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Abstract 

This paper compares three models of input allocation in multicrop systems. In addition to the variable input and 
satisficing models analyzed in previous research, an allocatable fixed input model of short-run input use is derived. 
The empirical application studies irrigation water use in the Central Plains region of the United States. Based on 
results from model specification tests and prediction accuracy measures, the allocatable fixed input model dominates 
both other models in explaining multicrop water allocation. In addition, the paper presents an alternative approach 
to the study of deficient data on multicrop production. By transferring econometric results from analysis of 
'non-deficient' crop-level data, input allocations in deficient data sets can be predicted. 

1. Introduction 

A key problem in analysis of agricultural pro­
duction involves predicting crop-level input allo­
cation in a multioutput setting. Several re­
searchers describe the problem as one of circum­
venting deficient data: given that data on crop­
level input use commonly are not available (ex­
cept for land use), the challenge is to develop 
modeling . approaches that permit prediction of 
input allocations from data on farm-level input 
use and crop-level land use (Chambers and Just, 
1989; Just et al., 1983; Just et al., 1990; and 
Shumway et al., 1984). One need for these model-
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ing approaches arises from a professional respon­
sibility to develop crop budgets and estimates of 
enterprise cost of production. For the U.S. De­
partment of Agriculture in particular, cost of 
production studies are a U.S. congressional re­
quirement that pose a special challenge because 
of deficient data (Just et al., 1990, hereafter 
JZHB). Further, environmental and health con­
cerns associated with agricultural input use, such 
as nonpoint source pollution and food safety, 
have become important policy issues. Evaluating 
the effects of alternative policies for influencing 
input use frequently requires an understanding of 
how producers make decisions on crop-level in­
put use. 

One important distinction in the research on 
multicrop input allocation involves postulates 
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about producer behavior in the short run. Two 
contributions to the literature adopt the conven­
tional assumption of profit maximization (Cham­
bers and Just, 1989; Just et al., 1983). An alterna­
tive postulate is satisficing behavior, i.e., that 
producers operate with rules-of-thumb emanating 
from bounded rationality (Simon, 1965; Nelson 
and Winter, 1982). A simple form of a satisficing 
model is that farmers follow either a distributor's 
recommendation or other routine practices con­
cerning a crop's input application rate per acre. 
Crop acreage thus would effectively determine an 
input's allocation among crops on a multicrop 
farm. Recently, JZHB compared alternative mod­
els of short-run input use derived from these two 
behavioral postulates. Applying a data set on 
irrigated production in Israel, JZHB concluded 
that, based on model specification tests, a satisfic­
ing model explains short-run water allocation bet­
ter than a variable input model derived with a 
primal, profit maximizing approach. 

This paper expands the number of models 
considered relative to JZHB, comparing three 
alternative models of multicrop input allocation. 
We develop a fixed, allocatable input model in 
addition to the variable input and satisficing 
models studied previously. In the short run, an 
input typically considered to be a variable input 
in the long run may actually be fixed and allocat­
able. Irrigation with groundwater provides an il­
lustration. Other researchers commonly model 
groundwater in the American West as a variable 
input in the long run (e.g., Caswell and Zilber­
man, 1985; Negri and Brooks, 1990; Nieswiadomy, 
1988). This approach depicts groundwater as sub­
ject to market forces, with groundwater pumping 
cost serving as a water 'price'. Yet constraints on 
the number of wells, pump capacity, and water 
distribution infrastructure may make groundwa­
ter a fixed, allocatable input in the short run. 
Irrigation with surface water may pose similar 
short-run constraints, as well as long-run institu­
tional constraints. Among other agricultural in­
puts, hired labor and farm machinery also may be 
variable in the long run, but fixed and allocatable 
in the short run. 

To date, the fixed, allocatable input model has 
only been used to depict intermediate-run input 

use (Chambers and Just, 1989; Just et al.; 1983; 
Moore and Negri, 1992). With land characterized 
as fixed and allocatable, the model served primar­
ily as a mechanism for predicting short-run allo­
cations of non-land inputs for the case of defi­
cient data. This paper, in contrast, applies the 
allocatable fixed input model to directly explain 
short-run input use, thereby demonstrating the 
model's utility as a positive approach to explain­
ing producer decisions. 

Crop-level input use data are required to esti­
mate the allocatable fixed input model. The model 
does not appear to be estimable or otherwise 
recoverable with deficient data, 1 which explains 
why the model is not considered in the recent 
literature on multicrop input allocation. We apply 
a data set that contains both crop-level irrigation 
water and acreage data from multicrop farms. 
The three alternative models of short-run input 
use thus can be directly estimated econometri­
cally with the crop-level water data, rather than 
being predicted from implicit behavioral relation­
ships using deficient data. The availability of 
crop-level microdata on water use effectively 
makes the data 'non-deficient' in terms of infor­
mation on water allocation in a multicrop system. 

Because of the use of crop-level input data, 
this paper contributes to the analysis of deficient 
data in a different way than previous studies. 
Rather than developing techniques to circumvent 
deficient data, we employ the non-deficient crop­
level data to draw conclusions about which model 
of short-run water use is appropriate to apply to 
the case of deficient data. This creates the oppor­
tunity to apply parameters estimated with crop­
level data to predict input allocations in deficient 
data sets. That is, econometric estimates of input 

1 Farm-level water use serves as an exogenous variable in 
the allocatable fixed input model, with crop-level water use 
serving as the endogenous variable (see Eq. 3). Unlike the 
variable input and satisficing models, a procedure does not 
appear to be available for predicting the results of the allocat­
able fixed input model using deficient data because of the 
essential role of farm-level water as an exogenous variable. In 
contrast, farm-level water serves as the endogenous variable 
in the variable input and satisficing models estimated with 
deficient data [see JZHB's (1990) equations (3) and (8)]. 
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use equations that are obtained using crop-level 
data can be transferred to a deficient data set 
from a similar multicrop system. 2 Transferring 
econometric results in this way is both increas­
ingly feasible as data become available from pro­
ducer surveys that obtain crop-level input infor­
mation and increasingly demanded for policy 
analysis of issues related to agricultural inputs. 3 

In this paper, two models - the variable input 
model and the fixed, allocatable input model -
are derived from the profit maximization postu­
late using a dual approach. 4 The satisficing 
model, following JZHB, is a simple model of 
bounded rationality. These three models of multi­
crop water allocation are compared using two 
techniques of model selection: model specifica­
tion tests and prediction accuracy measures. The 
empirical application studies multicrop ground­
water irrigators in the Central Plains of the United 
States using data compiled by the U.S. Bureau of 
the Census from the 1984 and 1988 Farm and 
Ranch Irrigation Survey. 

2. Three models of short-run input use 

This section develops three models of short-run 
input use on a multicrop farm. While we develop 
the models in terms of irrigation water, the pro­
cedures are perfectly general and can be applied 
to any input. 

The definition of the short-run production pe­
riod used here applies the same definition used 

2 The idea proposed here of transferring econometric re­
sults from a 'non-deficient' data set to a deficient data set is 
analogous to the topic of transferring benefit estimates in the 
case of measuring unmarketed benefits of environmental as­
sets. This topic was the focus of a 1992 workshop, 'Benefits 
Transfer: Procedures, Problems, and Research Needs', spon­
sored by the Association of Environmental and Resource 
Economists (Kealy et al., 1992). 

3 At the same time, econometric results should be trans­
ferred only when strong economic and physical parallels exist 
between the original research setting and the transfer setting. 

4 This paper does not address the merits of primal versus 
dual approaches, which has been an important topic in this 
literature (Chambers and Just, 1989; Just et al., 1983; Zilber­
man, 1989). 

in previous research on irrigated agriculture 
(Chambers and Just, 1989; Just et al., 1983; JZHB, 
1990). Nevertheless, the nature of short-run wa­
ter use in a multicrop system needs to be charac­
terized concretely. In this setting, the producer 
already has made an intermediate-run decision: 
choices have been made concerning the set of 
crops to grow and the acreage in each crop. The 
subsequent short-run decision involves deciding 
the quantity of irrigation water to apply to each 
crop over the irrigation season. Thus, as in the 
previous research, crop-specific acreages are ex­
ogenous to the water use decisions. The common 
thread across the three alternative models ana­
lyzed here is that crop-level land use serves as 
one determinant of crop-level water use in each 
model. The models differ in their answer to the 
following question: other than crop acreage, what 
other factors affect short-run, crop-level water 
use? 

The following assumptions and notation apply 
throughout the paper. Producers take prices as 
given. Notation includes: p is a vector of crop 
prices; P; is price of crop i (i = 1, ... , m); r w is 
water price; r is a vector of variable input prices 
other than water (v = 1, ... , z ); W; is water allo­
cated to crop i; W is farm-level quantity of water; 
n; is land allocated to crop i; x is a vector of 
variables taken as given in the short run (e.g., 
crop-level irrigation technology and weather; s = 
1, ... , t ); 1r;{ ·) is the short-run restricted profit 
function of crop i; and II(·) is the multioutput 
restricted profit function of the firm. Input non­
jointness is assumed, so that the multioutput 
profit function decomposes into the sum of dis­
tinct crop-specific profit functions. The profit 
functions are assumed to be well-behaved in terms 
of the conventional assumptions. 

The study applies the normalized quadratic 
profit function as the form of the crop-specific 
restricted profit functions. The normalized 
quadratic is a flexible functional form of the 
profit function (Lau, 1978), and has been used 
previously in multioutput agricultural production 
research (e.g., Huffman, 1988; Shumway, 1983). 
Its full specification includes linear, squared, and 
cross-product terms for all exogenous variables. 
Prices are expressed in relative terms, with one 
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price serving as a numeraire; this maintains linear 
homogeneity of the function. 5 As will become 
evident, the main advantage of the normalized 
quadratic form enters when developing the fixed, 
allocatable input model. 

2.1. Variable input model 

A variable input model has commonly been 
applied to analysis of short-run irrigation water 
use (Chambers and Just, 1989; Just et al., 1983; 
JZHB, 1990). When following the dual approach, 
application of Hotelling's lemma in terms of the 
water price variable generates crop-level water 
demand functions for this model. These are: 

i = 1, ... ,m (1) 

The estimable form for each crop-level water 
demand function, given the use of normalized 
quadratic restricted profit functions, is a linear 
function of the independent variables. 

2.2. Fixed, allocatable input model 

The fixed, allocatable input model of water 
use provides a second approach based on a profit 
maximization postulate. The short-run water con­
straint applied in this model is a groundwater 
constraint; it essentially represents the fixity of 
groundwater wells, pump capacity, and irrigation 
capital during the growing season. The constraint 
does not reflect a long-run, institutionally-defined 
water quota, as groundwater is commonly mod­
elled as subject to market forces. The approach 
uses duality, thereby following conceptual meth­
ods developed for analysis of fixed, allocatable 
inputs (Chambers and Just, 1989; Shumway et al., 
1984). To obtain optimal short-run water alloca-

5 To simplify notation, interpret output and input prices in 
Eqs. (5), (7) and (9) as relative prices because they are derived 
from normalized quadratic profit functions. 

tion functions, we solve the following constrained 
optimization problem: 

II(p,r ,n 1,n2 , ••• ,nm,W;x) (2) 

= MAX [ .E 11i(pi,r,ni,wi;x): .~ wi = W] 
w1, ... ,wm z=l z-1 

An equation system for solving (2) for an interior 
solution contains two general elements, the set of 
necessary conditions for an interior solution and 
the water constraint. The necessary conditions 
are a11/pi, r, ni, wi; x)jawi =A for i = 1, ... , m, 
where A is the shadow price on the water con­
straint. Optimal water allocation functions follow 
from solving this equation system; these functions 
are: 

Note two distinct features of the allocatable fixed 
input model. First, water allocations to one crop 
depend on the output prices and acreage levels of 
all other crops. Thus, in contrast to the variable 
input model of Eq. (1), intercrop price and 
acreage variables supplement own-crop price and 
own-crop acreage as determinants of water use. 
Second, the farm-level water quantity constraint 
in (3) replaces water price as a determinant of 
short-run crop-level water use. 

Use of normalized quadratic profit functions 
enables a closed-form solution to (2). The equa­
tion system that must be solved, composed of the 
necessary conditions and the constraint, is a lin­
ear system. Thus, the w/ (p,r,n 1,n2 , ••• ,nm,W;x) 
that explicitly solve (2) are linear in the exoge­
nous variables; this function is the estimable form 
for this model. The optimization problem devel­
oped here follows procedures used for a similar 
problem (Moore and Negri, 1992, pp. 31-33). 

The optimal water allocation equations in (3) 
illustrate the apparent jointness created by fixed, 
allocatable inputs (Chambers and Just, 1989; 
Shumway et al., 1984). Despite the assumption of 
input nonjointness, the fixed water input creates 
interdependence across crops. For instance, con­
sider a multicrop farm that grows alfalfa, corn, 
and dry beans. With apparent jointness, water 
use on corn depends on acreage in alfalfa and 
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acreage in dry beans in addition to acreage in 
corn. 

2.3. Satisficing model 

The satisficing model of short-run water use 
follows closely the 'behavioral approach' of JZHB: 
crop-levelland use virtually determines crop-level 
water use, with all price variables and the water 
constraint removed from the specification. Other 
variables (irrigation technology and weather) ex­
plain any additional variation in water use. The 
general form of this model is: 

wi = wi(ni;x) i = 1, ... ,m 

We adopt a linear specification to estimate (4). 
This is consistent with JZHB (1990) and the 
earlier two models of this paper. 

In intuitive terms, the satisficing model is 
premised on the idea that longer-run decisions 
have a larger quantitative impact on profit rela­
tive to short-run decisions. Thus, producer behav­
ior might conform more closely to the profit 
maximization postulate in the intermediate- or 
long-run periods. However, satisficing in the short 
run by following a rule-of-thumb or a distributor's 
recommendation may conserve on information 
requirements with little sacrifice in profit. 

3. Model specification tests and prediction accu­
racy measures 

This section describes the model specification 
tests and prediction accuracy measures that are 
applied in the research. The three models of 
short-run water use are compared using model 
specification tests. Two models are compared at a 
time. The multi crop approach developed here. 
applies the hypothesis tests as farm-level tests. 
That is, the approach characterizes producer be­
havior on the entire multicrop operation, rather 
than crop-by-crop behavior, by analyzing which 
model best represents aggregate, farm-level be­
havior. Each comparison of farm-level models 
thus is executed as a single-equation test for the 
set of m crops. To implement this, the crop-level 
water use data are combined simply by stacking 
the system of observations. 

First, consider the model specification test for 

the variable input model and the satisficing model. 
This comparison involves a nested F-test. The 
empirical specification of the variable input model 
of Eq. (1), given use of normalized quadratic 
profit functions, is: 

z t 

wi = cl + {3ipi + L y~rv + 8irw +Bini+ L 7]~Xs 
v=l s=l 

i = 1, ... ,m (5) 
where the coefficients are parameters to be esti­
mated. The satisficing model of water use (Eq. 4) 
is represented by a subset of variables in Eq. (5), 
including crop acreage (n) and short-run ele­
ments of weather, irrigation technology, and wa­
ter management (x 5 ). Thus, in terms of a classical 
F-test, the null hypothesis is that: 

{3i = 'Yi = 8i = 0 i = 1, ... ,m 
v v=1, ... ,z (6) 

That is, the null hypothesis is true 6 - and the 
satisficing model is the preferred model - if the 
coefficients on own-crop price, variable input 
prices, and water price are equal to zero. Other­
wise, if the alternative hypothesis is true, the 
variable input model is the preferred model spec­
ification. 

Second, consider the model specification test 
for the fixed, allocatable input model and the 
satisficing model. This comparison also involves a 
nested F-test. The empirical specification of the 
allocatable fixed input model of Eq. (3) is: 

m z m 

Wi = ai + L f3jpj + L Yirv + L Bknk + 1/JiW 
j=l v=l k=l 

t 

+ L 7]~X5 i=1, ... ,m (7) 
s=l 

Here, the null hypothesis is that the coefficients 
on crop prices, variable input prices, crop acreages 
(other own-crop acreage), and the farm-level wa­
ter constraint are equal to zero, or 

i= 1, ... ,m 
j= 1, ... ,m 
v = 1, ... ,z 

{3j = Yi = 8k = 1/Ji = 0 (8) 

k= 1, ... ,m i=Fk 

6 We use 'true' as a simple way of expressing the more 
technical phrase 'fail to reject'. 
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The satisficing model is the preferred model 
specification if the null hypothesis is true. Other­
wise, if the alternative hypothesis is true, the 
allocatable fixed input model is the. preferred 
specification. 

Third, consider the model specification test for 
the variable input and fixed input models. This 
comparison involves a non-nested hypothesis test 
using a non-nested F-test (Fomby et al., 1984, pp. 
415-416; Pesaran, 1974). 7 The non-nested F­
test's artificial nesting model includes every ex­
ogenous variable for the five crops' water use 
equations from these two models (i.e., combining 
Eqs. 5 and 7). In general terms this is w;(p,r ,r w' 

n 1,n2 , ••• ,nm,W;x),i = 1, ... ,m. The empirical 
specification of the artificial nesting model is: 

m z m 

W; =a;+ L f3}Pj + L 'Yirv + 8irw+ L Ojnj 
j=l v=l j=l 

t 

+ 1/JiW + L 7J!Xs i= 1, ... ,m (9) 
s=l 

The performance of the variable and fixed input 
models are compared, independently, to the per­
formance of the artificial nesting model. Water 
prices are the elements of the artificial model 
that are unique to the variable input model. Thus, 
the first stage of the non-nested F-test is to test 
the null hypothesis that the coefficients on water 
price are equal to zero, or: 

(10) 

If the null hypothesis is true, then the variable 
input model is rejected relative to the artificial 
nesting model. Otherwise, if the alternative hy­
pothesis is true, then the variable input model is 
accepted as the preferred specification relative to 
the artificial nesting model. The second stage of 
the non-nested F-test is to reject the fixed, allo-

7 We use a non-nested F-test rather than a !-test because 
of the use of limited-dependent variable econometric methods 
in the empirical application. The !-test requires that error 
terms are iid normal (Davidson and MacKinnon, 1981, pp. 
781-782). Error terms of limited-dependent variable models 
are not so distributed. 

eatable input model if elements unique to that 
model (the farm-level water constraint and inter­
crop interdependencies in crop prices and 
acreages) do not independently explain variation 
in water use. The null hypothesis for this test is: 

i=1, ... ,m 
j=1, ... ,m i =I= j (11) 

Otherwise, if the alternative hypothesis is true, 
then the allocatable fixed input model is accepted 
as the preferred model specification relative to 
the artificial nesting model. As with all non-nested 
tests, both models can be rejected, both can be 
accepted, or only one model can be rejected. 

The set of three model specification tests can 
yield either determinate or indeterminate results 
on model choice. For example, an indeterminate 
result would occur if: the satisficing model is 
chosen over the variable input model in the first 
test; the allocatable fixed input model is chosen 
over the satisficing model in the second test; but 
then the variable input model is chosen over the 
allocatable fixed input model in the third test. In 
contrast, a model will dominate if it is chosen in 
each of the two tests in which it participates 
directly. 

The prediction accuracy measures supplement 
findings from the model specification tests. Three 
different measures are applied to compare the 
models, including mean absolute error (MAE), 
root mean square error (RMSE), and mean abso­
lute percentage error (MAPE). 8 As with the 
model specification tests, the prediction measures 
are developed using a farm-level approach. The 

8 These three measures are commonly applied measures of 
prediction accuracy (Kost, 1980). Their general formulas are: 

1 T 
MAE=- EIY-Y.I 

T t=l I I 

1 ~ ( A )2 RMSE = T L...., Y, - Y, 
1=1 

1 J. [I~- Y,l] MAPE=- L...., --
Tt=l Y, 

where Y, is the observed dependent variable for observation 
t, ~ the predicted dependent variable for observation t, and 
T the number of observations. 
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measures thus represent the accuracy of a model 
in predicting short-run water use for the set of m 
crops under consideration. The approach is not 
conducted crop-by-crop. 

Four sets of predictions are made, including 
one in-sample prediction and three out-of-sample 
predictions. 9 Applying the three measures to each 
of the four predictions generates twelve cases for 
evaluating the alternative models. 

The ability to apply prediction accuracy mea­
sures demonstrates another advantage of crop­
level input data relative to deficient data. With 
deficient data, predictions of crop-level input use 
from one model can be compared to predictions 
from another model. However, the predictions 
cannot be compared to actual input use, which is 
the preferred benchmark for comparison. 

4. Data, variables, and econometric model 

The econometric analysis considers multicrop 
producers engaged in irrigated agriculture in the 
U.S. Central Plains region (the states of Col­
orado, Kansas, Nebraska, and Wyoming). Produc­
ers are multicrop growers who choose among five 
field crops commonly grown as part of a multi­
crop system in the region: alfalfa hay, barley, corn 
for grain, dry beans, and wheat. The producers in 
the sample irrigate with groundwater only or with 
groundwater and surface water. Groundwater is 
assumed to be the marginal water source when 
both sources are used (as in Negri and Brooks, 
1990). Groundwater pumping lift is translated 
into a marginal groundwater pumping cost 
through an engineering formula (see Appendix); 
this cost serves as the measure of water price. 

The primary data for the analysis are from the 
1984 and 1988 Farm and Ranch Irrigation Survey 

9 For an out-of-sample prediction, the observations are 
randomly divided into two subsets, one with 80% of the 
observations and one with the remaining 20% of the observa­
tions. The 80% subset is used to estimate each model's 
parameters. These parameter estimates are applied to the 
20% subset to make out-of-sample predictions and to apply 
the prediction accuracy measures. This procedure is repeated 
three times. 

(FRIS) (USDC, 1986; USDC, 1990). The depen­
dent variables for the analysis are created from 
survey questions on irrigation water use by crop. 
The survey also includes questions on crop-level 
acreage and irrigation technology, as well as 
questions on on-farm irrigation practices (e.g., 
water sources, groundwater depth, and water 
management practices); several independent vari­
ables are formed from these data. The Appendix 
defines the sample, data, and variables more ex­
tensively, and also includes a table of descriptive 
statistics for key variables. 

Secondary data sources are used to create 
variables that are merged with the FRIS-based 
variables. Three categories of variables are devel­
oped: output and input prices; climate and 
weather; and soil. Crop price variables are con­
structed as expected 1984 and 1988 prices. Vari­
able input prices are current-year prices based on 
1984 and 1988 data. Climate variables represent 
expected weather conditions. They help to ex­
plain discrete choices concerning which crops to 
grow. Weather variables represent actual 1984 
and 1988 weather conditions. They help to ex­
plain short-run decisions on water-use quantity. 
Soil variables represent quality dimensions of 
cropland. The Appendix also defines these data 
and variables more extensively. 

The availability of microdata on multicrop pro­
duction presents an econometric issue concerning 
application of an unbiased estimator. 10 Produc­
ers grow two or more of the five crops in the 
multicrop system. Of a sample of 766 farms, 
non-limit observations by crop (i.e., farms grow­
ing that crop) are: alfalfa, 464; barley, 96; corn, 
667; dry beans, 191; and wheat, 446. Thus, a 
limited-dependent variable econometric model 
must be applied to produce unbiased estimates 
(Huffman, 1988). This paper applies the Heck-

10 A second issue related to multicrop systems concerns 
efficient estimates. As stated by Shumway et al. (1984, p. 75), 
with multioutput systems, " ... efficient econometric estimation 
generally requires estimation of a seemingly unrelated multi­
ple-product system." This paper applies a limited-dependent 
variable model to obtain unbiased estimates instead of ad­
dressing efficiency. 
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Table 1 
Performance of three models in predicting short-run water use 

Type of prediction 

Model of water use 

Prediction accuracy measure 

In-sample predictions 
Variable input model 
Fixed, allocatable input model 
Satisficing model 

Out-of-sample predictions a 

Draw I 
Variable input model 
Fixed, allocatable input model 
Satisficing model 

Draw2 
Variable input model 
Fixed, allocatable input model 
Satisficing model 

Draw3 
Variable input model 
Fixed, allocatable input model 
Satisficing model 

Mean 
absolute 
error 
(MAE) 

256.2 
190.5 b 

256.5 

270.4 
222.2 b 

283.3 

280.9 
223.5 ° 
284.3 

293.6 
208.1 b 

289.1 

Root Mean 
mean absolute 
square percentage 
error error 
(RMSE) (MAPE) 

538.5 137.5 
348.3 b 131.2 b 

545.9 137.2 

527.8 186.6 b 

410.1 b 221.6 
541.5 193.1 

864.6 211.5 
499.9 b 237.2 
874.1 181.0 b 

533.6 224.6 
340.4 b 190.7 b 

539.1 197.2 

a For an out-of-sample prediction, the observations are randomly divided into two subsets, one with 80% of the observations and 
one with the remaining 20% of the observations. The 80% subset is used to estimate each model's parameters. These parameter 
estimates are applied to the 20% subset to make out-of-sample predictions and to apply the prediction accuracy measures. This 
procedure is repeated three times. 
b Indicates the model that most accurately predicts short-term water use for a given accuracy measure and experiment. 

man model (Maddala, 1983). Limited-dependent 
variable models, such as the Heckman and Tobit 
models, decompose a decision into a discrete­
choice decision (on whether to grow a particular 
crop) and a quantity decision (on the level of 
input use). The Heckman, unlike the Tobit, per­
mits the set of exogenous variables explaining the 
crop-choice decision to vary from the set of ex­
ogenous variables explaining the water quantity 
decision. 11 

The decision framework for the Heckman 
. model is appropriate for analysis of short-run 
irrigation water use. The discrete decision to use 
water is influenced by the same variables affect-

11 Bockstael et a!. (1990) discuss the appropriate use of 
alternative limited-dependent variable econometric models 
(Heckman, Tobit and Cragg) in the analysis of recreation 
demand. Their discussion had useful application to this paper. 

ing the intermediate-run decision associated with 
irrigated land allocation: a decision to allocate 
land to a crop means that irrigation water will 
also be applied to that crop. These intermediate­
run variables include farm-level exogenous vari­
ables (e.g., farm-level irrigation technology and 
climate variables). The quantity of water used 
during the irrigation season, however, depends on 
short-run exogenous variables. These include crop 
acreage levels (which are set endogenously in the 
intermediate run), crop-level irrigation technol­
ogy, and weather variables. 

5. Empirical results 

5.1. Comparison of alternative models 

The main empirical result is the comparison of 
alternative models using the model specification 



MR. Moore et al. /Agricultural Economics 11 (1994) 143-158 151 

tests and prediction accuracy measures. In the 
model specification tests, the fixed, allocatable 
input model of short-run water use dominates the 
other two models as a way of explaining producer 
decisions. Specifically, one model specification 
test involves the nested test comparing the fixed 
input and satisficing models (Eq. 8). The F-test 
value is 18.30 in this test, thus implying that the 
coefficients in the fixed input model are statisti­
cally different from zero at the 0.01 level (in a 
test with 55 restrictions). The fixed input model 
has substantial explanatory power beyond the sat­
isficing model. 

A second specification test is the non-nested 
test comparing the variable input model and the 
fixed input model. In one component of the test, 
which compares the artificial nesting model and 
the fixed input model (Eq. 11), the F-test value is 
21.61. Thus, the fixed input model is not rejected 

Table 2 
Estimates of short-run water use, allocatable fixed input model a 

Independent variable Alfalfa Barley 

ALFPRC 58.466 * 11.462 
BARPRC -690.89 * -83.082 
CRNPRC 6804.2 * 745.33 
DBNPRC 318.38 * * 65.294 
WHTPRC -8588.2 * -1579.6 
WAGE -195.72 155.60 
ALFACR 1.475 * * -0.278 * * 

BARACR -0.213 1.308 '' 
CRNACR -0.466 *' -0.D78 
DBNACR 0.021 -0.190 
WHTACR -0.430 '' -0.282 * * 
TOTWTR 0.239 *' 0.088 *' 
DMSRWT -6.964 66.332 
DMOWNTC -28.729 -44.167 
DMNOWT 26.245 10.043 
DMHGMG -44.628 4.290 
DMLWMG 40.268 -6.311 
OWNCDD 0.095 * 0.007 
OWNPCP 9.858 -0.824 
SAND -54.711 -296.86 
INTERCEPT 2181.0 * 730.42 
Adjusted R 2 0.903 0.749 

at the 0.01 level in this component of the non­
nested test (in a test with 45 restrictions). The 
F-test value is 0.90 in evaluation of the variable 
input model in the second component of the test 
(Eq. 10). The variable input model is rejected at 
the 0.01 level (in an F-test with five restrictions). 
The non-nested hypothesis test, therefore, 
reaches an unambiguous conclusion: the allocat­
able fixed input model is chosen over the variable 
input model. 

At this point, the model specification tests 
already yield a conclusion in favor of the allocat­
able fixed input model. The final test, which 
compares the variable input and satisficing mod­
els (Eq. 6), is irrelevant because of the fixed input 
model's dominance. It is interesting to note, nev­
ertheless, that the test chooses the satisficing 
model over the variable input model. 

Application of the three prediction accuracy 

Corn Dry beans Wheat 

-5.323 1.578 12.842 
69.864 -52.962 -168.65 
67.346 107.29 312.58 
-49.879 8.353 28.125 
1002.8 -100.02 -677.31 
-175.69 -101.06 9.169 
-1.028 * * -0.316 ** -0.299 '' 
-1.423 '' -0.545 '' -0.265 
0.886 '* -0.196 '' -0.277 '' 
-0.600 *' 0.799 '' -0.056 
-0.727 '' -0.056 1.037 ' ' 
0.485 *' 0.139 '' 0.137 *' 
-126.49 ' * 13.954 -94.611 
-60.504 15.163 18.731 
-12.072 -27.321 90.272 
-29.580 -4.222 -49.736 
1.915 -22.593 52.050 
0.003 -0.001 0.009 
-3.725 4.995 -8.641 
49.225 78.484 -228.95 '' 
-1457.7 326.28 126.85 
0.959 0.900 0.839 

* and * * denote significance at the 0.05 and 0.01 levels, respectively. 
a Dependent variable is crop-level water use. The Appendix contains definitions of the independent variables. 
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Table 3 
Estimates of short-run water use, variable input model a 

Independent variable Alfalfa Barley Corn Dry beans Wheat 

OWNPRC 2.570 26.453 846.87 •• 3.848 115.96 
WTRPRC -3.776 -0.735 3.562 3.825 2.991 
WAGE -176.57 • 104.46 -422.52 •• -109.33 • -11.951 
OWNACR 2.059 •• 1.284 •• 1.956 •• 0.982 •• 1.216 •• 
DMSRWT 26.369 103.29 • -148.01 18.066 9.992 
DMOWNTC -70.676 -84.958 -237.95 •• -8.064 -42.420 
DMNOWT -13.086 32.987 52.378 -19.619 90.671 • 
DMHGMG -36.694 5.308 62.336 15.355 -21.351 
DMLWMG 114.14 -2.706 147.44 -16.886 99.343 
OWNCDD 0.097 -0.028 0.233 •• 0.119 • 0.031 
OWNPCP 6.099 8.634 -26.789 • -5.732 -4.558 
SAND 79.340 -122.17 175.73 167.15 •• -31.228 
INTERCEPT 194.90 -410.55 -1049.7 • 172.20 -546.63 •• 
Adjusted R2 0.825 0.637 0.876 0.782 0.777 

• and • * denote significance at the 0.05 and 0.01 levels, respectively. 
a Dependent variable is crop-level water use. The Appendix contains definitions of the independent variables. 

measures provides additional evidence on model 
choice. 12 With the in-sample prediction, the 
fixed, allocatable input model outperforms the 
two alternative models according to each of the 
three measures (MAE, RMSE, and MAPE) (see 
Table 1). Results with the three out-of-sample 
predictions show slightly less consistency. For both 
the MAE and RMSE measures, the allocatable 
fixed input model outperforms the other two 
models in each of the three predictions. With the 
MAPE measure, however, each of the three mod­
els outperforms the other two in one prediction. 
Nevertheless, the weight of the evidence supports 
the conclusion that was drawn from the model 
specification tests. The fixed, allocatable input 
model provides a better model for explaining 

12 The predictions are made using only non-limit observa­
tions, with the limit observations excluded from this portion of 
the analysis. This use of the data is appropriate given, in 
practical terms, what we are trying to predict. The goal is to 
predict crop-level water use given knowledge of crop-level 
land allocations on a multicrop farm. Consider a case of a 
producer who allocates no acreage to a certain crop. In this 
case, the analyst knows that water use on that crop is zero. 
This does not need to be confirmed with a prediction; it is a 
deterministic relationship. Thus, only non-limit observations 
of water use are applied to evaluate the prediction accuracy of 
the models. 

short-run water allocation in multicrop systems 
than either the variable input or satisficing model. 

Additional understanding is useful of the fac­
tors motivating the choice of the allocatable fixed 
input model. A key factor is the multicrop joint­
ness evident in the crop acreage variables. For 
each of the five crops, water use depends strongly 
on acreage in some or all of the other four crops 
(3wJ3nj, i =I= j) (Table 2). For example, the quan­
tity of water applied to com depends negatively 
on alfalfa acreage, barley acreage, dry beans 
acreage, and wheat acreage, with each of these 
variables significant at the 0.01 level. Overall, 13 
of the 20 intercrop acreage variables are signifi­
cant at the 0.01 level. 

The relative performance of the water con­
straint variable and the water price variable also 
illuminates model specification. The water con­
straint is positive and significant at the 0.01 level 
in each equation of the allocatable fixed input 
model, with each t-statistic value exceeding 5.0. 
This certainly provides evidence that the pro­
ducer perceives irrigation water as a fixed input 
in the short run. In contrast, water price is not 
negative and significant for any of the crops when 
estimated with the variable input model (Table 
3). After planting crops, irrigators do not respond 
to water price in subsequent short-run decisions. 
This occurs despite clear statistical evidence that 
the water price variable influences longer-run 
decisions on cropland allocation in multicrop sys-
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Table 4 
Estimates of short-run water use, satisficing model a 

Independent variable Alfalfa Barley Corn Dry beans Wheat 

OWNACR 2.070 •• 1.270 * * 1.958 * * 0.961 * * 1.206 *' 

DMSRWT 2.789 114.73 * -148.10 27.838 16.618 
DMOWNTC -110.63 * -74.96 -202.19 ** 16.679 -27.488 
DMNOWT -14.735 55.605 43.756 -20.309 90.527 
DMHGMG -36.607 0.401 50.630 22.253 -13.303 
DMLWMG 117.86 -5.659 137.52 -15.525 99.909 
OWNCDD 0.083 -0.010 0.178 * * 0.110 * 0.033 
OWNPCP -7.147 7.570 -33.510 * ' -8.147 4.224 
SAND 21.515 -135.21 106.01 125.22 ' -27.978 
INTERCEPT -179.72 7.44 -463.20 * * -109.39 -201.84 
Adjusted R 2 0.824 0.636 0.873 0.775 0.775 

* and * ' denote significance at the 0.05 and 0.01 levels, respectively. 
a Dependent variable is crop-level water use. The Appendix contains definitions of the independent variables. 

terns in the Central Plains. 13 That is, groundwa­
ter is a variable input in the intermediate to long 
run, yet an allocatable fixed input in the short 
run. 

The performance of the price variables in the 
variable input model explains the choice of the 
satisficing model (Table 4) over the variable input 
model in the model specification test. The water 
price variables, as noted before, are statistically 
insignificant. Only corn price is significant of the 
five own-crop output prices. The wage rate vari­
able, though significant in three of five equations, 
apparently does not explain much variation; ad­
justed R 2 s are only slightly higher in the variable 
input model than the satisficing model. 

5.2. Results with the fixed, allocatable input model 

As the model that performs best in explaining 
short-run water use, the allocatable fixed input 

13 Three sets of equations representing longer-run decisions 
- crop supply, land allocation, and crop-choice equations -
were estimated using the identical data set as applied here 
(Moore et a!., 1994). The water price variable typically is 
statistically significant in each set of equations. By crop, the 
t-statistic values on water price in the crop supply equations 
are: alfalfa, - 3.37; barley, - 3.18; corn, 2.36; dry beans, 1.07; 
and wheat, 2.01. For the land allocation equations, the !-sta­
tistic values are: alfalfa, - 3.99; barley, - 3.14; corn, 2.42, dry 
beans, 1.11; and wheat, 2.02. For the crop-choice decision, the 
t-statistic values for the water price variable are: alfalfa, 
- 3.54; barley, - 2.32; corn, 1.78, dry beans, 1.38; and wheat, 
2.86. 

model needs additional description; four points 
follow. First, the adjusted R 2 values indicate that 
the model performs well in explaining crop-level 
water use in this multicrop system (Table 2). The 
adjusted R 2 s meet or exceed 0.90 for alfalfa, 
corn, and dry beans. Even the lowest value, 0.749 
for barley, indicates relatively strong performance 
for a data set reliant on cross-sectional variation. 

Second, consider the influence of own-crop 
acreage variables. Each of these acreage vari­
ables, not surprisingly, is significant in explaining 
water use; each t-statistic value on this set of 
variables exceeds 10.0. The coefficients on own­
crop acreage show how a marginal increase in the 
crop's acreage increases water allocated to the 
crop for producers growing the particular crop. 

Third, in terms of intercrop interdependence, 
a change in acreage of one crop induces water 
reallocation among other crops given that water 
is a fixed, allocatable input. Take the alfalfa-corn 
relationship as an example. The coefficient on 
alfalfa acreage in the corn water allocation equa­
tion is -1.028. A one-acre increase in alfalfa 
acreage thus would reduce corn water use by 
slightly more than an acre-foot. Reciprocally, the 
coefficient on corn acreage in the alfalfa water 
allocation equation is - 0.466, with a similar in­
terpretation holding. 

More generally, the performance of the inter­
crop acreage variables demonstrates the competi­
tion among crops in a multicrop system for a 
fixed quantity of water. Note that, when a partic­
ular intercrop acreage variable is significant, its 
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coefficient is negative. Thus, an increase in an 
intercrop acreage variable reduces the quantity of 
water applied to a competing crop. This relation­
ship illustrates the nature of a fixed, allocatable 
input in a short-run, multicrop system. The farm­
level input constraint creates the competition 
among crops for the input. Thereafter, the crop­
level acreage quantities become important deter­
minants of the division of the fixed input. 

Fourth, estimates on the water constraint vari­
able indicate the allocation among crops of a 
marginal increase in farm-level water availability 
for producers growing the particular crop. The 
individual coefficients on the water constraint 
are: corn, 0.485; alfalfa, 0.239; dry beans, 0.139; 
wheat, 0.137, and barley, 0.088. These indicate 
that increases in water availability are allocated 
most heavily to crops with relatively high water 
requirements (corn and alfalfa) rather than to 
crops with relatively low water requirements (dry 
beans, wheat, and barley). 

6. Summary and conclusions 

This paper compares three alternative models 
of short-run input use in multicrop systems: a 
variable input model, an allocatable fixed input 
model, and a satisficing model. The fixed, allocat­
able input model has not been analyzed in previ­
ous research on this topic. The empirical applica­
tion studies irrigation water use on multicrop 
farms in the Central Plains of the United States. 
The main finding is that the fixed, allocatable 
input model explains multicrop water use better 
than the other two models. It was chosen over the 
other two models in model specification tests and 
outperformed the others in ten of twelve cases of 
prediction accuracy measurement. 

In this initial application to the short run, the 
allocatable fixed input model provides new in­
sight into the determinants of producer decisions. 
The farm-level water constraint performs well 
statistically and intuitively as a variable explaining 
multicrop water allocation. Further, the intercrop 
acreage variables demonstrate clearly the compe­
tition among crops for the fixed farm-level water 
quantity. One result provides an example: water 

applied to corn depends negatively on alfalfa 
acreage, barley acreage, dry beans acreage, and 
wheat acreage, with each of these variables signif­
icant at the 0.01 level. This is the essence of 
apparent jointness in the short run. 

Crop-level input use data are necessary for 
application of the fixed, allocatable input model. 
The model cannot be applied directly to deficient 
data sets, which are commonly defined as con­
taining crop-level acreage data and farm-level 
input data. Instead, the model can be applied 
indirectly to deficient data by transferring param­
eter estimates from a model application that uses 
non-deficient, crop-level data. For instance, it 
may be feasible to transfer parameter estimates 
from these results to a data set compiled by the 
Bureau of Reclamation (BOR) on agriculture in 
BOR-served irrigation districts in the Central 
Plains region. The BOR data are a deficient data 
set, containing information on crop-level irrigated 
acreage and district-level water use, but not on 
crop-level water use (Moore and Negri, 1992). In 
transferring the econometric results, crop-level 
water use could be predicted for irrigation dis­
tricts served by BOR water projects in the Cen­
tral Plains. 

While the paper studies irrigation with 
groundwater, other agricultural inputs - such as 
surface water, hired labor, family labor, and farm 
machinery - may be fixed and allocatable in the 
short run. Since the allocatable fixed input model 
cannot be applied without crop-level data, acquir­
ing and analyzing data on these inputs must pre­
cede a second-stage effort to transfer results to 
deficient data sets. This paper's findings indicate 
that acquisition of improved, crop-level data may 
be necessary for a better understanding of pro­
ducer decisions in multicrop systems. 
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Appendix 

Data description and variable definitions 
The primary data in this study are from the 

1984 Farm and Ranch Irrigation Survey and the 
1988 Farm and Ranch Irrigation Survey (FRIS), a 
mail survey of operators of irrigated farms 
(USDC, 1986; USDC, 1990). The 1984 (1988) 
FRIS samples respondents to the 1982 (1987) 
Census of Agriculture who reported irrigated 
land. Both surveys are stratified random samples 
of irrigated farms, representing 6% and 7% of 
the 1982 and 1987 Census of Agriculture, respec­
tively. These primary data are combined with 

Table 5 
Descriptive statistics for selected variables, Central Plains region 

price, climate and weather, and soil quality data 
from secondary sources to complete the data set. 

The study considers farms in the U.S. Central 
Plains region of Colorado, Kansas, Nebraska, and 
Wyoming. Irrigated farms and acres in Nebraska 
and Kansas dominate this region in both FRIS 
population estimates and the data for this study. 
In 1988, irrigation wells are reported as the pri­
mary water source in these two states, with 83% 
of the farms reporting at least one pumped well. 
Farms with wells irrigate 89% of total irrigated 
acres and apply 87% of total irrigation water in 
the region. 

FRIS variables. The FRIS includes crop-level data 
on irrigation water and land use. It also includes 
crop-level qualitative information on irrigation 
technology use, farm-level irrigation technology 
use in acres, and farm-level qualitative informa­
tion on water management. Table 5 reports de­
scriptive statistics for selected FRIS variables. 

The 766 farms included in this study grow at 

Item Measure Total farm Crop 3 

Units Alfalfa Barley Corn Dry Wheat 
beans 

Number of farms 766 464 96 667 191 446 
Land Mean 1455 281 205 772 294 424 

(acres) SD b 1587 539 256 1001 337 530 
Water applied Mean 2074 503 269 1224 324 429 
(acre-feet) SD b 2967 1232 403 2067 377 1246 

Water application rate Average 1.4 1.8 1.3 1.6 1.1 1.0 
(acre-feetlacre) 

Remaining variables are not applicable to particular crops 
Water price Mean 16.81 
($I acre-foot) SD b 7.18 

Pumping depth Mean 99 
(feet) SD b 69 

Pumping pressure Mean 39 
(psi) SD b 20 

Farm characteristics (% of farms reporting the characteristic) 
Surface water available % 23 
Pressure irrigation technologies % 77 
Advanced water management methods used % 37 
Fixed-time water management methods used % 17 

a Crop-level descriptive statistics apply to farms growing that particular crop. Farms not growing the crop, which have a zero value 
for acreage and water use, are excluded from the calculations. 
b SD is the standard deviation. 
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least two of five common irrigated field crops, 
including alfalfa hay, barley, corn for grain, dry 
beans, and wheat. They do not grow specialty 
crops (orchards, berries, and vegetables). The 
mean farm size is 1455 acres of harvested crop­
land. Farms in the sample tend to be larger than 
the published population estimates for this region 
because of the sampling techniques employed by 
the Bureau of the Census and the analysis of only 
multicrop farms. 

Applied irrigation water averages 1.45 acre-feet 
per acre for the study farms. Published estimates 
for Kansas and Nebraska equal 1.20 acre-feet per 
acre for the entire population and 1.67 acre-feet­
per acre for the 26% of all farms applying greater 
than 1000 acre-feet. 

The study analyzes farms with only groundwa­
ter or with a combination of groundwater and 
surface water. Since groundwater is assumed to 
be the marginal source, the energy cost of 
groundwater pumping serves as a proxy for water 
price. Energy cost for each fuel source is com­
puted from farm-level FRIS data on groundwater 
pumping depth and pumping pressure using the 
formula (Gilley and Supalla, 1983, pp. 1785): 

C = P(1.3716jE)(L + 2.31PSI) 

where C is groundwater pumping cost in $/acre­
foot, P fuel price, E fuel efficiency, L distance in 
feet that groundwater must be lifted from the 
water table, and PSI pumping pressure in pounds 
per square inch. In the computation, the costs by 
fuel source (natural gas, LP gas, electricity, diesel, 
and gasoline) are combined on the basis of farm 
acres served by each fuel. The sample's average 
pumping depth is 99 feet and average pumping 
pressure is 39 psi. The variation in pumping depth 
and pressure translate into variation in water 
price. This is important to the econometric analy­
sis of the variable input model of multicrop water 
allocation. The standard deviations of pumping 
depth and pressure are 69 feet and 20 psi, respec­
tively, indicating substantial variation. 

A complete list of variables for the analysis 
formed from FRIS is: 

WTRPRC 
Normalized farm-level energy cost of ground­

water pumping ($I acre-foot) 

CRPWTR 
Water applied to crop i (acre-feet) 
TOTWTR 
Total water use on farm (acre-feet) 
OWNACR 
Area devoted to crop i (acres) 
TOTACR 
Total farm area in crop production (acres) 
DMSRWT 
Binary variable indicating availability of sur­

face water on the farm (1 if present and 0 other­
wise) 

DMPRES 
Binary variable indicating availability of pres­

surized irrigation technology (sprinkler or drip) 
on the farm (1 if present and 0 otherwise) 

DMOWNTC 
Binary variable indicating availability of pres­

surized irrigation technology (sprinkler or drip) 
on crop i (1 if present and 0 otherwise) 

DMNOWT 
Binary variable indicating the farm discontin­

ued irrigation water use long enough to affect 
crop yields during the growing season (1 if pre­
sent and 0 otherwise) 

DMLWMG 
Binary variable indicating the farm relied on 

fixed-time water management practices, e.g., wa­
ter application according to calendar schedule or 
a water delivery schedule (1 if used and 0 other­
wise) 

DMHGMG 
Binary variable indicating the farm relied on 

advanced water management practices, e.g., com­
mercial scheduling services, media reports on wa­
ter use, andjor soil moisture sensing devices (1 if 
used and 0 otherwise) 

Price variables. Since farmers are assumed to 
make input allocation decisions using expected 
prices, output price variables for the five crops 
were predicted using a geometrically distributed 
lag of state crop price data (USDA, 1985; USDA, 
1989) for the five previous years. Output prices 
were predicted using a non-linear estimation pro­
cedure. The wage rate variable was constructed 
from 1984 state-level and 1988 regional wage data 
(USDA, 1984; USDA, 1988). Because 1988 data 
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were reported at only the regional level, state­
level wage data for 1988 were developed by using 
ratios of state-level wage data during the period 
of 1980 to 1984. The price of leaded gasoline 
purchased in bulk was reported at the regional 
level (USDA, 1985; USDA, 1989). The bulk gaso­
line price serves as the numeraire in creating 
normalized prices: 

OWNPRC 
Normalized price of crop i 
ALFPRC 
Normalized alfalfa hay price ($ jton) 
BARPRC 
Normalized barley price ($/bushel) 
CRNPRC 
Normalized corn-for-grain price ($/bushel) 
DBNPRC 
Normalized dry beans price($ /hundredweight) 
WHTPRC 
Normalized wheat price ($/bushel) 
WAGE 
Normalized farm labor wage rate ($/hour) 

Weather variables. All weather variables are com­
puted from 1988 weather records for cooperative 
weather stations (Perry, 1990). OWNCDD and 
OWNPCP are crop-specific continuous variables 
representing solar energy availability and precipi­
tation available for plant growth. These variables 
are calculated by summing cooling degree-days 
and inches of precipitation annually, and averag­
ing the totals across all stations within a given 
county. Annual totals are customized at the crop 
level to include only events occurring during the 
crop's growing season as defined by the Soil 
Conservation Service's established criteria for that 
particular crop's water use (USDA, 1967). For 
example with CRNCDD, total cooling degree­
days are held at 0 until the first 2-week period in 
the year when the water use criterion for corn is 
met. The variable is then 'switched on', and cool­
ing degree-days are summed. At the end of corn's 
growing season when the criterion is no longer 
met, cooling degree-days are 'switched off with 
no additional accumulation of CDD: 

OWNCDD 
Actual base 55 degree cooling degree-days over 

the growing season of crop i (degree-days) 

OWNPCP 
Actual precipitation over the growing season 

of crop i (inches) 

Climate variables. Climate variables are based on 
1958-1988 average climatic conditions for co-op­
erative stations (Perry, 1988) that are selected to 
represent county conditions. Climate variables 
serve as proxies for producer decisions based on 
long-run expectations of weather patterns but 
made prior to the observation of the season's 
weather. The long-run precipitation and cooling 
degree-day variables represent annual totals, av­
eraged across the 30-year climatic period: 

CLMCDD 
Long-run average base 55 cooling degree-days 

(degree-days) 
CLMPCP 
Long-run average precipitation (inches) 

Soil quality variables. All soil quality variables are 
average county values from the 1982 Natural Re­
sources Inventory conducted by the Soil Conser­
vation Service, USDA (Goebel and Dorsch, 1986). 
Dummy variables are constructed using NRI land 
class (scale ranging from 1 to 8) and soil texture 
information (scale ranging from 1 to 5). GOODSL 
is positive in areas where land class is rated at 
2.25 or less, while BADSL represents areas where 
land class is rated at 3.5 or more. SAND defines 
areas where soil texture is rated at 2.5 or less: 

SAND 
Binary variable representing relatively sandy 

soil (1 if soil texture is 2.5 or less and 0 otherwise) 
GOODSL 
Binary variable representing soil with relatively 

less restrictions that limit use (1 if land class is 
2.25 or less and 0 otherwise) 

BADSL 
Binary variable representing soil with relatively 

more restrictions that limit use (1 if land class is 
3.5 or greater and 0 otherwise) 
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