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Abstract 

In this paper, the estimation of production functions and measurement of the rate of technical change is 
performed when selectivity bias is expected, A sample selection model consisting of a selection and a regression 
equation is estimated using Heckman's two-stage method. It is discussed in the context of a production function 
where the underlying technology is represented by a translog functional form. For the regression, a random effects 
model with heteroscedastic variances is assumed. This model and an alternative conventional model retaining 
heteroscedasticity without considering selectivity bias are estimated using the Generalized Least Squares method. 
The data used are a large rotating panel data set from Swedish crop producers over the period 1976-1988. The 
empirical results from the comparison between these two models show that the introduction of heteroscedasticity 
and the integration of sample selection in the production relationship is important. The impact of a correction for 
selectivity bias on the results, in terms of input elasticities and returns to scale is found to be significant. 

1. Introduction 

A farm utilizes a large number of inputs in 
order to produce a certain number of outputs in 
an often cyclical production process. The produc­
tion of different types of outputs cannot proceed 
completely independently. The overall produc­
tion process requires the joint utilization of some 
inputs. Since the process cannot be broken down 
into production stages and lines, we are facing a 
non-separable technology. In order for all inputs 
and outputs to be accounted for, some degree of 
aggregation is required. Depending on the level 
of aggregation, the multi-output problem is re­
duced to a single output or a few output prob-

lems. Another advantage of aggregation is that it 
reduces measurement error due to the non-sep­
arability of some inputs like capital. However, 
aggregation truncates the dependent variable to 
the production of a certain output. Sample selec­
tion bias may thus arise due to aggregation/trun­
cation, which makes the sample non-random. 

In collecting data from a population of micro 
units and taking into account the heterogeneous 
characteristics of the production units, stratified 
sampling is a desirable design used by data col­
lecting agencies. Stratification is a key to the 
solution of the problem of how well the sample 
selected represents the population. It is based on 
a number of characteristics important to the de-
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gree of heterogeneity such as location, size and 
specialization in the production of a certain num­
ber of outputs. This type of sampling is common 
in agricultural surveys. Depending on the pur­
pose of the data collection, some conditions are 
imposed such that the units included in the popu­
lation have certain characteristics, e.g. being a 
family farm. This will result in truncation of the 
population and possibly create selection bias. 

In the real world, the structure of the popula­
tion of farms, in terms of number (i.e. entry and 
exit), concentration, specialization etc is continu­
ously changing. This implies the introduction of 
rotation in the sampling. In a rotating sampling 
design, the data collecting agency follows a proce­
dure of dropping a fraction of the sample se­
lected in previous years, replacing it with new 
farms from the population. Rotation of samples 
has the advantage of reducing the degree of non­
response and it improves the quality of the data. 
New farms become part of the rotating sampling 
procedure by random while the exclusion of farms 
from the sample is non-random 1. The non-ran­
dom exclusion of farms from the sample is an­
other possible source of sample selection bias. 
However, this type of non-randomness might be 
ignorable due the sampling design and the ex­
pected positive effect on sample representation 
of the real population. 

Thus, a sample selection bias may emerge for 
three reasons: (a) inclusion of units specialized in 
the production of a certain output, (b) imposing 
conditions on units having certain characteristics 
to be included in the population, and (c) the 
non-random exclusion of individuals from the ro­
tating sample. The importance of sample selec­
tion and the implication of selectivity bias has 
been discussed at the theoretical level and con­
sidered frequently in some areas, e.g. labor sup­
ply (for a survey, see Killingsworth and Heckman, 
1986) but in the area of applied production stud-

1 Estimation issues related to use of rotating panel data are 
discussed in Biorn (1981), Biorn and Jansen (1983), Nijman et 
a!. (1991), Kumbhakar and Heshmati (1991) and Heshmati 
(1994) and Heshmati et a!. (1994). 

ies selectivity bias seems to be neglected. A pri­
ori, farming should be an obvious case. 

The main objective of this study is to investi­
gate the production structure of Swedish crop 
production. This particular activity may be of 
little general interest. However, the contribution 
from the modeling side should be more relevant 
to a wider audience. First, I will take into account 
selectivity bias arising from non-randomness of 
the sample as presented above, by the integration 
of sample selection in the production relation­
ship. A sample selection model is estimated using 
Heckman's two-stage method (Heckman, 1979). 
The more efficient Generalized Least Squares 
technique is used to estimate parameters of the 
model in the second step. Second, I will compare 
the sample selection and the conventional pro­
duction function model where no correction for 
selectivity bias is undertaken. Third, I will use a 
rotating panel data model estimating this on data 
from Swedish crop producers over the period 
1976-1988. I will compare the productive perfor­
mance of the farms by estimating elasticities of 
output with respect to different inputs, returns to 
scale as well as the rate of technical change. 
Finally, I will estimate a production function with 
a generalized error component structure having 
heteroscedastic disturbances suggested by Baltagi 
and Griffin (1988). I will introduce some changes 
in the procedure used to estimate the variance 
components, that reduces the frequency of nega­
tive variances. 

The rest of the paper is organized as follows. 
The sample selection model is outlined in Section 
2. The econometric specification is set out in 
Section 3. In Section 3, I also discuss the estima­
tion procedure and methods used. The empirical 
results along with a comparison of the perfor­
mance of the different models are reported in 
Section 4. Finally, Section 5 presents the conclu­
sions and a summary of this study. 

2. Sample selection model 

Assume that the farms use a multi-output joint 
production technology with some degree of spe­
cialization in the production of two jointly pro-
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ducible outputs, crop and non-crop. Let the 
stochastic model be expressed as: 

li:=X:tf3+Eit (l.a) 

Eit=u;+w;t (l.b) 

D;; = x:tf3 + s;t( + YJ;t ( l.c) 
in which i = 1, 2, ... , N t = t;, t; + 1, ... , T; 
where lit* is the output of crop, and D;; is a crop 
response indicator; the subscripts i and t denote, 
respectively, the production units and time peri­
ods; t; and T; are the first and the last time 
periods the ith farm is observed, respectively; X 
and S are matrices of explanatory variables, (3 
and ( are the vectors of the unknown parameters 
to be estimated; Eu and YJit are error terms dis­
tributed i.i.d. N(O,a-}·) and i.i.d. N(o,a;), respec­
tively; Eit is composed of two components: u; is 
the farm-specific effect, and Wu is the statistical 
noise. 

Yit* is not directly observable, lit is its observ­
able counterpart; li: is observed only if it is 
greater than a threshold, denoted by Ymin· Ymin 

can be interpreted as the minimum level of rev­
enue required for the farm to be considered as 
specialized in the production of crops. The fol­
lowing selection rule is used: 

lit = lit* if D;; > 0 or equivalently li; > Ymin 

otherwise 

(2) 

If we take the sample of crop producers only, 
the observation of lit is not random and will 
depend on E;t· The decision whether to produce a 
crop or not is not random. It is made by individ­
ual farms. Thus, the application of regression 
models to the data by discarding the observation 
at the threshold will result in biased and inconsis­
tent estimators of (3. Estimation of the produc­
tion function (l.a) must be done subject to the 
selection rule (2). The sample selection model 
consists of a selection equation governing the 
probability of observing the dependent variable 
and a regression equation based on observable 
observations only. The observability of lit is thus 
governed by a separate probit function (l.c), 
where Dit = 1 if D;; > 0, else Du = 0. 

In analyzing production relationships, the in­
puts used in the production process are not de-

terminants of the probability of producing crops. 
The vector of explanatory variables in the selec­
tion equation consists of two subsets. One subset 
contains elements overlapping those entering the 
regression equation, Xu. The other subset of the 
explanatory variables entering the selection equa­
tion, SiP dOeS not enter the COnditiOnal expecta­
tiOn of lit· 

In panel data literature, the estimation of the 
model according to the structure defined above 
has been developed in two directions. First, the 
fixed effects (FE) model, where u; is assumed to 
be fixed and in general correlated with the re­
gressors. Second, the random effects model (RE), 
where ui is assumed to be random and uncorre­
lated with the regressors (see Hsiao, 1986) 2• 

The main issues discussed frequently regarding 
random or fixed treatment of the effects are the 
efficiency, unbiasedness and consistency of the 
estimates. In empirical applications the RE mod­
els are frequently chosen. The main argument for 
this choice is that it allows a reduction in the 
number of parameters to only two, the mean and 
variance. Assuming that u; is random also allows 
the inclusion of time invariant variables which 
vanish in FE models after the within transforma­
tion. 

In this study, I use a random effect formula­
tion. Generally, it would be desirable, if possible, 
to include the farm-specific and time-specific ef­
fects in the production function. However, vari­
ables reflecting managerial differences, weather 
conditions, etc are either measurable but have 
been ignored due to the lack of information or 
are not observable and consequently impossible 
to include in the estimation. 

Consistent estimates of the model parameters 
can be obtained with Heckman's two-stage 
method. The first step involves estimation of the 
selection equation with probit so as to obtain 

2 Recent developments in the econometrics of panel data is 
surveyed by Baltagi and Raj (1992). The methods used in the 
estimation of limited dependent variable models with panel 
data related to the problems of FE vs. RE is surveyed by 
Maddala (1987). Further discussion of the estimation of fixed 
and random effects models with selectivity bias are found in 
Verbeek (1990) and Zabel (1992). 
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consistent parameter estimates. The estimates are 
used to estimate the Mill's Ratio, MR;1 = 

cf>( · )j<l>( · ). To correct the selection bias MR is 
introduced in the second step as an extra ex­
planatory variable in the regression or production 
function over non-zero observations. Thus, con­
sistent estimates of (l.a) can be obtained if the 
following relation is estimated: 

yit =X!tf3 + ljJMRit + Eit (3) 

by OLS. The model in (3) differs from the model 
in (l.a) by the inclusion of the correction factor, 
MR;1 • The estimation method used in the second 
step is the Generalized Least Squares technique 
(GLS). GLS will result in more efficient parame­
ter estimates provided there is no correlation 
between the effects and the X variables. 

The estimates of the standard errors are bi­
ased and inconsistent. They can under- or overes­
timate their correct counterparts (Heckman, 1979; 
Greene, 1981)). The simplest way to estimate 
consistently the variance-covariance matrix is to 
use the White's (1980) robust estimator expressed 
as: 

( 4) 

where Z =(X, MR) is N X k + 1 matrix of ex­
planatory variables, 'Y = ({3, ljJ) is k + 1 vector of 
unknown parameters. The diagonal matrix A is 
replaced by a matrix with diagonal elements (see 
Amemiya, 1985, p. 370): 

[ 

A A A ]2 
¥; 1 - X!tf3 -ljJMRu 

3. Econometric model 

We assume that the objective of a crop pro­
ducer is to maximize profit. The farm follows a 
two-stage decision process where the input choice 
decision is made prior to the output decision. 
Thus, maximizing profit with given input and 
output prices is equivalent to maximizing output 
(see Kumbhakar and Hjalmarsson, 1993) 3. To 

3 This is consistent with the fact that input and output 
prices are exogenous to the farms which is a reasonable 
assumption. 

avoid strong a priori restrictions on technology, a 
flexible functional form, translog, is chosen (see 
Christensen et al., 1973). Since the Cobb-Douglas 
(CD) function is nested within the translog, the 
CD specification will be tested for. Thus, the 
production technology of the Swedish crop pro­
ducers is represented by: 

Yu = {30 + "'i,jf3jxjit + {3 1t + ljJMRit 

1 2 
+ 2 [Ij"'i,kf3jkxjitxkit + f3ttt ] 

+ "'i,jf3jtxjitt + eit (5.a) 

(5.b) 

where y is the log of the output of crops, x is the 
log of inputs defined as previously. The {3s and ljJ 
are parameters of the model to be estimated. We 
include time (t) as one of the explanatory vari­
ables representing the rate of exogenous techni­
cal change. 

Returns to scale is measured by the elasticity 
of output with regard to a proportionate change 
in all inputs (the directional elasticity of the pro­
duction function) and is equal to the sum of 
marginal elasticities, i.e. the elasticities of output 
with regard to the different inputs (see Forsund 
and Hjalmarsson, 1987, pp. 83-84): 

RTS = "'i,jEj j = 1,2, ... ,k 

where 

(6) 

Ej = ayufaxjit = {3j + "'i,kf3jkxkit + {3jJ (7) 

If RTS is greater than, equal to, or less than 
one, then the corresponding returns to scale are 
increasing, constant, or decreasing. 

The rate of technical change is conventionally 
defined as the partial derivative of the production 
function with regard to time, i.e. 

(8) 

The rate of technical change, Eto can further be 
decomposed additively into pure technical change 
({3 1 + f3ttt) and non-neutral technical change 
("'i,jf3jtxj; 1) components. Technical change is de­
fined as non-neutral if the passage of time affects 
the marginal rate of technical substitution be­
tween inputs. 
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The modeling of heteroscedasticity may differ 
according to the way the farm-specific variances 
are defined. One alternative is to estimate a 
farm-specific variance for each farm. Treating u; 
and wit as random, using the Baltagi and Griffin 
(1988) approach, the following distributional as­
sumptions on the heteroscedastic error compo­
nents are imposed 

(i) u; is i.i.d. N(O, aD 
(ii) wit is i.i.d. N(O, a-',?) and 

(iii) u; and W; 1 are independent of each other 
and of the x variables. 

Stacking the time-series observations for the 
ith farm in vector form and with the above distri­
butional assumptions, the variance-covariance 
matrix of E; is 

(9) 

n is a block diagonal matrix where qi is the 
number of times the ith farm is observed; Iq; is 
an identity matrix of order qi X q;, and Jq; is a 
qi X qi matrix with all elements equal to one. 
Thus the inverse of D; is: 

ilj 1 = 1/u,? [ lq;- ( uu~!( q;uu~ + u,?) )IqJ (10) 

The GLS estimates of f3 are equivalent to the 
least square estimates when the following trans­
formations are applied to the data: 

(11) 

where Y;=T- 1'i 1 Y;o i;=T- 1'i 1 X; 1 and a;=[1 
- (uwJ(q;<T~ + u,?-)0.5)] 

The model in (5 .a) in vector form is rewritten 
as: 

(12) 

To accomplish the above data transformations, 
estimates of the unknown variance components 
u} and u,? are to be obtained first. A two-step 
GLS estimation procedure is used. In the first 
step consistent estimates of the variance compo­
nents are obtained. In the second step the esti­
mated variance components are used to trans­
form the data and perform the least squares 
method to the above transformed data. 

The overall estimation procedure has the fol­
lowing steps: 

(a) Mill's Ratio, MR; 0 is unknown and must 
be estimated. We estimate the selection equation 
with probit to obtain a consistent estimate of the 
MRit. MRit is then introduced as an extra ex­
planatory variable in the production function. 

(b) Regress the within mean transformed Y; 1 

on the within mean transformed xit and MRit to 
get the within parameter estimates and the mean 
square error which is an unbiased and consistent 
estimator of u,?. 

(c) Ignore the individual farm effect and ob­
tain the OLS residuals, e;o without any transfor­
mation and estimate Var(eit) = A7 = u} + u,? from 
A7 = IJe~j(q;- k)] for each farm which is unbi­
ased and consistent. Since we have a short panel 
with a large number of parameters (k), the ex­
pression (q;- k) is replaced with 1. 

(d) Estimates of the variances <Tu~ and ue2 are 
b . d -"2- "'2 J'\.2 "2- 1\2 1\2 o tame as uu.- A;- uw and ue - qiuu· + <Tw us-

ing steps (b) 'and (c), and th~n calc'ulate the 
transformation parameter a; for each farm. Since 
the estimate of 6-} may be negative, we specify 
~ 0 .f ~z 0 ' a;= 1 uu. < . 

(e) Give~ the a;,s calculated in step (d), trans­
form the data as Yit = Yit- a;Y; and X it =xit­
a;i;. Regress Yit on i;1 and MRit by using OLS 
to get GLS estimates of the parameters of the 
model 4 . The GLS is a weighted combination of 
the OLS and within estimators. If a; proves to be 
equal to zero, then the model collapses to OLS 
and if a;= 1, it collapses to within estimator. 

(f) The estimates of standard errors are biased 
and inconsistent and deviate from the correct 
asymptotic standard errors. Consistent estimates 
of standard errors are obtained using the White's 
robust estimator (White, 1980) as is done in (4). 

In order to avoid or reduce the occurrence of 
negative variances, some modifications will be 
introduced where instead of estimating farm­
specific variances we estimate group-specific vari­
ances for each homogeneous group of farms. The 
distributional assumptions and the estimation 

4 It is possible to use an iteration procedure using the GLS 
parameters to estimate new residuals, A7, a}., ae2 and ai until 
convergence is obtained. This step was no't tu\iy concluded 
due to the problem of large memory requirement. 
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procedure are the same as in the previous case 
except for minor differences in the calculation of 
the components of the group-specific variances 
described in the steps (c) and (d). The subscript i 
in IJ} and 1Je2 and a i are replaced by g indicating 
groups of fa:ms. The estimates of uu2 , ue2 and a 
are not only group-specific but they also vary 
within the same group due to the variation in the 
number of time periods the farms are observed. 
Since we have more than one farm in each group, 
there is no need to replace the expression in step 
(c), (qi- k), with 1. The new expression is Ciiqi 
- k) or (n/ig- k), where ng is the number of 
farms in group g and qg is the average years of 
observation. 

Table 1 
Summary statistics of the variables 

Variable Definition 

(A) Variables included in the selection equation (N = 10 611) 
sx1 Share of farm land 
sxd Share of drained farm land 
X a Age of farmer 
xo Off-farm income 
X, Time trend 
PSEC % producer subsidy, crop 
PSEd % producer subsidy, dairy 

(B) Variables inducted in the regression equation (N = 3077) 
SYca Crop share of output 
Yc Production of crop 
yd Production of dairy 
Ya Aggregate output 
X, Seed 
Xr Fertilizer 
xe Energy 
XC Cash expenditure 
X, Net rental cost 
xw Labor 
xp Traction power 
xk User cost of capital 
XI Farmland 
X, Time trend 
F No. of farms observed 
N No. of observation 
Q; No. of times observed 
MR Mill's Ratio 

4. Empirical results 

The models specified in Sections 2 and 3 are 
estimated on the rotating panel data from Swedish 
crop producers, as described in the Appendix. 
The source of the data is an annual national 
survey of the economic conditions of family farms 
(JEU) during the period 1976 to 1988. The input 
categories used in the production of crops are 
seed, fertilizer, energy, cash expenditure, net 
rental cost, labor, traction power, user cost of 
capital and land. A summary of the statistics of 
the variables is given in Table 1. 

The probit estimates of the selection equations 
are given in Table 2. The GLS estimates of the 

Mean SD 

0.7423 0.2768 
0.2586 0.3356 
47.3828 10.2768 
25 679.0614 41053.5821 
6.7736 3.6946 
0.3497 0.1183 
0.5104 0.0484 

0.8597 0.1691 
16 8112.6225 136157.8095 
34657.5302 60732.9314 
203 236.8698 165 318.8161 
12283.0834 13167.1140 
29111.2118 20082.1445 
16443.5668 11428.6835 
19601.7417 24 731.5630 
13673.1113 21410.3942 
57530.5405 42730.7507 
480.6580 1020.7829 
85 009.5975 66005.5904 
48.0050 21.5159 
6.8811 3.5790 
1034.0000 
3 077.0000 
3.8047 1.0497 
0.8481 0.4114 

Dummy variables not included in the table are as follows: (a) Production type: production of milk (Dm), beef (Db), and pork (DP). 
(b) Production area: area P1 (high) to P8 (low), ranked by fertility of land. (c) Regional location: high, medium and low productive 
regions. (d) Farm size: small, medium and large sizes. 
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parameters associated with the sample selection 
and the conventional production function models, 
along with the corrected asymptotic standard er­
rors, defined in (4), are given in Table 4. The 
estimated standard errors underestimate their 
correct counterparts by 57% in the sample selec­
tion model and by 59% in the conventional model. 

A Cobb-Douglas versus a translog functional 
form, both including MR, was tested using a 
F-test (see Johnston, 1984, p. 189). The test is 
based on the residual sum of squares calculated 
using the GLS parameter estimates. The resulting 
F-statistic value of 8.73 (critical value F(55, 3009) 
= 1.47) indicates that the restricted Cobb-Doug­
las was rejected at a 1% level of significance, in 
favor of the translog functional form. A similar 

Table 2 
Probit parameter estimates a 

Milk Beef 

Var Estimate SE Estimate SE 

ao 1.1573 0.2102 0.7512 0.3838 
sx1 2.0999 0.4194 3.4079 0.6041 
sx[ -3.5348 0.3016 -4.2555 0.4265 
sxd 0.2008 0.1501 
SXJ -0.3795 0.1588 
X a 0.0245 0.0123 
xz 

a -0.0003 0.0001 
X, -0.0349 0.0051 
xo -8.5E- 6 4.0E- 6 -4.9E- 6 3.5E-7 
PSEC 
PSEd 0.5728 0.3023 0.6044 0.3663 
Dm b 

Db 

DP 

PI -1.0331 0.0763 -0.1942 0.0833 
Pz -0.4279 0.0752 0.3584 0.0864 
p3 -0.5579 0.0758 0.1831 0.0865 
p4 -0.5513 0.0762 -0.0007 0.0840 
Ps -0.0911 0.0848 0.6377 0.1051 
p6 -0.3373 0.0882 -0.0382 0.0988 
Ps 0.5374 0.0974 0.7839 0.1125 
N c 

0 5562 8013 
N, 5049 2598 
N 10611 10611 
Log L -4853.2648 -4283.0275 

test based on the translog specification where the 
parameter of MR is restricted to zero is found to 
be significant at 5% level of significance, which 
means that selectivity bias is a problem. 

Since we have many parameters to estimate, 
one could expect multi-collinearity to be a prob­
lem. Most data sets exhibit some degree of 
multi-collinearity. A simple measure of its degree 
can be obtained by regressing each of the ex­
planatory variables on the remaining explanatory 
variables. The R 2 obtained can then be taken as 
a measure of the degree of multi-collinearity. The 
various values of R 2 were as follows: seed (0.12), 
fertilizer (0.15), energy (0.35), cash (0.41), net 
rental cost (0.14), labor (0.36), traction power 
(0.06), capital (0.44) and land (0.47) indicating 

Pork Crop 

Estimate SE Estimate SE 

-3.2585 0.3000 0.4283 0.4049 
0.5287 0.0524 7.1515 0.8290 

-5.6718 0.7511 
0.2423 0.0424 

0.0567 0.0109 
-0.0006 0.0001 
-0.0554 0.0042 -0.0459 0.0085 
-1.2E- 6 3.3E-7 -1.9E-6 7.6E -7 

0.5167 0.1498 
1.2867 0.3223 

-3.0942 0.3282 
-1.2156 0.2977 
-1.2552 0.3712 

1.6003 0.0797 0.2213 0.2385 
1.3216 0.0788 0.3177 0.1888 
0.6908 0.0815 0.2222 0.1329 
0.4413 0.0807 0.1353 0.1124 
0.8340 0.0852 0.2112 0.1457 
0.0712 0.0966 -0.0704 0.1122 
0.1928 0.1004 0.1632 0.1412 
3808 7534 
6803 3077 
10611 10611 
-5910.1549 -4641.2211 

• The dependent variable is 1 if the farm is a producer of milk, beef, pork, or crop else zero. 
b The dummy variables Dm, Db and DP in the crop model are considered to be endogenous and are replaced by their calculated 
predicted probability values. 
c Number of producers (N1), non-producers (N0 ) and observations (N). 
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that multi-collinearity is not high and conse­
quently not a problem in the present study (see 
Krnenta, 1986, p. 439). 

The correlation coefficient among the explana­
tory variables was found to be in the interval 
0.00-0.50. It was computed using the Pearson 
product-moment and Spearman's rank-order cor­
relation procedures. An inspection of the signifi­
cance probabilities associated with the correla­
tions indicates no significant correlation among 
the variables. 

A test of the regularity conditions was also 
performed. First, the marginal elasticities of each 
input with regard to output were calculated at 
each point. The percentage frequency of positive 
marginal productivities is as follows: seed (91.0), 
fertilizer (97.5), energy (73.0), cash (93.2), net 
rental cost (72.2), labor (95.8), traction power 
(63.3), capital (94.6) and land (89.4). Second, the 
concavity of the production function is checked 
by testing whether the matrix M = B - diag(a) + 
aa' is negative semidefinite, where y = a 0 + a'x 
+ ~Bx is the translog production function. The 
determinant of the matrix M was found to be 
negative semidefinite (- 2.68E - 7) indicating di­
minishing marginal productivity. 

4.1. Selection equation 

The selection equation is estimated to correct 
for selectivity bias and to provide some measure 
of the probability of producing crops. As can be 
seen from Eq. (l.b), the determinants of probabil­
ity are divided into two subsets. The first, S;p 

includes variables that enter the selection equa­
tion only. These include variables or conditions 
that are important to the manager of the farm at 
the pre-production stage, in making decisions 
whether to produce crops or alternative products. 
The second subset, Xil' consists of variables en­
tering the production function, mainly inputs, 
some of which are constrained to a certain level 
(e.g. land) and variables important in terms of 
allocation when producing multiple outputs. 

The selection equation specified includes the 
following variables. The share of farm land, the 
share of farm land with drainage, age of the 
farmer, time trend, off-farm income, producer 

subsidy share of crop and dairy prices, dummy 
variables representing production areas and pro­
duction type dummies representing production of 
milk, beef and pork. 

The decision whether to produce a certain 
type of product is usually made by the individual 
farms, e.g. production of milk, beef and pork. 
However, the producers decisions are influenced 
by factors not under the control of the farmers, 
e.g. price policy, credit policy, quality of land, 
type of farm buildings and the climate. These 
factors make the decisions weakly exogenous. In 
order to avoid misspecification, first we estimate 
separately three probit models where the depen­
dent variables are 1 if a farm has positive produc­
tion of milk (Dm), beef (Db) or pork (DP) else 
zero. The parameter estimates associated with 
these models are used to calculate the predicted 
probAabili~es that .f>m, Db and DP are 1 denoted 
by Dm, Db and DP. These calculated predicted 
probabilities are then included in the specifica­
tion of the crop probit model. 

The issue whether the above production type 
dummy variables should be considered endoge­
nous or exogenous is tested using the procedure 
suggested by Hausman (1978). The x 2 statistic 
computed is 23.67. The critical value at the 1% 
significance level and 2 degrees of freedom is 
9.21. This is an indication that the above produc­
tion type dummies are endogenous. 

The estimated parameters of the four (milk, 
beef, pork and crop) probit models, using the 
maximum likelihood method, are reported in 
Table 2. Application of Pearsons and likelihood­
ratio tests for the goodness of fit of the crop 
model yields chi-square values of 11 582 and 9282. 
The models' predictive performance are satisfac­
tory. The percentage of correctly predicted crop 
producer farms (i.e. predicted probability > 0.50) 
is about 60% (see Table 3) 5. The farms classified 
as crop producers are characterized as farms 
which, on average, have large farm land with a 

5 The percentage predicted probability > 0.50 in the alter­
native specification where the production type dummy vari­
ables Dm, Db and DP are considered as exogenous is much 
higher about 77%. 
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Table 3 
Calculated predicted probabilities of crop producers 

Probability interval 0 % % 

0.00-0.20 4849 64.36 299 9.72 
0.21-0.40 869 11.53 411 13.36 
0.41-0.60 1411 18.73 367 44.43 
0.61-0.80 392 5.20 956 31.07 
0.81-1.00 13 0.17 44 1.43 
Prob. ~ 0.50 6332 84.05 1231 40.01 
Prob. > 0.50 1202 15.95 1846 59.99 

high share of drainage, owned by a young part­
time working farmer and located in the more 
fertile production areas, P 1 to P4 • About 39% 
and 28% of these farms also have joint produc­
tion of crops and beef or crops and pork, respec­
tively. About 16% produce a mixture of crops, 
beef and pork. 

From Table 2 we can see that the coefficient 
of the share of farm land (SX1) is highly signifi­
cant and as expected has a positive sign. On other 
hand, the square of SX1 has a significant coeffi­
cient, but negative sign, indicating a decreasing 
marginal probability of being a crop producer. 
The coefficient of the time trend (X1) is negative 
and significant. This can be interpreted as show­
ing that the probability of having crops as .a main 
line of production is declining over time. The 
off-farm income (X0 ) has a negative and signifi­
cant effect. This indicates that though specializa­
tion in production of crops for family farms relies 
on and is integrated with part-time off-farm work, 
an increase in the level X 0 will nevertheless 
result in loss of useful information with negative 
impacts on the efficiency of farms. 

The coefficient of the producer subsidies share 
of the crop price (PSEc) is, as expected, positive 
and significant. A higher PSEc is positively re­
lated to the propensity of producing crops. The 
predicted production type dummy variables milk 
(Dm), beef (Db) and pork (DP) are all significant 
and negatively related to the probability of being 
a crop producer. Three of the seven dummies (P7 

excluded), that represent production areas (P1 to 
P 8 ) ranked by fertility of land, are significant. The 
coefficients associated with the age of the farmer 
(Xa), the share of farm land with drainage (SXd) 
and the producer subsidies share of dairy price 

(PSEd) were insignificant and were finally ex­
cluded from the specification. 

The Mill's ratio (MR), evaluated for each ob­
servation using the parameter estimates from the 
crop probit model, was included as one of the 
explanatory variables in the production function. 
From Table 4 we can see that the coefficient of 
MR is negative and significant at the 5% level of 
significance, indicating presence of selectivity bias. 
Thus not accounting for selection bias will yield 
biased and inconsistent estimators. It should be 
noted, however, that the use of MR adjustment 
to account for sample selectivity is only an ap­
proximation. Empirical findings show that differ­
ent estimation methods applied to the same data 
set might yield different estimates of the selection 
effect (see Olsen, 1982, and Little, 1985). 

4. 2. Variance components 

One important feature of the model outlined 
in this study is the introduction of farm hetero­
geneity into the production function. We follow 
the generalized error component model with het­
eroscedastic disturbances proposed by Baltagi and 
Griffin (1988). The serious disadvantage of this 
approach is that the procedure used to estimate 
the variance components may result in negative 
estimates of the farm-specific variances. In this 
paper, I specify heterogeneity by defining groups 
of farms with similar farming conditions. Estima­
tion of group-specific variances instead of farm­
specific variances reduces the frequency of the 
negative variances. One variance (a}) is esti­
mated for each homogeneous group of farms and 
one common white noise variance (a,?), both are 
used to calculate the total variance (ae2 ). These 
variance components are then used to calculate 
the transformation parameter (a). The het­
eroscedastic variance component au2 makes a 
group-specific, varying in the interval zero to one. 
An inspection of the values showed that only 
0.1% (i.e., three observations out of 3077) of the 
group-specific variances are negative 6 . 

6 An inspection of the frequency of negative farm-specific 
variances in a case where one uu2 is estimated for each farm 
showed that 18.1% of the uu2 were negative. 
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Table 4 
Generalized least squares parameter estimates a 

Parameter Sample selection model (SSM) Conventional regression model (CRM) 

Estimate SE b Estimate SE 

f3o -0.0753 0.0530 -0.1139 0.0466 
{3, 0.0887 0.0726 0.0881 0.0724 

f3r 0.2901 0.1901 0.2884 0.1899 
f3e 0.1856 0.2660 0.1778 0.2666 
f3c -0.2888 0.2314 -0.2872 0.2324 
{3, 0.0616 0.0556 0.0635 0.0556 
f3w 0.0877 0.2508 0.1039 0.2518 

f3p -0.1051 0.0690 -0.1040 0.0690 
{3k -0.3084 0.2945 -0.2990 0.2954 
{3, -0.1578 0.0799 -0.1606 0.0803 
{31 4.3049 0.9584 4.2589 0.9630 
{3,, 0.0057 0.0014 0.0057 0.0014 

f3rr 0.0074 0.0022 0.0075 0.0022 

f3ee 0.0011 0.0053 0.0012 0.0053 
f3cc 0.0117 0.0037 0.0118 0.0037 
{3,, 0.0068 0.0013 0.0069 0.0013 
f3ww 0.0311 0.0071 0.0305 0.0072 
/3pp -0.0008 0.0019 -0.0008 0.0019 
{3kk 0.0296 0.0170 0.0302 0.0170 
{3,, -0.0025 0.0009 -0.0024 0.0009 

f3u 0.0096 0.0873 0.0074 0.0881 

f3sr -0.0020 0.0022 -0.0019 0.0022 

f3se -0.0170 0.0054 -0.0172 0.0053 
f3sc 0.0027 0.0028 0.0027 0.0028 
{3,, -0.0017 0.0009 -0.0017 0.0009 

f3sw 0.0086 0.0077 0.0086 0.0077 
f3sp -0.0005 0.0011 -0.0005 0.0011 
f3sk -0.0059 0.0057 -0.0058 0.0058 
{3,, 0.0015 0.0012 0.0015 0.0012 
f3s1 -0.0004 0.0115 -0.0004 0.0115 

f3re -0.0010 0.0077 -0.0012 0.0078 

f3rc -0.0028 0.0040 -0.0028 0.0040 

f3rr 0.0008 0.0017 0.0008 0.0017 

f3rw -0.0007 0.0162 -0.0006 0.0161 

f3rp 0.0017 0.0018 0.0016 0.0018 
{3fk -0.0312 0.0118 -0.0310 0.0118 

!3rt 0.0013 0.0022 0.0013 0.0022 

f3n 0.0066 0.0160 0.0062 0.0160 

f3ec 0.0258 0.0136 0.0256 0.0136 

f3er -0.0003 0.0025 -0.0002 0.0025 

f3ew -0.0184 0.0231 -0.0175 0.0232 
f3ep 0.0040 0.0052 0.0042 0.0052 
f3ek -0.0049 0.0171 -0.0045 0.0171 

f3ct -0.0026 0.0047 -0.0026 0.0047 
f3el -0.0033 0.0444 -0.0043 0.0446 

f3cr -0.0046 0.0030 -0.0047 0.0030 
f3cw 0.0033 0.0249 0.0022 0.0252 
f3cp -0.0013 0.0037 -0.0012 0.0037 
f3ck 0.0205 0.0173 -0.0204 0.0175 
f3ct 0.0124 0.0044 0.0124 0.0044 
{3cl 0.0248 0.0372 0.0276 0.0373 
f3rw -0.0096 0.0058 -0.0097 0.0059 
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Table 4 (continued) 

Parameter Sample selection model (SSM) Conventional regression model (CRM) 

Estimate SE b Estimate SE 

/3rp -0.0011 0.0008 -0.0011 0.0008 

f3rk 0.0070 0.0044 0.0068 0.0044 

f3rt 0.0005 0.0007 0.0005 0.0007 

f3rt -0.0081 0.0076 -0.0080 0.0077 

f3wp 0.0140 0.0075 0.0138 0.0075 

f3wk 0.0539 0.0295 0.0516 0.0296 

f3wt 0.0053 0.0080 0.0057 0.0080 

f3wt -0.2801 0.0969 -0.2757 0.0976 

/3pk -0.0069 0.0050 -0.0071 0.0050 

/3pt 0.0008 0.0008 0.0008 0.0008 

f3pt 0.0006 0.0104 0.0009 0.0104 

f3kt 0.0153 0.0046 0.0154 0.0046 

f3kt -0.0777 0.0510 -0.0777 0.0510 

f3tt -0.0497 0.0104 -0.0504 0.0104 
f3h 0.0468 0.0463 0.0622 0.0447 

/3m 0.0039 0.0488 0.0096 0.0481 

"' 
-0.0307 0.0136 

MSE 0.1049 0.1048 

R;di 0.9067 0.9057 

a Based on 1034 farms each observed on the average 3.8047 years, i.e. a total of 3077 observations. 
b Corrected standard errors. 
Glossary of variables: s, seed; f, fertilizer; e, energy; c, cash expenditure; r, net rental cost; h, m, regional dummies; w, labor; p, 
traction power; k, user cost of capital; t, time trend; I, land. 

The existence of a large number of farms with 
large cross-sectional differences suggests that het­
eroscedasticity could be a problem and motivates 
estimation of the a-parameters for each homoge­
neous group of farms. Application of Barlett's 
test (see Kmenta, 1986, p. 297) for the null hy­
pothesis of homoscedasticity, i.e. uu~ = u}2 = 
... = uu2 , against the alternative hypothesis of 

21 

heteroscedasticity yields the chi-square values of 
735.84. The critical value of x2 with 20 degrees 
of freedom is 37.57 at the 1% level of signifi­
cance 7. This allows us to reject homoscedasticity 
at the 1% level of significance. 

The group-specific variances, u} (excluding 
one with zero value) varying from 0.25 to 5.07, 
with an overall sample mean of 0.95 and standard 

7 The number of cell combinations of three sizes and eight 
production areas is 24 groups of farms. No farms were ob­
served within three cells. The degree of freedom is (G -1) = 

20. 

deviation of 0.70, are reported in Table 5. The 
common white noise variance, u!;, is 0.09. The 
transformation parameter a ranges from 0.69 to 
0.93 with a mean of 0.80 and a standard deviation 
of 0.08. For purposes of comparison, I also report 
the means of the variance components and a by 
years, regions and farm sizes in Table 5. When 
looking at the distribution over time, uu2 , ue2 and 
a are found to be increasing from 1976 to 1983. 
They reach their highest values in 1983 and then 
decrease during the following years to the lowest 
levels in the final year (1988). The sizes of u}, ue2 

and a are found to be negatively related to the 
productivity of land and farm size. Small farms 
and farms located in less productive regions are 
found to be more heterogeneous. 

4.3. Input elasticities 

Since the coefficients of the translog produc­
tion function do not have any direct interpreta­
tion, I calculate the elasticity of output with re­
spect to each of the inputs as defined in (7). 
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These elasticities are both farm- and time-specific and over time. The elasticities and the measures 
and are used in drawing inferences regarding the of returns to scale, evaluated at the mean, for 
allocation of resources by farm, within the sample each year, region and farm size and based on the 

Table 5 
Variance components by groups of farm, year, location and size a 

N qi u.2 
w 

(J2 
u 

(J2 
e a 

Gls 179 3.6536 0.0955 0.3397 1.3368 0.7261 

Glm 304 3.8388 0.0955 0.2499 1.0547 0.6947 

G11 410 3.8854 0.0955 0.3185 1.3332 0.7235 

Gzs 93 3.9462 0.0955 0.6484 2.6542 0.8054 

Gzm 89 3.5169 0.0955 0.4185 1.5673 0.7487 

Gzi 167 3.8982 0.0955 0.3519 1.4673 0.7390 

G3s 197 3.7614 0.0955 1.1284 4.3398 0.8484 

G3m 244 4.0738 0.0955 1.3582 5.6283 0.8656 

G31 302 3.7020 0.0955 1.2165 4.5991 0.8525 

G4s 176 3.7670 0.0955 1.6209 6.2016 0.8729 

G4m 238 3.5672 0.0955 2.0641 7.4586 0.8846 

G41 335 3.7522 0.0955 0.9476 3.6512 0.8336 

Gss 41 3.7317 0.0955 1.0484 4.0080 0.8435 

Gsm 48 3.6458 0.0955 0.3910 1.5211 0.7470 

G6s 67 4.1343 0.0955 1.7959 7.5204 0.8831 

G6m 68 3.8529 0.0955 0.7510 2.9892 0.8188 

G6I 3 2.0000 0.0955 0.0000 0.0955 0.0000 

G7s 35 3.6857 0.0955 0.7717 2.9399 0.8186 

G7m 31 4.5161 0.0955 1.0737 4.9445 0.8560 

Gss 23 4.3043 0.0955 5.0679 21.9093 0.9321 

Gsm 27 3.6667 0.0955 3.0662 11.3381 0.9066 
1976 202 3.2822 0.0955 0.9122 3.0137 0.7823 
1977 259 3.4015 0.0955 0.9894 3.4109 0.7936 
1978 256 3.8242 0.0955 0.9276 3.6300 0.7967 
1979 238 4.0168 0.0955 0.9562 3.9236 0.8102 
1980 221 3.9910 0.0955 0.9865 4.0137 0.8100 
1981 252 4.0595 0.0955 0.9697 4.0376 0.8111 
1982 240 4.0417 0.0955 0.9931 4.1722 0.8140 
1983 249 4.0522 0.0955 1.0673 4.4238 0.8193 
1984 258 4.1124 0.0955 0.9610 3.9981 0.8140 
1985 277 3.9495 0.0955 0.9345 3.7651 0.8087 
1986 276 3.7971 0.0955 0.9236 3.6133 0.8000 
1987 221 3.4072 0.0955 0.9047 3.2418 0.7844 
1988 128 3.0313 0.0955 0.7640 2.3827 0.7538 
Regional location 
High 2734 3.7919 0.0955 0.8920 3.4546 0.7981 
Medium 227 3.8458 0.0955 1.0271 4.1619 0.8162 
Low 116 4.0259 0.0955 2.2383 9.1915 0.8716 
Farm size 
Small 811 3.8015 0.0955 1.1536 4.5716 0.8255 
Medium 1049 3.8122 0.0955 1.0694 4.1413 0.8028 
Large 1217 3.8003 0.0955 0.7183 2.7970 0.7862 
Overall sample mean 
SSM 3077 3.8047 0.0955 0.9527 3.7231 0.8022 
CRM 3077 3.8047 0.0955 0.9595 3.7498 0.8036 

a G .. , group of small (s), medium (m) and large (I) farms located in production areas P1-P8 . N, No. of observations; q;, No. of times 
observed. Variances: constant (u.,7), heterogenous (uu2 ) and total (ue2 ); a, transformation parameter. SSM, Sample selection model. 
CRM, Conventional regression model. 
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parameters estimated for the sample selection 
model, are reported in Table 6. 

In general, the size and development of these 
elasticities reflect important structural features of 
Swedish grain farming. Largest in magnitude is 
the land elasticity with a sample mean of 0.34, a 
large standard deviation (0.21) and a strong de­
creasing trend moving the average value from 
0.59 in 1976 to 0.07 in 1988. This trend reflects 
the existence of a large crop surplus and the 
subsequent reduction in the size of land. This has 
in turn increased the supply of low cost land, 
inducing a reduction in the rate of return to 
farming. Thus, in spite of the variations, land has 
on average become a much less constraining fac­
tor on production. The land elasticity is found to 
be negatively related to the size of farms. 

Traction power provides the other extreme, 
with virtually constant elasticity at 0.01 (and many 
negative individual elasticities). This is a strong 
indication of tax-induced over-mechanization in 

Table 6 
Input elasticities and returns to scale 

Year Elasticity of output with respect to 

Seed Fertil. Energy Cash Rent 

1976 0.0420 0.0671 0.0434 0.0299 0.0656 
1977 0.0425 0.0678 0.0544 0.0401 0.0653 
1978 0.0431 0.0661 0.0583 0.0493 0.0669 
1979 0.0427 0.0688 0.0541 0.0641 0.0671 
1980 0.0486 0.0676 0.0420 0.0729 0.0674 
1981 0.0464 0.0661 0.0423 0.0783 0.0672 
1982 0.0477 0.0656 0.0443 0.0917 0.0681 
1983 0.0495 0.0681 0.0463 0.1040 0.0692 
1984 0.0476 0.0621 0.0408 0.1187 0.0722 
1985 0.0529 0.0670 0.0381 0.1384 0.0709 
1986 0.0515 0.0666 0.0445 0.1610 0.0705 
1987 0.0554 0.0667 0.0404 0.1739 0.0715 
1988 0.0549 0.0645 0.0292 0.1948 0.0743 
Regional location 
High 0.0479 0.0658 0.0412 0.1051 0.0696 
Medium 0.0461 0.0742 0.0670 0.0871 0.0655 
Low 0.0553 0.0695 0.0914 0.0735 0.0507 
Farm size 
Small 0.0527 0.0717 0.0505 0.0808 0.0660 
Medium 0.0492 0.0678 0.0477 0.0961 0.0676 
Large 0.0440 0.0620 0.0396 0.1207 0.0714 
Overall sample mean 
SSM 0.0480 0.0665 0.0454 0.1028 0.0689 
CRM 0.0602 0.0786 0.0465 0.1280 0.0726 

Swedish farming - a result which is consistent 
with a lot of anecdotal evidence. 

The seed elasticity is on the average 0.05 and 
is increasing over time. The differences in use of 
seed across farms of different sizes and located in 
different regions are found to be quite small. The 
mean value is lower for the large farms, in com­
parison to the small and medium sizes, and it is 
somewhat higher in the northern regions. 

The fertilizer elasticity is somewhat larger than 
the seed elasticity. It is on the average 0.07 and 
fluctuating around the value of the overall mean. 
We observe minor differences in the utilization of 
fertilizer across the different farm sizes and re­
gions. Large farms located in high productive 
regions use more fertilizer per unit of land. This 
indicates that this type of farms use land more 
intensively. 

The energy elasticity has a mean value of 0.05 
with large standard deviations. It is increasing 
during 1976 to 1978. The outbreak of the second 

Returns to scale 

Labor T. power Capital Land RTS 1 RTS 2 

0.2062 0.0101 0.1067 0.5948 0.5710 1.1658 
0.2017 0.0107 0.1203 0.5509 0.6028 1.1537 
0.2091 0.0101 0.1405 0.4950 0.6434 1.1384 
0.2026 0.0104 0.1369 0.4757 0.6467 1.1224 
0.2130 0.0106 0.1487 0.4194 0.6708 1.0902 
0.2358 0.0096 0.1685 0.3404 0.7142 1.0546 
0.2486 0.0103 0.1879 0.2909 0.7642 1.0551 
0.2343 0.0089 0.1971 0.2551 0.7774 1.0325 
0.2800 0.0086 0.2217 0.1968 0.8517 1.0485 
0.2673 0.0092 0.2287 0.1706 0.8725 1.0431 
0.2673 0.0101 0.2476 0.1300 0.9191 1.0491 
0.2626 0.0103 0.2607 0.1037 0.9415 1.0452 
0.2681 0.0104 0.2683 0.0730 0.9645 1.0375 

0.2416 0.0097 0.1881 0.3325 0.7689 1.1014 
0.2141 0.0098 0.1728 0.4167 0.7366 1.1533 
0.2174 0.0133 0.2328 0.3953 0.8039 1.1992 . 
0.2593 0.0111 0.1802 0.4055 0.7723 1.1778 
0.2461 0.0103 0.1941 0.3390 0.7789 1.1179 
0.2180 0.0086 0.1896 0.2972 0.7539 1.0511 

0.2386 0.0099 0.1887 0.3419 0.7688 1.1107 
0.2412 0.0103 0.1756 0.4031 0.8130 1.2161 

SSM, Sample selection model. CRM, Conventional regression model. 
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oil crisis in 1979 introduced some changes in the 
energy consumption behavior of the farms. The 
elasticity decreases during 1979 to 1980 and 
thereafter increases until 1983. There is a sharp 
decline in the size of the elasticity in the final 
year of 1988. Small farms located in the northern 
parts of Sweden use, on average, more energy per 
unit of output than other farms. 

The cash expenditure elasticity is relatively 
large with a sample mean of 0.10 and standard 
deviation of 0.06. It shows a strong increase from 
0.03 in 1976 to 0.19 in 1988. Moreover, there are 
substantial variations across different locations 
and sizes. Large farms and farms located in highly 
productive regions are more cash intensive than 
small farms and farms located in the less fertile 
areas. 

The sample mean net rental cost elasticity is 
0.07 and is increasing over time. Large farms 
located in fertile areas have somewhat larger 
elasticity than the smaller ones. Complicated pro­
duction processes and large quantities of output 
require access to storage spaces and expensive 
machinery other than those owned by the large 
farms. 

The labor elasticity is the second largest in 
magnitude. The sample mean value is about 0.24. 
It increases during the period 1976 to 1984 but is 
somewhat lower, and fluctuates around 0.26, dur­
ing the remaining period. This is a reflection of 
increased mechanization. As expected, there are 
large variations across regions and farm sizes. 
The labor elasticity is found to be negatively 
related to the size of the farm, but positively 
related to the fertility of the land. Farms of the 
same size employ different levels of labor inten­
sity. The differences are generated by the varia­
tions in the types of crops produced and their 
variability in labor requirements. 

The capital elasticity is fairly high and increas­
ing, starting at 0.11 in 1976 and ending at 0.27 in 
1988. The elasticities for farms located in high 
and medium productivity areas are smaller than 
those for small farms in low productivity regions. 
This is due to the over-mechanized production 
process. The latter seems to mainly to relate to 
tractor power. Small farms use less capital per 
unit of output and more efficiently compared to 

other sizes. This type of farm replaces capital less 
frequently. 

For comparison purposes, I have calculated 
these elasticities using the conventional model 
which does not account for selection bias. The 
mean sample elasticities of output with respect to 
seed, fertilizer, energy, cash expenditure, net 
rental cost, labor and traction power and land are 
higher while those of the user cost of capital are 
lower than those calculated for the sample selec­
tion model. 

4.4. Returns to scale 

The estimates of returns to scale (RTS) de­
fined in (6), as the elasticity of output with regard 
to a proportionate change in all inputs, are given 
in Table 6. Two measures of returns to scale are 
defined. In the first case, RTS 1, the variable land 
is not included while in the second, RTS 2 , land is 
also included. 

The sample mean of RTS 1 is found to be 0.77 
with a standard deviation of 0.11. RTS 1 is in­
creasing continuously over time. Keeping land 
compact, crop farms are characterized by de­
creasing returns to scale. RTS 1 is gradually in­
creasing during the sample period, from 0.57 in 
1976 to 0.96 in 1988. It is somewhat higher for 
the small and medium size farms, located in the 
low fertile areas. 

By the second definition, the sample mean of 
returns to scale is 1.11 with a standard deviation 
of 0.06. RTS 2 is also found to be, on average, 
greater than one, indicating increasing returns to 
scale, during 1976 to 1979. RTS 2 has declined 
over time from 1.17 in 1976 to 1.04 in 1988. This 
is caused by the sharp decline in the returns to 
land. The size of RTS 2 is low for large farms 
located in the highly fertile areas and higher for 
smaller farms located in areas with high fertility. 

The following is the interpretation of the re­
sults obtained. At the margin, land has become a 
less scarce resource in the sense that its marginal 
productivity has decreased. At the same time the 
returns to scale of other inputs have increased, 
which is totally consistent with the fact that land 
has become gradually less of a binding constraint 
on production in Swedish agriculture. Together, 
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however, the elasticity of scale has decreased 
towards constant returns to scale, which is also 
consistent with the fact that land is not a very 
binding restriction on the production possibilities, 
mainly due to the existence of a large surplus and 
the reduction in the total area of land utilized. 

The main difference between the sample se­
lection model and the conventional model ap­
pears in the scale properties - in the marginal 
elasticities as well as in the elasticity of scale. 
According to the both models there is overall 
increasing returns to scale. The sum of differ­
ences correspond to 4.4% by RTS 1 and 10.5% by 
RTS 2 measures. 

4.5. Rate of technical change and its decomposition 

Technical change is represented by a simple 
time trend in the production function. The use of 
a flexible functional form and introduction of 
quadratic terms in time and interaction of time 
with the inputs allows for non-neutrality of tech­
nical change. 

Estimates of the rate of technical change de­
fined in (8), are obtained as the partial derivative 
of the production function with regard to time. 
The sample mean values show technical regress 
during the period of study, at the rate of 0.03 per 
year. The rate of technical change is further 
decomposed into pure and non-neutral compo­
nents. These measures are reported in Table 7. 
The sample mean of the pure and non-neutral 
components are -0.25 and 0.22, respectively. The 
pure component contributes negatively to the rate 
of technical change while the contribution from 
the non-neutral component is found to be posi­
tive. Considered over time the elasticity was neg­
ative indicating technical regress, but at a de­
creasing rate. The overall rate declined continu­
ously from the value of zero in 1976 to - 0.06 in 
the final year 1988. The same decreasing pattern 
was evident for the pure component. The non­
neutral component increases over time. 

We observe some variations in the behavior of 
the technical change and its non-neutral compo­
nent for different sizes and locations. Small farms 
and farms located in fertile regions have, on 
average, experienced a lower rate of technical 

Table 7 
Decompostition of the rate of technical change 

Year Pure Non-neutral Overall 

1976 -0.2183 0.2180 -0.0002 
1977 -0.2236 0.2136 -0.0100 
1978 -0.2290 0.2154 -0.0136 
1979 -0.2344 0.2138 -0.0206 
1980 -0.2397 0.2152 -0.0245 
1981 -0.2451 0.2195 -0.0256 
1982 -0.2505 0.2250 -0.0255 
1983 -0.2558 0.2205 -0.0353 
1984 -0.2612 0.2269 -0.0343 
1985 -0.2666 0.2255 -0.0410 
1986 -0.2719 0.2243 -0.0476 
1987 -0.2773 0.2205 -0.0568 
1988 -0.2827 0.2209 -0.0618 
Regional location 
High -0.2504 0.2209 -0.0295 
Medium -0.2462 0.2137 -0.0325 
Low -0.2446 0.2125 -0.0321 
Farm size 
Small -0.2473 0.2274 -0.0200 
Medium -0.2498 0.2219 -0.0279 
Large -0.2515 0.2136 -0.0379 
Overall sample mean 
SSM -0.2498 0.2200 -0.0298 
CRM -0.1941 0.1644 -0.0297 

SSM, Sample selection model. CRM, Conventional regression 
model (CRM). 

regress. The large negative pure component could, 
to some extent, be explained by the changes in 
agricultural policy caused by environmental con­
cerns. The changes have sought to limit the use of 
fertilizer and pesticides per unit of land by intro­
ducing more restrictions and taxes on the use of 
these inputs. The highly positive non-neutral 
component is an indication that changes have 
taken place in the composition of inputs that are 
used in crop production. The reduction in the 
size of land employed in the production of crops 
by laying off less fertile land has been important 
in this respect. 

5. Conclusions 

In this paper we have discussed the estimation 
of production functions when sample selection 
bias due to non-randomness of the sample can be 
expected. A sample selection model consisting of 
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a selection equation and a production function 
was estimated using Heckman's two-stage 
method. In the estimation of the production func­
tion, where the underlying technology was repre­
sented by a translog functional form, we assumed 
a random effects model with heteroscedastic vari­
ances. The model was estimated using the Gener­
alized Least Squares method. In the empirical 
part we utilized a large rotating panel data set 
from Swedish crop producers over the period of 
1976-1988. The major findings and conclusions 
derived from this study are: 

First, a correct specification of the determi­
nants of the probability of being a crop producer 
is limited by data observability and accessibility. 
This affects the explanatory power of the probit 
model, the evaluation of Mill's Ratio (MR) and 
the detection of the possible presence of selectiv­
ity bias. The probit model was estimated using 
the maximum likelihood method. The models 
predictive performance has been satisfactory. The 
coefficient of the MR in the production model is 
found to be negative and significant, indicating 
the presence of selectivity bias. 

Second, introduction of heteroscedasticity by 
estimating group-specific variances shows to be 
useful. The groups of farms are defined based on 
a combination of farm sizes and locations. The 
mean distribution of group-specific variances has 
increased during the period before 1983 and de­
clined in the following years. Small farms located 
in less productive regions are found to be more 
heterogeneous. The procedure used here to esti­
mate the variance components did only result in 
0.1% negative estimates of the group-specific 
variances. 

Third, the elasticity of output with respect to 
each of the inputs was calculated. These elastici­
ties are both farm- and time-specific. The mean 
energy, seed, fertilizer and rental cost elasticities, 
ranked by size lie between 0.04 and 0.07. The 
mean cash and capital elasticities are 0.10 and 
0.19, respectively. The labor elasticity is the sec­
ond largest, about 0.24. The cash, labor and capi­
tal elasticities are increasing over time. The elas­
ticity with respect to land is the largest in magni­
tude. The mean value is about 0.34 and is de­
creasing over time. 

Fourth, two measures of returns to scale are 
defined. The sample mean of returns to scale 
where land is not included in the calculation is 
0.77. It shows that crop farms are characterized 
by decreasing returns to scale. When land is 
included, the sample mean is 1.11. It is larger 
than one during 1976 to 1988. The returns to 
scale are declining over time. This is caused by a 
sharp decline in the returns to land. Land has 
become a less scarce resource and gradually less 
of a binding constraint on production. 

Fifth, the sample mean value of technical 
change shows technical regress during the period 
of study at the rate of 0.03 per year. It is declin­
ing from the value of zero in 1976 to -0.06 in 
1988. The measure of technical change is further 
decomposed into its pure and non-neutral com­
ponents. The means for the pure and non-neutral 
components are -0.25 and 0.22, respectively. 
Small farms and farms located in fertile regions 
have on the average experienced a lower rate of 
technical regress. 

Finally, in comparison between the sample se­
lection and the conventional model, the empirical 
results show that introduction of heteroscedastic­
ity and accounting for selection in the production 
relationship to be important. The impact of the 
selectivity bias considered on the results obtained 
in terms of scale properties are found to be 
significant. A significant coefficient of the MR is 
an indication of the presence of selectivity bias. 
However, the estimates of the selection effects 
are sensitive to the way the farm effects are 
treated and the choice of estimation methods. In 
comparison between farm- and group-specific 
formulations of the heteroscedasticity, the 
group-specific formulation is preferred. It results 
in very few negative variances. 

6. Appendix: Data 

6.1. Description of the rotating sample 

The data used in this study are part of an 
annual national survey of the economic condi­
tions of agriculture (JEU), carried out by Statis­
tics Sweden (SCB). The annual survey includes 
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about 1,000 small and medium-sized family farms 
drawn from a population of 30 000 to 35 000 farms 
during the period 1976 to 1988. These farms have 
arable land consisting of 20 to 100 hectares in the 
plain districts and 20 to 50 hectares in the forest 
and northern districts. A stratified random sam­
ple of the farms was obtained by SCB using the 
Farm Register in agriculture and forestry as the 
sampling frame. The stratification of farms with 
respect to the production area was in direct pro­
portion to the total number of farms within the 
area, cattle units and the area of arable land. 

Each chosen farm is expected to be part of the 
survey for a total of 4 years with a regeneration 
rate of 25% per year. The main reason for apply­
ing a rotating sampling design by SCB is to re­
duce the degree of non-response and the desire 
to maintain the property of the sample represen­
tation of the true population. The annual degree 
of non-response has kept unchanged at 10-12% 
of the sample. During the period under investiga­
tion, 1976-1988, there were major changes in 
sample representation of the population due to 
changes that occurred in the structure of produc­
tion and the population of the farms. 

The distribution of land by size shows that the 
percentage of small farms has declined over time 
whereas the percentage of medium and large 
farms has increased. The area under cultivation 
and the number of farms has declined by 3.6% 
and 22.9%, respectively. These changes are mainly 
caused by rapid policy induced structural change. 
The idea of rotation has been helpful in captur­
ing changes in the structure of agriculture and 
taking them into account in the annual stratified 
sampling plan. 

6. 2. Definition of variables 

The observed farms in my sample do not all 
produce the same outputs nor do they use the 
same inputs. I have classified the farms' produc­
tion activities and resources used into several 
output and input categories, common to all farms 
under consideration. In this paper, I am inter­
ested only in the production of crops. I use three 
measures of output to define a farm as a crop 
producer, ¥;,, Yd and Y, (Y, = ¥;, + Yd), as the 

total income generated from the production of 
crops, dairy and from an aggregate output, re­
spectively. I define a farm as a crop producer 
during a period if the share of crop of the aggre­
gate output is larger than 50%. The share of 
crops in the farm's aggregate output in the condi­
tioned sample is on average, 86% (see Table 1). 
Yc, Yd and Ya are measured in Swedish currency 
(SEK) converted to 1980 prices using the pro­
ducer price index for crop, dairy and an aggre­
gate of crops and dairy products. 

In the present study, I use seed, fertilizer, 
energy, cash expenditure, net rental cost, labor, 
traction power, user cost of capital and land as 
inputs in the production of crops. 

Seed (X.) is one of the main components of 
the farm's expenditure defined as the total ex­
penditure on the purchase of seed. Fertilizer (Xf) 
is the aggregate value of the plant nutrient uti­
lized at the farm. Cash expenditure (XJ is the 
aggregate value of cash expenditure items pur­
chased and used mainly in the production of 
crops. Xc consists of costs induced by the use of 
pesticides, fodder preservative, cleaning, educa­
tion and health service, cost of hiring labor, con­
sultation service, marketing, communication and 
transportation. X 5 , Xf and Xc are measured in 
SEK and transformed to constant 1980 prices 
using the agricultural requisites cost price index. 

Energy (X e) is the aggregate value of the farm's 
consumption of energy including electricity and 
fuel. Xe is measured in SEK and transformed to 
constant 1980 prices using an aggregate cost price 
index for fuel and electricity. 

Net rental cost (Xr) is the difference between 
total rental cost and total rental income of the 
farm. Rental income and costs includes income, 
respective costs generated from renting farm 
buildings, land and machines. We define Xr as a 
difference because net rental costs reflect the 
available net input to the farm. xr is measured in 
SEK and transformed to 1980 prices using the 
service cost price index in agriculture. 

The labor variable (Xw) is the total cost of 
family and hired labor used exclusively in the 
production of crop products. Labor includes all 
crop production activities such as planning, 
ploughing, sowing, spraying plant protection and 



188 A. Heshmatij Agricultural Economics 11 (1994) 171-189 

nutrient and harvesting. Labor is measured in 
SEK and transformed to constant 1980 prices 
using the cost price index for labor in agriculture. 

Traction power (XP) is the value of aggregate 
traction power used at the farm excluding those 
related to the forest activities. The capital vari­
able (Xk) is user cost of capital equipment in­
cluding depreciation, maintenance, insurance and 
net interest rate costs. X k covers the capital 
equipment of machinery, inventory, farm build­
ings and land improvement. The rate of deprecia­
tion applied to machinery equipment was be­
tween 14 and 17% respectively. Different rates 
were used depending on the size of the farm and 
the differences in the farm's intensity of capital 
use. A rate of 3.7% was used for farm buildings 
and 11% was used for inventories. xp and xk 
are measured in SEK and transformed to con­
stant 1980 prices using a cost price index for 
capital equipment in agriculture. 

There are two types of land. Farming land 
(X1) covers arable land and pasture land (i.e. the 
area used for pasture) both measured in hectares. 
The land variable used in the production function 
is only aggregate farming land. 

In addition, we consider off-farm income (X0 ), 

age of the farmer (X3 ), a time variable for the 
observation year (X1), the share of farm land 
(SX1), the share of farm land with covered 
drainage (SXct), production type dummies indi­
cating if a farm, in addition to crops, also pro­
duces milk (Dm), beef (Db) or pork (DP), location 
dummies (P) and percentage producer subsidy 
(PSE) as explanatory variables in the selection 
equation. A summary of the statistics of all the 
variables is given in Table 1. 

Off-farm income (X0 ) is a measure of income 
generated from the off-farm activities. X 0 in­
cludes both the farmers and his wife's income 
from non-farm work such as part-time work, sea­
sonal piece work and other activities than pro­
duction of crop, dairy products and forest. X 0 is 
measured in SEK and transformed to constant 
1980 prices using the consumer price index. Pro­
ducer Subsidy Equivalent (PSE) is a measure of 
money transfer to the farms at the existing pro­
duction level. PSE consists of the market price 
support, i.e. the difference between the world 

market and domestic prices of agricultural prod­
ucts, plus direct payments and other budget pay­
ments less taxes paid by producers. The PSE for 
crops (PSEc) and dairy products (PSEct) are given 
as the producer subsidy share of crops and dairy 
prices. 

Since the data are related to farms of different 
sizes, in terms of hectares, located in different 
regions within Sweden, regional dummies are 
used to reflect differences in production behavior 
with respect to location. A farm's geographical 
location is classified by Statistics Sweden using 
two levels, based on farming conditions and land 
productivity. First, location is differentiated by 8 
production areas (P1 to P8), used in the estima­
tion of the selection equation. Second, at a more 
aggregate level, location is classified into three 
major regions: high (PcP3), medium (PcP6 ), 

and low (P7-P8 ) productive regions. The farm 
size consists of three size classes based on arable 
land in hectares: small (20-30), medium (30-50), 
and large (50-100). The regional location and 
farm size variables are used in the classification 
and presentation of the results. A combination of 
the different production areas and size classes 
are also used in the specification of group-specific 
heteroscedasticity. 

Acknowledgements 

The author gratefully acknowledges financial 
support from SJFR and would like to thank An­
ders Klevmarken, Subal Kumbhakar, Lennart 
Hjalmarsson, D.J.H. Capel and two anonymous 
referees for their valuable comments and sugges­
tions. 

References 

Amemiya, T., 1985. Advanced Econometrics. Basil Blackwell, 
Oxford, UK. 

Baltagi, B.H. and Griffin, J.M., 1988. A generalized error 
component model with heteroscedastic disturbances. Int. 
Econ. Rev., 29: 745-753. 

Baltagi, B.H. and Raj, B., 1992. A survey of recent theoretical 
developments in the econometrics of panel data. Emp. 
Econ., 17: 85-109. 



A. HeshmatijAgricultural Economics 11 (1994) 171-189 189 

Biorn, E., 1981. Estimating economic relations from incom­
plete cross-section/time-series data. J. Econometrics, 16: 
221-236. 

Biorn, E. and Jansen, E.S., 1983. Individual effects in a system 
of demand functions. Scand. J. Econ., 85: 461-483. 

Christensen, L.R., Jorgenson, D.W. and Lau, L.J., 1973. Tran­
scendental logarithmic production frontiers. Rev. Econ. 
Stat., 55: 28-45. 

Forsund, P.R. and Hjalmarsson, L., 1987. Analysis of Indus­
trial Structure. A Putty-Clay Approach. lUI, Almqvist & 
Wiksell International, Stockholm. 

Greene, W.H., 1981. Sample selection bias as a specification 
error: Comment. Econometrica, 49: 795-798. 

Hausman, J.A, 1978. Specification tests in econometrics. 
Econometrica, 46: 1251-1271. 

Heckman, J.J., 1979. Sample selection bias as a specification 
error. Econometrica, 47: 153-161. 

Heshmati, A, 1994. Estimating technical efficiency, productiv­
ity growth and selectivity bias using rotating panel data: an 
application to Swedish agriculture. Ph.D. thesis, Depart­
ment of Economics, Univ. Gothenburg, Sweden. 

Heshmati, A., Kumbhakar, S.C. and Hjalmarsson, L., 1994. 
Efficiency of the Swedish pork industry: a farm level study 
using rotating panel data 1976-1988. Eur. J. Oper. Res. 
(forthcoming). 

Hsiao, C., 1986. Analysis of Panel Data. Cambridge University 
Press, UK 

Johnston, J., 1984. Econometric Methods (3rd Edition. Mc­
Graw-Hill, New York. 

Killingsworth, M.R. and Heckman, J.J., 1986. Female labor 
supply: a survey. Chapter 2 in: 0. Ashenfelter and R. 

Layard R. (Editors) Handbook of Labor Economics 1, pp. 
103-204. 

Kmenta, J., 1986. Elements of Econometrics (2nd Edition) 
Macmillan, New York. 

Kumbhakar, S.C. and Heshmati, A, 1991. Efficiency measure­
ment using rotating panel data: an application to Swedish 
dairy farms 1976-1988. Dep. Econ. Memo 155, Univ. 
Gothenburg, 31 pp. 

Kumbhakar, S.C. and Hjalmarsson, L., 1993. Technical effi­
ciency and technical progress in Swedish dairy farms. 
Chapter 9 in: H. Fried, C.AK. Lovell and S. Schmidt 
(Editors) The Measurement of Productive Efficiency 
Techniques and Applications. Oxford University Press, 
New York, pp. 256-270. 

Little, R.J.A, 1985. A note about models for selectivity bias. 
Econometrica, 53: 1469-1474. 

Maddala, G.S., 1987. Limited dependent variable models us­
ing panel data. J. Human Resour., 22: 307-338. 

Nijman, T., Verbeek, M. and Van Soest, A, 1991. The effi­
ciency of rotating-panel designs in an analysis-of-variance 
model. J. Econometrics, 49: 373-399. 

Olsen, R.J., 1982. Distributional tests for selectivity bias and 
more robust likelihood estimator. Int. Econ. Rev., 23: 
223-240. 

Verbeek, M., 1990. On the estimation of a fixed effects model 
with selectivity bias. Econ. Lett., 34: 267-270. 

White, H., 1980. A heteroskedasticity-consistent covariance 
matrix estimator and a direct test for heteroskedasticity. 
Econometrica, 48: 817-838. 

Zabel, J.E., 1992. Estimating fixed and random effects models 
with selectivity. Econ. Lett., 40: 269-272. 




