%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

ELSEVIER

Agricultural Economics 11 (1994) 143-158

AGRICULTURAL
ECONOMICS

Alternative models of input allocation in multicrop systems:
Irrigation water in the Central Plains, United States

Michael R. Moore »*, Noel R. Gollehon ?, Marc B. Carey °

2 Natural Resources and Environment Division, USDA Economic Research Service, 1301 New York Avenue N.W.,
Washington, DC 20005-4788, USA
b Department of Agricultural Economics, University of California, Davis, CA 95616, USA

Accepted 20 June 1994

Abstract

This paper compares three models of input allocation in multicrop systems. In addition to the variable input and
satisficing models analyzed in previous research, an allocatable fixed input model of short-run input use is derived.
The empirical application studies irrigation water use in the Central Plains region of the United States. Based on
results from model specification tests and prediction accuracy measures, the allocatable fixed input model dominates
both other models in explaining multicrop water allocation. In addition, the paper presents an alternative approach
to the study of deficient data on multicrop production. By transferring econometric results from analysis of
‘non-deficient’ crop-level data, input allocations in deficient data sets can be predicted.

1. Introduction

A key problem in analysis of agricultural pro-
duction involves predicting crop-level input allo-
cation in a multioutput setting. Several re-
searchers describe the problem as one of circum-
venting deficient data: given that data on crop-
level input use commonly are not available (ex-
cept for land use), the challenge is to develop
modeling approaches that permit prediction of
input allocations from data on farm-level input
use and crop-level land use (Chambers and Just,
1989; Just et al.,, 1983; Just et al., 1990; and
Shumway et al., 1984). One need for these model-
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ing approaches arises from a professional respon-
sibility to develop crop budgets and estimates of
enterprise cost of production. For the U.S. De-
partment of Agriculture in particular, cost of
production studies are a U.S. congressional re-
quirement that pose a special challenge because
of deficient data (Just et al., 1990, hereafter
JZHB). Further, environmental and health con-
cerns associated with agricultural input use, such
as nonpoint source pollution and food safety,
have become important policy issues. Evaluating
the effects of alternative policies for influencing
input use frequently requires an understanding of
how producers make decisions on crop-level in-
put use.

One important distinction in the research on
multicrop input allocation involves postulates
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about producer behavior in the short run. Two
contributions to the literature adopt the conven-
tional assumption of profit maximization (Cham-
bers and Just, 1989; Just et al., 1983). An alterna-
tive postulate is satisficing behavior, i.e., that
producers operate with rules-of-thumb emanating
from bounded rationality (Simon, 1965; Nelson
and Winter, 1982). A simple form of a satisficing
model is that farmers follow either a distributor’s
recommendation or other routine practices con-
cerning a crop’s input application rate per acre.
Crop acreage thus would effectively determine an
input’s allocation among crops on a multicrop
farm. Recently, JZHB compared alternative mod-
els of short-run input use derived from these two
behavioral postulates. Applying a data set on
irrigated production in Israel, JZHB concluded
that, based on model specification tests, a satisfic-
ing model explains short-run water allocation bet-
ter than a variable input model derived with a
primal, profit maximizing approach.

This paper expands the number of models
considered relative to JZHB, comparing three
alternative models of multicrop input allocation.
We develop a fixed, allocatable input model in
addition to the variable input and satisficing
models studied previously. In the short run, an
input typically considered to be a variable input
in the long run may actually be fixed and allocat-
able. Irrigation with groundwater provides an il-
lustration. Other researchers commonly model
groundwater in the American West as a variable
input in the long run (e.g., Caswell and Zilber-
man, 1985; Negri and Brooks, 1990; Nieswiadomy,
1988). This approach depicts groundwater as sub-
ject to market forces, with groundwater pumping
cost serving as a water ‘price’. Yet constraints on
the number of wells, pump capacity, and water
distribution infrastructure may make groundwa-
ter a fixed, allocatable input in the short run.
Irrigation with surface water may pose similar
short-run constraints, as well as long-run institu-
tional constraints. Among other agricultural in-
puts, hired labor and farm machinery also may be
variable in the long run, but fixed and allocatable
in the short run.

To date, the fixed, allocatable input model has
only been used to depict intermediate-run input

use (Chambers and Just, 1989; Just et al., 1983;
Moore and Negri, 1992). With land characterized
as fixed and allocatable, the model served primar-
ily as a mechanism for predicting short-run allo-
cations of non-land inputs for the case of defi-
cient data. This paper, in contrast, applies the
allocatable fixed input model to directly explain
short-run input use, thereby demonstrating the
model’s utility as a positive approach to explain-
ing producer decisions.

Crop-level input use data are required to esti-
mate the allocatable fixed input model. The model
does not appear to be estimable or otherwise
recoverable with deficient data, ! which explains
why the model is not considered in the recent
literature on multicrop input allocation. We apply
a data set that contains both crop-level irrigation
water and acreage data from multicrop farms.
The three alternative models of short-run input
use thus can be directly estimated econometri-
cally with the crop-level water data, rather than
being predicted from implicit behavioral relation-
ships using deficient data. The availability of
crop-level microdata on water use effectively
makes the data ‘non-deficient’ in terms of infor-
mation on water allocation in a multicrop system.

Because of the use of crop-level input data,
this paper contributes to the analysis of deficient
data in a different way than previous studies.
Rather than developing techniques to circumvent
deficient data, we employ the non-deficient crop-
level data to draw conclusions about which model
of short-run water use is appropriate to apply to
the case of deficient data. This creates the oppor-
tunity to apply parameters estimated with crop-
level data to predict input allocations in deficient
data sets. That is, econometric estimates of input

! Farm-level water use serves as an exogenous variable in
the allocatable fixed input model, with crop-level water use
serving as the endogenous variable (see Eq. 3). Unlike the
variable input and satisficing models, a procedure does not
appear to be available for predicting the results of the allocat-
able fixed input model using deficient data because of the
essential role of farm-level water as an exogenous variable. In
contrast, farm-level water serves as the endogenous variable
in the variable input and satisficing models estimated with
deficient data [see JZHB’s (1990) equations (3) and (8)].
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use equations that are obtained using crop-level
data can be transferred to a deficient data set
from a similar multicrop system. 2 Transferring
econometric results in this way is both increas-
ingly feasible as data become available from pro-
ducer surveys that obtain crop-level input infor-
mation and increasingly demanded for policy
analysis of issues related to agricultural inputs. 3

In this paper, two models - the variable input
model and the fixed, allocatable input model -
are derived from the profit maximization postu-
late using a dual approach.* The satisficing
model, following JZHB, is a simple model of
bounded rationality. These three models of multi-
crop water allocation are compared using two
techniques of model selection: model specifica-
tion tests and prediction accuracy measures. The
empirical application studies multicrop ground-
water irrigators in the Central Plains of the United
States using data compiled by the U.S. Bureau of
the Census from the 1984 and 1988 Farm and
Ranch Irrigation Survey.

2. Three models of short-run input use

This section develops three models of short-run
input use on a multicrop farm. While we develop
the models in terms of irrigation water, the pro-
cedures are perfectly general and can be applied
to any input.

The definition of the short-run production pe-
riod used here applies the same definition used

2 The idea proposed here of transferring econometric re-
sults from a ‘non-deficient’ data set to a deficient data set is
analogous to the topic of transferring benefit estimates in the
case of measuring unmarketed benefits of environmental as-
sets. This topic was the focus of a 1992 workshop, ‘Benefits
Transfer: Procedures, Problems, and Research Needs’, spon-
sored by the Association of Environmental and Resource
Economists (Kealy et al., 1992).

3 At the same time, econometric results should be trans-
ferred only when strong economic and physical parallels exist
between the original research setting and the transfer setting.

* This paper does not address the merits of primal versus
dual approaches, which has been an important topic in this
literature (Chambers and Just, 1989; Just et al., 1983; Zilber-
man, 1989).

in previous research on irrigated agriculture
(Chambers and Just, 1989; Just et al., 1983; JZHB,
1990). Nevertheless, the nature of short-run wa-
ter use in a multicrop system needs to be charac-
terized concretely. In this setting, the producer
already has made an intermediate-run decision:
choices have been made concerning the set of
crops to grow and the acreage in each crop. The
subsequent short-run decision involves deciding
the quantity of irrigation water to apply to each
crop over the irrigation season. Thus, as in the
previous research, crop-specific acreages are ex-
ogenous to the water use decisions. The common
thread across the three alternative models ana-
lyzed here is that crop-level land use serves as
one determinant of crop-level water use in each
model. The models differ in their answer to the
following question: other than crop acreage, what
other factors affect short-run, crop-level water
use?

The following assumptions and notation apply
throughout the paper. Producers take prices as
given. Notation includes: p is a vector of crop
prices; p; is price of crop i (i=1,...,m); r, is
water price; r is a vector of variable input prices
other than water (v =1, ..., 2); w; is water allo-
cated to crop i; W is farm-level quantity of water;
n; is land allocated to crop i; x is a vector of
variables taken as given in the short run (e.g.,
crop-level irrigation technology and weather; s =
1, ...,8); w(-) is the short-run restricted profit
function of crop i; and II(-) is the multioutput
restricted profit function of the firm. Input non-
jointness is assumed, so that the multioutput
profit function decomposes into the sum of dis-
tinct crop-specific profit functions. The profit
functions are assumed to be well-behaved in terms
of the conventional assumptions.

The study applies the normalized quadratic
profit function as the form of the crop-specific
restricted profit functions. The normalized
quadratic is a flexible functional form of the
profit function (Lau, 1978), and has been used
previously in multioutput agricultural production
research (e.g., Huffman, 1988; Shumway, 1983).
Its full specification includes linear, squared, and
cross-product terms for all exogenous variables.
Prices are expressed in relative terms, with one



146 M.R. Moore et al. / Agricultural Economics 11 (1994) 143-158

price serving as a numeraire; this maintains linear
homogeneity of the function. > As will become
evident, the main advantage of the normalized
quadratic form enters when developing the fixed,
allocatable input model.

2.1. Variable input model

A variable input model has commonly been
applied to analysis of short-run irrigation water
use (Chambers and Just, 1989; Just et al., 1983;
JZHB, 1990). When following the dual approach,
application of Hotelling’s lemma in terms of the
water price variable generates crop-level water
demand functions for this model. These are:

o, (p;sr Ty sh;5X)

- or,, =wi(DisT Ty 5 X)

i=1,....m (1)

The estimable form for each crop-level water
demand function, given the use of normalized
quadratic restricted profit functions, is a linear
function of the independent variables.

2.2. Fixed, allocatable input model

The fixed, allocatable input model of water
use provides a second approach based on a profit
maximization postulate. The short-run water con-
straint applied in this model is a groundwater
constraint; it essentially represents the fixity of
groundwater wells, pump capacity, and irrigation
capital during the growing season. The constraint
does not reflect a long-run, institutionally-defined
water quota, as groundwater is commonly mod-
elled as subject to market forces. The approach
uses duality, thereby following conceptual meth-
ods developed for analysis of fixed, allocatable
inputs (Chambers and Just, 1989; Shumway et al.,
1984). To obtain optimal short-run water alloca-

5To simplify notation, interpret output and input prices in
Egs. (5), (7) and (9) as relative prices because they are derived
from normalized quadratic profit functions.

tion functions, we solve the following constrained
optimization problem:

H(p:r,nl)n27"'anm,W;x) (2)
. m m
= MAX | Y m(pyr.n,w;x): Yow,=W
WiheoosWin | j=1 i=1

An equation system for solving (2) for an interior
solution contains two general elements, the set of
necessary conditions for an interior solution and
the water constraint. The necessary conditions
are dmp,,r,n,w;x)/ow;=A for i=1,...,m,
where A is the shadow price on the water con-
straint. Optimal water allocation functions follow
from solving this equation system; these functions
are:

* *® . s
w =w(p,r,n,n,, ... .0, ,W;x) i=1,....m

(3)

Note two distinct features of the allocatable fixed
input model. First, water allocations to one crop
depend on the output prices and acreage levels of
all other crops. Thus, in contrast to the variable
input model of Eq. (1), intercrop .price and
acreage variables supplement own-crop price and
own-crop acreage as determinants of water use.
Second, the farm-level water quantity constraint
in (3) replaces water price as a determinant of
short-run crop-level water use. '

Use of normalized quadratic profit functions
enables a closed-form solution to (2). The equa-
tion system that must be solved, composed of the
necessary conditions and the constraint, is a lin-
ear system. Thus, the w;*(p,r,ny,n,,...,n,,,W;x)
that explicitly solve (2) are linear in the exoge-
nous variables; this function is the estimable form
for this model. The optimization problem devel-
oped here follows procedures used for a similar
problem (Moore and Negri, 1992, pp. 31-33).

The optimal water allocation equations in (3)
illustrate the apparent jointness created by fixed,
allocatable inputs (Chambers and Just, 1989;
Shumway et al., 1984). Despite the assumption of
input nonjointness, the fixed water input creates
interdependence across crops. For instance, con-
sider a multicrop farm that grows alfalfa, corn,
and dry beans. With apparent jointness, water
use on corn depends on acreage in alfalfa and
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acreage in dry beans in addition to acreage in
corn.

2.3. Satisficing model

The satisficing model of short-run water use
follows closely the ‘behavioral approach’ of JZHB:
crop-level land use virtually determines crop-level
water use, with all price variables and the water
constraint removed from the specification. Other
variables (irrigation technology and weather) ex-
plain any additional variation in water use. The
general form of this model is:
w,=w;(n;;x) i=1,....m
We adopt a linear specification to estimate (4).
This is consistent with JZHB (1990) and the
earlier two models of this paper.

In intuitive terms, the satisficing model is
premised on the idea that longer-run decisions
have a larger quantitative impact on profit rela-
tive to short-run decisions. Thus, producer behav-
ior might conform more closely to the profit
maximization postulate in the intermediate- or
long-run periods. However, satisficing in the short
run by following a rule-of-thumb or a distributor’s
recommendation may conserve on information
requirements with little sacrifice in profit.

3. Model specification tests and prediction accu-
racy measures

This section describes the model specification
tests and prediction accuracy measures that are
applied in the research. The three models of
short-run water use are compared using model

specification tests. Two models are compared at a

time. The multicrop approach developed here
applies the hypothesis tests as farm-level tests.
That is, the approach characterizes producer be-
havior on the entire multicrop operation, rather
than crop-by-crop behavior, by analyzing which
model best represents aggregate, farm-level be-
havior. Each comparison of farm-level models
thus is executed as a single-equation test for the
set of m crops. To implement this, the crop-level
water use data are combined simply by stacking
the system of observations.

First, consider the model specification test for

the variable input model and the satisficing model.
This comparison involves a nested F-test. The
empirical specification of the variable input model
of Eq. (1), given use of normalized quadratic
profit functions, is:

z t
wi=a'+Bip+ Y yir, + 8yt 0+ Y mix,
v=1 s=1

i=1,...,m (5)
where the coefficients are parameters to be esti-
mated. The satisficing model of water use (Eq. 4)
is represented by a subset of variables in Eq. (5),
including crop acreage (n;) and short-run ele-
ments of weather, irrigation technology, and wa-
ter management (x,). Thus, in terms of a classical
F-test, the null hypothesis is that:

[ A i=1,...,m
B_y”_6_0U=1,...,z (6)
That is, the null hypothesis is true ® - and the
satisficing model is the preferred model - if the
coefficients on own-crop price, variable input
prices, and water price are equal to zero. Other-
wise, if the alternative hypothesis is true, the
variable input model is the preferred model spec-
ification.

Second, consider the model specification test
for the fixed, allocatable input model and the
satisficing model. This comparison also involves a
nested F-test. The empirical specification of the
allocatable fixed input model of Eq. (3) is:

m z m
wi=a'+ ) Bipi+ Y vir,+ X Oin W
j=1 v=1 k=1

t
+ Y omix, i=1,...,m (7)
s=1
Here, the null hypothesis is that the coefficients
on crop prices, variable input prices, crop acreages
(other own-crop acreage), and the farm-level wa-
ter constraint are equal to zero, or

i=1,....m
Bi=vi=ti=yi=0 1=l (®)

v=1,...,z

k=1,...m i#k

® We use ‘true’ as a simple way of expressing the more
technical phrase ‘fail to reject’.
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The satisficing model is the preferred model
specification if the null hypothesis is true. Other-
wise, if the alternative hypothesis is true, the
allocatable fixed input model is the preferred
specification.

Third, consider the model specification test for
the variable input and fixed input models. This
comparison involves a non-nested hypothesis test
using a non-nested F-test (Fomby et al., 1984, pp.
415-416; Pesaran, 1974).7 The non-nested F-
test’s artificial nesting model includes every ex-
ogenous variable for the five crops’ water use
equations from these two models (i.e., combining
Egs. 5 and 7). In general terms this is w,(p,r,r,,
Ry, .. 0, Wix)i=1,...,m. The empirical
specification of the artificial nesting model is:

m z m
w,=a'+ ) Bip;+ X, yir,+8ry+ ) 60in;
j=1 v=1 i=1

t
+Y W+ Y nix, i=1,...,m 9
s=1

The performance of the variable and fixed input
models are compared, independently, to the per-
formance of the artificial nesting model. Water
prices are the elements of the artificial model
that are unique to the variable input model. Thus,
the first stage of the non-nested F-test is to test
the null hypothesis that the coefficients on water
price are equal to zero, or:

5'=0 i=1,...,m (10)

If the null hypothesis is true, then the variable
input model is rejected relative to the artificial
nesting model. Otherwise, if the alternative hy-
pothesis is true, then the variable input model is
accepted as the preferred specification relative to
the artificial nesting model. The second stage of
the non-nested F-test is to reject the fixed, allo-

" We use a non-nested F-test rather than a J-test because
of the use of limited-dependent variable econometric methods
in the empirical application. The J-test requires that error
terms are iid normal (Davidson and MacKinnon, 1981, pp.
781-782). Error terms of limited-dependent variable models
are not so distributed.

catable input model if elements unique to that
model (the farm-level water constraint and inter-
crop interdependencies in crop prices and
acreages) do not independently explain variation
in water use. The null hypothesis for this test is:

i i i_ i=1,.-.,m
Bi=0i=u'=0 ;1 . ..om i#j (11)

Otherwise, if the alternative hypothesis is true,
then the allocatable fixed input model is accepted
as the preferred model specification relative to
the artificial nesting model. As with all non-nested
tests, both models can be rejected, both can be
accepted, or only one model can be rejected.

The set of three model specification tests can
yield either determinate or indeterminate results
on model choice. For example, an indeterminate
result would occur if: the satisficing model is
chosen over the variable input model in the first
test; the allocatable fixed input model is chosen
over the satisficing model in the second test; but
then the variable input model is chosen over the
allocatable fixed input model in the third test. In
contrast, a model will dominate if it is chosen in
each of the two tests in which it participates
directly.

The prediction accuracy measures supplement
findings from the model specification tests. Three
different measures are applied to compare the
models, including mean absolute error (MAE),
root mean square error (RMSE), and mean abso-
lute percentage error (MAPE). % As with the
model specification tests, the prediction measures
are developed using a farm-level approach. The

8 These three measures are commonly applied measures of
prediction accuracy (Kost, 1980). Their general formulas are:

1 X,
MAE = — 2 IV,-v)

t=1

1L
RMSE=1/—Z(Y,—Y,)2
Tt=l

1 Z[1Y-vl
MAPE=— Y | ——
T Y,
whgre Y, is the observed dependent variable for observation
t, Y, the predicted dependent variable for observation ¢, and
T the number of observations.

t=1
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measures thus represent the accuracy of a model
in predicting short-run water use for the set of m
crops under consideration. The approach is not
conducted crop-by-crop.

Four sets of predictions are made, including
one in-sample prediction and three out-of-sample
predictions. ° Applying the three measures to each
of the four predictions generates twelve cases for
evaluating the alternative models.

The ability to apply prediction accuracy mea-
sures demonstrates another advantage of crop-
level input data relative to deficient data. With
deficient data, predictions of crop-level input use
from one model can be compared to predictions
from another model. However, the predictions
cannot be compared to actual input use, which is
the preferred benchmark for comparison.

4. Data, variables, and econometric model

The econometric analysis considers multicrop
producers engaged in irrigated agriculture in the
U.S. Central Plains region (the states of Col-
orado, Kansas, Nebraska, and Wyoming). Produc-
ers are multicrop growers who choose among five
field crops commonly grown as part of a multi-
crop system in the region: alfalfa hay, barley, corn
for grain, dry beans, and wheat. The producers in
the sample irrigate with groundwater only or with
groundwater and surface water. Groundwater is
assumed to be the marginal water source when
both sources are used (as in Negri and Brooks,
1990). Groundwater pumping lift is translated
into a marginal groundwater pumping cost
through an engineering formula (see Appendix);
this cost serves as the measure of water price.

The primary data for the analysis are from the
1984 and 1988 Farm and Ranch Irrigation Survey

°For an out-of-sample prediction, the observations are
randomly divided into two subsets, one with 80% of the
observations and one with the remaining 20% of the observa-
tions. The 80% subset is used to estimate each model’s
parameters. These parameter estimates are applied to the
20% subset to make out-of-sample predictions and to apply
the prediction accuracy measures. This procedure is repeated
three times.

(FRIS) (USDC, 1986; USDC, 1990). The depen-
dent variables for the analysis are created from
survey questions on irrigation water use by crop.
The survey also includes questions on crop-level
acreage and irrigation technology, as well as
questions on on-farm irrigation practices (e.g.,
water sources, groundwater depth, and water
management practices); several independent vari-
ables are formed from these data. The Appendix
defines the sample, data, and variables more ex-
tensively, and also includes a table of descriptive
statistics for key variables.

Secondary data sources are used to create
variables that are merged with the FRIS-based
variables. Three categories of variables are devel-
oped: output and input prices; climate and
weather; and soil. Crop price variables are con-
structed as expected 1984 and 1988 prices. Vari-
able input prices are current-year prices based on
1984 and 1988 data. Climate variables represent
expected weather conditions. They help to ex-
plain discrete choices concerning which crops to
grow. Weather variables represent actual 1984
and 1988 weather conditions. They help to ex-
plain short-run decisions on water-use quantity.
Soil variables represent quality dimensions of
cropland. The Appendix also defines these data
and variables more extensively.

The availability of microdata on multicrop pro-
duction presents an econometric issue concerning
application of an unbiased estimator. 1° Produc-
ers grow two or more of the five crops in the
multicrop system. Of a sample of 766 farms,
non-limit observations by crop (i.e., farms grow-
ing that crop) are: alfalfa, 464; barley, 96; corn,
667; dry beans, 191; and wheat, 446. Thus, a
limited-dependent variable econometric model
must be applied to produce unbiased estimates
(Huffman, 1988). This paper applies the Heck-

10 A second issue related to multicrop systems concerns
efficient estimates. As stated by Shumway et al. (1984, p. 75),
with multioutput systems, "...efficient econometric estimation
generally requires estimation of a seemingly unrelated multi-
ple-product system." This paper applies a limited-dependent
variable model to obtain unbiased estimates instead of ad-
dressing efficiency.
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Table 1

Performance of three models in predicting short-run water use

Type of prediction

Prediction accuracy measure

Model of water use Mean Root Mean
absolute mean absolute
error square percentage
(MAE) error error

(RMSE) (MAPE)
In-sample predictions

Variable input model 256.2 538.5 137.5

Fixed, allocatable input model 190.5 ® 348.3° 1312°

Satisficing model 256.5 545.9 137.2

Out-of-sample predictions ?
Draw 1

Variable input model 270.4 527.8 186.6 °

Fixed, allocatable input model 2222 410.1° 221.6

Satisficing model 283.3 541.5 193.1

Draw 2

Variable input model 280.9 864.6 211.5

Fixed, allocatable input model 2235° 499.9 © 237.2

Satisficing model 284.3 874.1 181.0 ®

Draw 3

Variable input model 293.6 533.6 224.6

Fixed, allocatable input model 208.1° 3404 ® 190.7 ®

Satisficing model 289.1 539.1 197.2

? For an out-of-sample prediction, the observations are randomly divided into two subsets, one with 80% of the observations and
one with the remaining 20% of the observations. The 80% subset is used to estimate each model’s parameters. These parameter
estimates are applied to the 20% subset to make out-of-sample predictions and to apply the prediction accuracy measures. This

procedure is repeated three times.

® Indicates the model that most accurately predicts short-term water use for a given accuracy measure and experiment.

man model (Maddala, 1983). Limited-dependent
variable models, such as the Heckman and Tobit
models, decompose a decision into a discrete-
choice decision (on whether to grow a particular
crop) and a quantity decision (on the level of
input use). The Heckman, unlike the Tobit, per-
mits the set of exogenous variables explaining the
crop-choice decision to vary from the set of ex-
ogenous variables explaining the water quantity
decision. !

The decision framework for the Heckman
.model is appropriate for analysis of short-run
irrigation water use. The discrete decision to use
water is influenced by the same variables affect-

1 Bockstael et al. (1990) discuss the appropriate use of
alternative limited-dependent variable econometric models
(Heckman, Tobit and Cragg) in the analysis of recreation
demand. Their discussion had useful application to this paper.

ing the intermediate-run decision associated with
irrigated land allocation: a decision to allocate
land to a crop means that irrigation water will
also be applied to that crop. These intermediate-
run variables include farm-level exogenous vari-
ables (e.g., farm-level irrigation technology and
climate variables). The quantity of water used
during the irrigation season, however, depends on
short-run exogenous variables. These include crop
acreage levels (which are set endogenously in the
intermediate run), crop-level irrigation technol-
ogy, and weather variables.

5. Empirical results

5.1. Comparison of alternative models

The main empirical result is the comparison of
alternative models using the model specification
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tests and prediction accuracy measures. In the
model specification tests, the fixed, allocatable
input model of short-run water use dominates the
other two models as a way of explaining producer
decisions. Specifically, one model specification
test involves the nested test comparing the fixed
input and satisficing models (Eq. 8). The F-test
value is 18.30 in this test, thus implying that the
coefficients in the fixed input model are statisti-
cally different from zero at the 0.01 level (in a
test with 55 restrictions). The fixed input model
has substantial explanatory power beyond the sat-
isficing model.

A second specification test is the non-nested
test comparing the variable input model and the
fixed input model. In one component of the test,
which compares the artificial nesting model and
the fixed input model (Eq. 11), the F-test value is
21.61. Thus, the fixed input model is not rejected

at the 0.01 level in this component of the non-
nested test (in a test with 45 restrictions). The
F-test value is 0.90 in evaluation of the variable
input model in the second component of the test
(Eq. 10). The variable input model is rejected at
the 0.01 level (in an F-test with five restrictions).
The non-nested hypothesis test, therefore,
reaches an unambiguous conclusion: the allocat-
able fixed input model is chosen over the variable
input model.

At this point, the model specification tests
already yield a conclusion in favor of the allocat-
able fixed input model. The final test, which
compares the variable input and satisficing mod-
els (Eq. 6), is irrelevant because of the fixed input
model’s dominance. It is interesting to note, nev-
ertheless, that the test chooses the satisficing
model over the variable input model.

Application of the three prediction accuracy

Table 2

Estimates of short-run water use, allocatable fixed input model

Independent variable Alfalfa Barley Corn Dry beans Wheat
ALFPRC 58.466 * 11.462 -5323 1.578 12.842
BARPRC —690.89 * —83.082 69.864 —52.962 —168.65
CRNPRC 6804.2 * 745.33 67.346 107.29 312.58
DBNPRC 318.38 * * 65.294 —49.879 8.353 28.125
WHTPRC —8588.2 * —1579.6 1002.8 —100.02 —677.31
WAGE —195.72 155.60 —175.69 —101.06 9.169
ALFACR 1.475 ** —-0.278 " * —1.028 ** —0.316 ** —0.299 **
BARACR —0.213 1.308 ** —1.423 ** —0.545 ** —0.265
CRNACR —0.466 ** —-0.078 0.886 ** —0.196 * * —-0.277 **
DBNACR 0.021 —0.190 —0.600 ** 0.799 ** —0.056
WHTACR —-0.430 ** —-0.282 ** -0.727 ** —0.056 1.037 **
TOTWTR 0239 ** 0.088 * * 0485 ** 0.139 *~ 0.137 **
DMSRWT —6.964 66.332 —-126.49 ** 13.954 —94.611
DMOWNTC —28.729 —44.167 —60.504 15.163 18.731
DMNOWT 26.245 10.043 —-12.072 —27.321 90.272
DMHGMG —44.628 4.290 —29.580 —4.222 —49.736
DMLWMG 40.268 —6.311 1.915 —22.593 52.050
OWNCDD 0.095 * 0.007 0.003 —0.001 0.009
OWNPCP 9.858 —-0.824 —-3.725 4.995 —8.641
SAND —54.711 —296.86 49.225 78.484 —228.95 **
INTERCEPT 2181.0 * 730.42 —1457.7 326.28 126.85
Adjusted R? 0.903 0.749 0.959 0.900 0.839

*

and * " denote significance at the 0.05 and 0.01 levels, respectively.

# Dependent variable is crop-level water use. The Appendix contains definitions of the independent variables.
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Table 3

Estimates of short-run water use, variable input model ?

Independent variable Alfalfa Barley Corn Dry beans Wheat
OWNPRC 2.570 26.453 846.87 " * 3.848 115.96
WTRPRC —-3.776 —0.735 3.562 3.825 2.991
WAGE —-176.57 * 104.46 —422.52 ** —109.33 * —11.951
OWNACR 2.059 ** 1.284 * * 1.956 * * 0982 ** 1.216 **
DMSRWT 26.369 103.29 * —148.01 18.066 9.992
DMOWNTC —70.676 —84.958 —23795 ** —8.064 —42.420
DMNOWT —13.086 32.987 52.378 —19.619 90.671 *
DMHGMG —36.694 5.308 62.336 15.355 —21.351
DMLWMG 114.14 —2.706 147.44 —16.886 99.343
OWNCDD 0.097 —-0.028 0233 ** 0.119 * 0.031
OWNPCP 6.099 8.634 —26.789 * —-5.732 —4.558
SAND 79.340 —-122.17 175.73 167.15 ** —31.228
INTERCEPT 194.90 —410.55 —1049.7 * 172.20 —546.63 * *
Adjusted R? 0.825 0.637 0.876 0.782 0.777

*

and " " denote significance at the 0.05 and 0.01 levels, respectively.

? Dependent variable is crop-level water use. The Appendix contains definitions of the independent variables.

measures provides additional evidence on model
choice. > With the in-sample prediction, the
fixed, allocatable input model outperforms the
two alternative models according to each of the
three measures (MAE, RMSE, and MAPE) (see
Table 1). Results with the three out-of-sample
predictions show slightly less consistency. For both
the MAE and RMSE measures, the allocatable
fixed input model outperforms the other two
models in each of the three predictions. With the
MAPE measure, however, each of the three mod-
els outperforms the other two in one prediction.
Nevertheless, the weight of the evidence supports
the conclusion that was drawn from the model
specification tests. The fixed, allocatable input
model provides a better model for explaining

12 The predictions are made using only non-limit observa-
tions, with the limit observations excluded from this portion of
the analysis. This use of the data is appropriate given, in
practical terms, what we are trying to predict. The goal is to
predict crop-level water use given knowledge of crop-level
land allocations on a multicrop farm. Consider a case of a
producer who allocates no acreage to a certain crop. In this
case, the analyst knows that water use on that crop is zero.
This does not need to be confirmed with a prediction; it is a
deterministic relationship. Thus, only non-limit observations
of water use are applied to evaluate the prediction accuracy of
the models.

short-run water allocation in multicrop systems
than either the variable input or satisficing model.

Additional understanding is useful of the fac-
tors motivating the choice of the allocatable fixed
input model. A key factor is the multicrop joint-
ness evident in the crop acreage variables. For
each of the five crops, water use depends strongly
on acreage in some or all of the other four crops
(0w,/dn;, i #j) (Table 2). For example, the quan-
tity of water applied to corn depends negatively
on alfalfa acreage, barley acreage, dry beans
acreage, and wheat acreage, with each of these
variables significant at the 0.01 level. Overall, 13
of the 20 intercrop acreage variables are signifi-
cant at the 0.01 level.

The relative performance of the water con-
straint variable and the water price variable also
illuminates model specification. The water con-
straint is positive and significant at the 0.01 level
in each equation of the allocatable fixed input
model, with each ¢-statistic value exceeding 5.0.
This certainly provides evidence that the pro-
ducer perceives irrigation water as a fixed input
in the short run. In contrast, water price is not
negative and significant for any of the crops when
estimated with the variable input model (Table
3). After planting crops, irrigators do not respond
to water price in subsequent short-run decisions.
This occurs despite clear statistical evidence that
the water price variable influences longer-run
decisions on cropland allocation in multicrop sys-
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Table 4

Estimates of short-run water use, satisficing model ?

Independent variable Alfalfa Barley Corn Dry beans Wheat
OWNACR 2.070 ** 1.270 ** 1.958 ** 0.961 ** 1.206 "~
DMSRWT 2.789 114.73 * —148.10 27.838 16.618
DMOWNTC —-110.63 * —74.96 —-202.19 ** 16.679 —27.488
DMNOWT —14.735 55.605 43.756 —20.309 90.527
DMHGMG —36.607 0.401 50.630 22.253 —13.303
DMLWMG 117.86 —5.659 137.52 —15.525 99.909
OWNCDD 0.083 —0.010 0.178 ** 0.110 * 0.033
OWNPCP —17.147 7.570 —-33.510 ** —8.147 4224
SAND 21.515 —135.21 106.01 125.22 * —27.978
INTERCEPT -179.72 7.44 —463.20 ** —109.39 —201.84
Adjusted R 2 0.824 0.636 0.873 0.775 0.775

*

and * " denote significance at the 0.05 and 0.01 levels, respectively.

? Dependent variable is crop-level water use. The Appendix contains definitions of the independent variables.

tems in the Central Plains. '3 That is, groundwa-
ter is a variable input in the intermediate to long
run, yet an allocatable fixed input in the short
run.

The performance of the price variables in the
variable input model explains the choice of the
satisficing model (Table 4) over the variable input
model in the model specification test. The water
price variables, as noted before, are statistically
insignificant. Only corn price is significant of the
five own-crop output prices. The wage rate vari-
able, though significant in three of five equations,
apparently does not explain much variation; ad-
justed R?s are only slightly higher in the variable
input model than the satisficing model.

5.2. Results with the fixed, allocatable input model

As the model that performs best in explaining
short-run water use, the allocatable fixed input

13 Three sets of equations representing longer-run decisions
- crop supply, land allocation, and crop-choice equations -
were estimated using the identical data set as applied here
(Moore et al., 1994). The water price variable typically is
statistically significant in each set of equations. By crop, the
t-statistic values on water price in the crop supply equations
are: alfalfa, —3.37; barley, —3.18; corn, 2.36; dry beans, 1.07;
and wheat, 2.01. For the land allocation equations, the #-sta-
tistic values are: alfalfa, —3.99; barley, —3.14; corn, 2.42, dry
beans, 1.11; and wheat, 2.02. For the crop-choice decision, the
t-statistic values for the water price variable are: alfalfa,
—3.54; barley, —2.32; corn, 1.78, dry beans, 1.38; and wheat,
2.86.

model needs additional description; four points
follow. First, the adjusted R? values indicate that
the model performs well in explaining crop-level
water use in this multicrop system (Table 2). The
adjusted R?s meet or exceed 0.90 for alfalfa,
corn, and dry beans. Even the lowest value, 0.749
for barley, indicates relatively strong performance
for a data set reliant on cross-sectional variation.

Second, consider the influence of own-crop
acreage variables. Each of these acreage vari-
ables, not surprisingly, is significant in explaining
water use; each ¢-statistic value on this set of
variables exceeds 10.0. The coefficients on own-
crop acreage show how a marginal increase in the
crop’s acreage increases water allocated to the
crop for producers growing the particular crop.

Third, in terms of intercrop interdependence,
a change in acreage of one crop induces water
reallocation among other crops given that water
is a fixed, allocatable input. Take the alfalfa-corn
relationship as an example. The coefficient on
alfalfa acreage in the corn water allocation equa-
tion is —1.028. A one-acre increase in alfalfa
acreage thus would reduce corn water use by
slightly more than an acre-foot. Reciprocally, the
coefficient on corn acreage in the alfalfa water
allocation equation is —0.466, with a similar in-
terpretation holding.

More generally, the performance of the inter-
crop acreage variables demonstrates the competi-
tion among crops in a multicrop system for a
fixed quantity of water. Note that, when a partic-
ular intercrop acreage variable is significant, its
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coefficient is negative. Thus, an increase in an
intercrop acreage variable reduces the quantity of
water applied to a competing crop. This relation-
ship illustrates the nature of a fixed, allocatable
input in a short-run, multicrop system. The farm-
level input constraint creates the competition
among crops for the input. Thereafter, the crop-
level acreage quantities become important deter-
minants of the division of the fixed input.

Fourth, estimates on the water constraint vari-
able indicate the allocation among crops of a
marginal increase in farm-level water availability
for producers growing the particular crop. The
individual coefficients on the water constraint
are: corn, 0.485; alfalfa, 0.239; dry beans, 0.139;
wheat, 0.137, and barley, 0.088. These indicate
that increases in water availability are allocated
most heavily to crops with relatively high water
requirements (corn and alfalfa) rather than to
crops with relatively low water requirements (dry
beans, wheat, and barley).

6. Summary and conclusions

This paper compares three alternative models
of short-run input use in multicrop systems: a
variable input model, an allocatable fixed input
model, and a satisficing model. The fixed, allocat-
able input model has not been analyzed in previ-
ous research on this topic. The empirical applica-
tion studies irrigation water use on multicrop
farms in the Central Plains of the United States.
The main finding is that the fixed, allocatable
input model explains multicrop water use better
than the other two models. It was chosen over the
other two models in model specification tests and
outperformed the others in ten of twelve cases of
prediction accuracy measurement.

In this initial application to the short run, the
allocatable fixed input model provides new in-
sight into the determinants of producer decisions.
The farm-level water constraint performs well
statistically and intuitively as a variable explaining
multicrop water allocation. Further, the intercrop
acreage variables demonstrate clearly the compe-
tition among crops for the fixed farm-level water
quantity. One result provides an example: water

applied to corn depends negatively on alfalfa
acreage, barley acreage, dry beans acreage, and
wheat acreage, with each of these variables signif-
icant at the 0.01 level. This is the essence of
apparent jointness in the short run.

Crop-level input use data are necessary for
application of the fixed, allocatable input model.
The model cannot be applied directly to deficient
data sets, which are commonly defined as con-
taining crop-level acreage data and farm-level
input data. Instead, the model can be applied
indirectly to deficient data by transferring param-
eter estimates from a model application that uses
non-deficient, crop-level data. For instance, it
may be feasible to transfer parameter estimates
from these results to a data set compiled by the
Bureau of Reclamation (BOR) on agriculture in
BOR-served irrigation districts in the Central
Plains region. The BOR data are a deficient data
set, containing information on crop-level irrigated
acreage and district-level water use, but not on
crop-level water use (Moore and Negri, 1992). In
transferring the econometric results, crop-level
water use could be predicted for irrigation dis-
tricts served by BOR water projects in the Cen-
tral Plains. -

While the paper studies irrigation with
groundwater, other agricultural inputs - such as
surface water, hired labor, family labor, and farm
machinery - may be fixed and allocatable in the
short run. Since the allocatable fixed input model
cannot be applied without crop-level data, acquir-
ing and analyzing data on these inputs must pre-
cede a second-stage effort to transfer results to
deficient data sets. This paper’s findings indicate
that acquisition of improved, crop-level data may
be necessary for a better understanding of pro-
ducer decisions in multicrop systems.
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Appendix

Data description and variable definitions

The primary data in this study are from the
1984 Farm and Ranch Irrigation Survey and the
1988 Farm and Ranch Irrigation Survey (FRIS), a
mail survey of operators of irrigated farms
(USDC, 1986; USDC, 1990). The 1984 (1988)
FRIS samples respondents to the 1982 (1987)
Census of Agriculture who reported irrigated
land. Both surveys are stratified random samples
of irrigated farms, representing 6% and 7% of
the 1982 and 1987 Census of Agriculture, respec-
tively. These primary data are combined with
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price, climate and weather, and soil quality data
from secondary sources to complete the data set.

The study considers farms in the U.S. Central
Plains region of Colorado, Kansas, Nebraska, and
Wyoming. Irrigated farms and acres in Nebraska
and Kansas dominate this region in both FRIS
population estimates and the data for this study.
In 1988, irrigation wells are reported as the pri-
mary water source in these two states, with 83%
of the farms reporting at least one pumped well.
Farms with wells irrigate 89% of total irrigated
acres and apply 87% of total irrigation water in
the region.

FRIS variables. The FRIS includes crop-level data
on irrigation water and land use. It also includes
crop-level qualitative information on irrigation
technology use, farm-level irrigation technology
use in acres, and farm-level qualitative informa-
tion on water management. Table 5 reports de-
scriptive statistics for selected FRIS variables.
The 766 farms included in this study grow at

Table 5
Descriptive statistics for selected variables, Central Plains region
Item Measure Total farm Crop 2
Units Alfalfa Barley Corn Dry Wheat
beans
Number of farms 766 464 96 667 191 446
Land Mean 1455 281 205 772 294 424
(acres) SD® 1587 539 256 1001 337 530
Water applied Mean 2074 503 269 1224 324 429
(acre-feet) SD ® 2967 1232 403 2067 377 1246
Water application rate Average 1.4 1.8 1.3 1.6 1.1 1.0
(acre-feet/acre)
Remaining variables are not applicable to particular crops
Water price Mean 16.81
($/acre-foot) SD® 7.18
Pumping depth Mean 99
(feet) SD® 69
Pumping pressure Mean 39
(psi) SD® 20
Farm characteristics (% of farms reporting the characteristic)
Surface water available % 23
Pressure irrigation technologies % 71
Advanced water management methods used % 37
Fixed-time water management methods used % 17

? Crop-level descriptive statistics apply to farms growing that particular crop. Farms not growing the crop, which have a zero value

for acreage and water use, are excluded from the calculations
® SD is the standard deviation.
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least two of five common irrigated field crops,
including alfalfa hay, barley, corn for grain, dry
beans, and wheat. They do not grow specialty
crops (orchards, berries, and vegetables). The
mean farm size is 1455 acres of harvested crop-
land. Farms in the sample tend to be larger than
the published population estimates for this region
because of the sampling techniques employed by
the Bureau of the Census and the analysis of only
multicrop farms.

Applied irrigation water averages 1.45 acre-feet
per acre for the study farms. Published estimates
for Kansas and Nebraska equal 1.20 acre-feet per
acre for the entire population and 1.67 acre-feet-
per acre for the 26% of all farms applying greater
than 1000 acre-feet.

The study analyzes farms with only groundwa-
ter or with a combination of groundwater and
surface water. Since groundwater is assumed to
be the marginal source, the energy cost of
groundwater pumping serves as a proxy for water
price. Energy cost for each fuel source is com-
puted from farm-level FRIS data on groundwater
pumping depth and pumping pressure using the
formula (Gilley and Supalla, 1983, pp. 1785):

C =P(1.3716 /E)( L + 2.31PSI)

where C is groundwater pumping cost in $ /acre-
foot, P fuel price, E fuel efficiency, L distance in
feet that groundwater must be lifted from the
water table, and PSI pumping pressure in pounds
per square inch. In the computation, the costs by
fuel source (natural gas, LP gas, electricity, diesel,
and gasoline) are combined on the basis of farm
acres served by each fuel. The sample’s average
pumping depth is 99 feet and average pumping
pressure is 39 psi. The variation in pumping depth
and pressure translate into variation in water
price. This is important to the econometric analy-
sis of the variable input model of multicrop water
allocation. The standard deviations of pumping
depth and pressure are 69 feet and 20 psi, respec-
tively, indicating substantial variation.

A complete list of variables for the analysis
formed from FRIS is:

WTRPRC

Normalized farm-level energy cost of ground-
water pumping ($ /acre-foot)

CRPWTR

Water applied to crop i (acre-feet)

TOTWTR

Total water use on farm (acre-feet)

OWNACR

Area devoted to crop i (acres)

TOTACR

Total farm area in crop production (acres)

DMSRWT

Binary variable indicating availability of sur-
face water on the farm (1 if present and 0 other-
wise)

DMPRES

Binary variable indicating availability of pres-
surized irrigation technology (sprinkler or drip)
on the farm (1 if present and 0 otherwise)

DMOWNTC

Binary variable indicating availability of pres-
surized irrigation technology (sprinkler or drip)
on crop i (1 if present and 0 otherwise)

DMNOWT

Binary variable indicating the farm discontin-
ued irrigation water use long enough to affect
crop yields during the growing season (1 if pre-
sent and 0 otherwise)

DMLWMG

Binary variable indicating the farm relied on
fixed-time water management practices, €.g., wa-
ter application according to calendar schedule or
a water delivery schedule (1 if used and 0 other-
wise)

DMHGMG

Binary variable indicating the farm relied on
advanced water management practices, €.g., com-
mercial scheduling services, media reports on wa-
ter use, and /or soil moisture sensing devices (1 if
used and 0 otherwise)

Price variables. Since farmers are assumed to
make input allocation decisions using expected
prices, output price variables for the five crops
were predicted using a geometrically distributed
lag of state crop price data (USDA, 1985; USDA,
1989) for the five previous years. Output prices
were predicted using a non-linear estimation pro-
cedure. The wage rate variable was constructed
from 1984 state-level and 1988 regional wage data
(USDA, 1984; USDA, 1988). Because 1988 data
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were reported at only the regional level, state-
level wage data for 1988 were developed by using
ratios of state-level wage data during the period
of 1980 to 1984. The price of leaded gasoline
purchased in bulk was reported at the regional
level (USDA, 1985; USDA, 1989). The bulk gaso-
line price serves as the numeraire in creating
normalized prices:

OWNPRC

Normalized price of crop i

ALFPRC

Normalized alfalfa hay price ($ /ton)

BARPRC

Normalized barley price ($ /bushel)

CRNPRC

Normalized corn-for-grain price ($ /bushel)

DBNPRC

Normalized dry beans price ($§ /hundredweight)

WHTPRC

Normalized wheat price (§ /bushel)

WAGE

Normalized farm labor wage rate ($/hour)

Weather variables. All weather variables are com-
puted from 1988 weather records for cooperative
weather stations (Perry, 1990). OWNCDD and
OWNPCP are crop-specific continuous variables
representing solar energy availability and precipi-
tation available for plant growth. These variables
are calculated by summing cooling degree-days
and inches of precipitation annually, and averag-
ing the totals across all stations within a given
county. Annual totals are customized at the crop
level to include only events occurring during the
crop’s growing season as defined by the Soil
Conservation Service’s established criteria for that
particular crop’s water use (USDA, 1967). For
example with CRNCDD, total cooling degree-
days are held at 0 until the first 2-week period in
the year when the water use criterion for corn is
met. The variable is then ‘switched on’, and cool-
ing degree-days are summed. At the end of corn’s
growing season when the criterion is no longer
met, cooling degree-days are ‘switched off’ with
no additional accumulation of CDD:

OWNCDD

Actual base 55 degree cooling degree-days over
the growing season of crop i (degree-days)

OWNPCP
Actual precipitation over the growing season
of crop i (inches)

Climate variables. Climate variables are based on
1958-1988 average climatic conditions for co-op-
erative stations (Perry, 1988) that are selected to
represent county conditions. Climate variables
serve as proxies for producer decisions based on
long-run expectations of weather patterns but
made prior to the observation of the season’s
weather. The long-run precipitation and cooling
degree-day variables represent annual totals, av-
eraged across the 30-year climatic period:

CLMCDD

Long-run average base 55 cooling degree-days
(degree-days)

CLMPCP

Long-run average precipitation (inches)

Soil quality variables. All soil quality variables are
average county values from the 1982 Natural Re-
sources Inventory conducted by the Soil Conser-
vation Service, USDA (Goebel and Dorsch, 1986).
Dummy variables are constructed using NRI land
class (scale ranging from 1 to 8) and soil texture
information (scale ranging from 1 to 5). GOODSL
is positive in areas where land class is rated at
2.25 or less, while BADSL represents areas where
land class is rated at 3.5 or more. SAND defines
areas where soil texture is rated at 2.5 or less:

SAND

Binary variable representing relatively sandy
soil (1 if soil texture is 2.5 or less and 0 otherwise)

GOODSL

Binary variable representing soil with relatively
less restrictions that limit use (1 if land class is
2.25 or less and 0 otherwise)

BADSL

Binary variable representing soil with relatively
more restrictions that limit use (1 if land class is
3.5 or greater and 0 otherwise)
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