sub-groups
of agents

The criteria determined in the previous section
require some a-priori knowledge on the prefer-
ences of the economic agents — particularly on
the degree to which they are risk-averse. These
criteria can also be used, however, to determine
the ranking of risky investment alternatives when
we have only partial knowledge on the agent’s
preferences, e.g., when all we know is that the
agent is not extreme risk-averse, but we still do
not know exactly to what extent is he risk-averse.

To define that criterion, consider two invest-

° That value is given by:
1 { 3(,u,C2 —,LLOC(%) } .

2 (MC3 - #008)

Ql
Vv
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ment alternatives Y and Y° such that u > u, and
V(Y)> V(Y°) and none dominates the other in
the sense of the first and the second criteria of
the SD. Assume also, that the agent has a con-
stant coefficient of relative risk aversion. From
the sufficient condition (7) we can calculate the
critical value R™ of the coefficient of relative risk
aversion, given by:

. 2(p — po)
= v (1%
K Mo

From the sufficient condition in Proposition 1 we
can conclude that Y would be ranked higher than
Y° by all economic agents having a (constant)
coefficient of relative risk aversion swmaller than
R*. The necessary condition in (8) determines
the critical value R** such that Y° would be
ranked higher than Y by all agents having a
(constant) coefficient of relative risk aversion
larger than R” *. That value is determined in the
Appendix.

When the first two central moments of the
distribution do not provide an adequate approxi-
mation of the index I,, we can use the first three
moments and determine the critical value of R*
by inserting the approximations in (17) to the
corresponding sufficient condition in Proposition
1, yielding the equality:

§(nC? = poCR)R "2 + [§(uC> = 1oCF)

~3(C? = 1eCP)|R" + (1 — ) =0

from which the critical value R* can be deter-
mined. In this case, however, it would depend on
all the three central moments to determine
whether this critical value constitutes an upper or
a lower limit on the values of R(u) for which
eu(Y) > eu(Y°). When u > p,, sufficient condi-
tions for R* to determine an upper limit, i.e.,

sufficient conditions for eu(Y) > gu(Y°) for all
R(u) <R* are:

wC?* < p,C3 and uC?*>p,C2

whereas sufficient conditions for R* to deter-
mine a lower limit, i.e., sufficient conditions for
eu(Y) > eu(Y°) for all R(u)>R* are:

wC3>u,C3 and pC? <pu,C2

When the outcomes are skewed it may therefore
be wrong to conclude that the less risk averse the
agent the more likely he is to select the alterna-
tive that has the smaller variance.

The ranking of ‘non-inferior’ investment alter-
natives, i.e., alternatives that are not dominated
by any of the others in the sense of the first or
the second SD criteria, cannot be uniquely estab-
lished for all (risk-averse) agents, since that rank-
ing depends on the extent to which agents are
risk-averse, and thus it may differ form one risk
averse agent to another. A unique ranking can be
established, however, for sub-groups of agents by
means of the critical value R™ that can be calcu-
lated from either one of the sufficient conditions
in Proposition 1. That critical value R* can be
calculated by means of the central moments of
the distribution of the outcomes and it does not
require any subjective, agent-specific information.
If, by comparing any two alternatives, the critical
value R* is either very small (but still positive) or
very large (but still finite) we can safely conclude
that one alternative is likely to be ranked higher
than the other by most agents — with the possible
exception of the most risk-averse or the least
risk-averse agents (depending on the case). By
excluding the alternatives that may be selected by
only a small minority of the agents, we can con-
siderably narrow down the choice set from which
the preferred alternative is likely to be selected
by most risk-averse agents.

Appendix

From the necessary condition (8), that critical
value can be determined from the following equa-
tion:

(B = po) V(Y)
M Mo
vy) WV(X°)
K - Mo

(R**)2~

_R**

+2(p — o) =0
(A-1)

To determine the range of values of R(u) for
which the conditions of the Proposition will be
satisfied, we must examine first whether the ex-
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pression on the left-hand side of the latter equa-
tion rises or falls with R(u). After some algebra,
it can be proved that this expression falls with R
if, and only if:

v(y) V(Y°)

M Ko
489)

I

1 Mo
R**> —_
2 (m = mo)

(A-2)

We can therefore conclude, for example, that Y °©
would be ranked higher than Y by all agents
having a coefficient of relative risk aversion larger
than R**, provided that R™ is larger than the
value determined in (A-2).
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