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ABSTRACT

Larson, B.A., 1992. Principles of stochastic dynamic optimization in resource management:
the continuous-time case. Agric. Econ., 7: 91-107.

A wide range of problems in economics, agriculture, and natural resource management
have been analyzed using continuous-time optimal control models, where the state variables
change over time in a stochastic manner. Using a firm-level investment model and a model
of environmental degradation, this paper provides a concise introduction to continuous-time
stochastic control techniques. The process used to derive the differential of a stochastic
process is stressed and, in turn, is used to explain Ito’s lemma, Bellman’s equation, the
Hamilton—Jacobi equation, the maximum principle, and the expected dynamics of choice
variables. A basic extension of the dynamic duality literature is also provided, where the
Hamilton—-Jacobi equation is used to derive a stochastic and dynamic analogue of Hotelling’s
lemma.

1. INTRODUCTION

A range of dynamic optimization techniques have been used to analyze
firm and consumer behavior. For example, Kennedy (1988) provides a
thorough introduction to discrete-time dynamic programming techniques,
with a focus on the management of natural resource and agricultural
systems. In general, the decisionmaker is interested in maximizing some
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92 B.A. LARSON

objective function, often assumed to be the discounted value of profits
from exploiting a natural resource, subject to constraints imposed by
biological growth functions and existing resource stocks. As Kennedy
(1988) notes, the extension of discrete-time methods to stochastic problems
is straight forward.

Numerous analyses have used continuous-time optimal control tech-
niques to analyze the management of natural resource and agricultural
systems as well as capital investment problems. Dorfman (1969) provides an
economic interpretation of basic optimal control results, while Clark (1976)
provides a general introduction to control models in natural resource
economics (1976). Smith (1975) analyses the extinction of species, Cooper
and McClaren (1980) extend static duality concepts to the dynamic case,
and Epstein (1981) applies dynamic duality theory to firm investment
decisions. Vasavada and Ball (1988) use a continuous-time framework to
estimate a dynamic adjustment model for U.S. agriculture. Ehui and Hertel
(1989) use an optimal control model to analyze and estimate tradeoffs
between deforestation and agricultural productivity in Cote d’Ivoire.

There is also a growing literature that uses continuous-time optimal
control techniques where the state variables, such as stock prices or animal
populations, change over time in a stochastic manner. For example, initial
studies in the finance literature studied the demand for risky assets
(Merton, 1969, 1971), the demand for index bonds (Fischer, 1975), and the
pricing of stock options (Black and Scholes, 1973; Merton, 1973). More
recent analyses include the optimal rotation time for a stochastically
evolving forest (Clark and Reed, 1984), optimal production under uncer-
tainty with learning (Majd and Pindyck, 1989), and uncertainty in the
theory of renewable resource markets (Pindyck, 1980, 1984).

The need for analyzing stochastic and dynamic problems is clear. Firm
debt changes with future and uncertain interest rates, expenditures, and
revenues. Research and development firms must allocate expenditures to
acquire knowledge that may or may not lead to future marketable products.
Most problems in environmental economics involve the management of
‘assets’, such as plants, pests, and wildlife, that grow according to random
biological growth functions. Air and groundwater pollution occurs through
uncertain fate and transport dynamics.

This paper provides a concise introduction to continuous-time stochastic
control techniques. ' The goals of the paper are to provide the necessary
background for students and practitioners to: (1) read and understand basic

! While it is assumed that the reader is familiar with control techniques for the deterministic
case, no background in stochastic calculus is necessary.
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results in the existing literature; and (2) study more complete developments
of the topic found, for example, in Brock (1976), Chow (1979), Kushner
(1972), or Malliaris and Brock (1982). As Brock (1976, p. 1) suggests,
“Economists use ordinary calculus every day without understanding the
intricate details of Lebesque or Riemann integrals... There is no reason
why the same cannot be done for the stochastic calculus as well.”

The paper proceeds as follows. A dynamic investment model of the firm
when future prices and capital stocks are uncertain is first used to intro-
duce stochastic differential equations, interpret the differential of a func-
tion of stochastic processes, and identify Bellman’s equation. As an exam-
ple of a potential application, Bellman’s equation and the envelope theo-
rem are then used to derive a stochastic and dynamic analogue of Hotelling’s
lemma. Next, an economic model of environmental degradation, where the
quality of an environmental resource evolves stochastically over time, is
used to derive and interpret the stochastic maximum principle. A method is
also outlined for deriving the expected dynamics of the optimal choice
functions, which can then be used to investigate the sensitivity of the
optimal choices to parameters changes.

2. FIRM INVESTMENT UNDER UNCERTAINTY

The relationship between capital theory and natural resource manage-
ment is well recognized (Neher, 1990). For example, the study of capital
investment decisions has a long history in economics, where the change in
the capital stock K(t) over time is often modelled as a deterministic
differential equation dK(z) /d¢ = I(t) — & K(t), with I(¢) representing gross
investment in time ¢ and & K(¢) is depreciation. The differential equation,
known as the state equation or equation of motion, is easily adapted to the
case of stock resources such as mineral deposits and flow resources such as
animal populations or forests.

For the purposes of this paper, the change in the capital stock over time
is modelled as a stochastic differential equation:

dK(t)=[1(¢) —d K(¢)] dt + o (K(¢)) dW (1) (1)

where I(t) is gross investment, 8 K(¢) is depreciation, o(K(¢)) is a func-
tion, and W(¢) is a random variable. More specifically, it is assumed that
W(t) is a Wiener process (or Brownian motion process).

The Wiener process W(t) is characterized by the following assumptions:
(1) W(t) is distributed normal with zero mean
(2) E[dW(t)]=0
(3) E[dW(t) dW(t)] = dt, and
(4) E[dW(t) dW(s)] =0 for s not equal to ¢.
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Using these four assumptions, the two terms in equation (1) have
straightforward interpretations: [I(z) — & K(¢)] dt¢ is the expected change
in the capital stock; and o(K(z)) dW(¢) is the unexpected change. And,
since the variance in the change in the capital stock:

Var(dK (1)) = E{[dK (1) — E(dK(1))]"} = E[o(K(1))* dW(¢)]
= o(K(1))* E[dW(1)’] = o(K(t))* dt, and

the term o(K(¢))? is the variance of dK(¢) over the period d¢.

For example, o(K(#)) dW(t) could represent unexpected population
fluctuations or depreciation in capital that is either less than or greater
than expected depreciation. Thus, while 8 K(z) would be expected depreci-
ation of the firm, the term 8 K(¢) + o(K(¢) dW(¢t) would be total deprecia-
tion over the period d¢. The term o(K(z)) dW(¢) could also be interpreted
as general technological improvements that increase the effective stock of
capital. Alternatively, if the variance of dK(¢) was modelled as
o(K(t), I(t))? d¢t, then I(t) could represent nominal investment, while
o(K, I) dW could represent unexpected technical change embodied in
new investment.

Armed with the basic definition of a Wiener process, consider the
following problem for the firm that makes investment decisions to maxi-
mize the discounted value of profits when future prices and capital stocks
are unknown:

J(t k. p)=Max E, [ e [ {(K(r), I(r)) = P(r) K(7)] dr )
dK(t)=[I(r) =8 K(7)]dT + o (K(7)) dZ(7) K(t)=k
dP(7)=g(P(7))dr+a(P(7)) dW(r) P(t)=p

where K(7) >0 is an N-vector of capital stocks; I(7) >0 is an N-vector of
gross investments; & is an N X N diagonal matrix of depreciation rates;
P(7) is an N-vector of capital rental rates normalized by the output price; f
is the production technology; r is the discount rate; g(P(7)) is a N-vector
of functions g‘(P(r)) that represent expected price changes at 7; o(K(7))
is an N XN matrix of functions o”; «(P(r)) is an N XN matrix of
functions «"/; E, is the expectations operator conditional on information at
initial time ¢; and the variables Z(7) and W(r) are each N-vectors of
Wiener processes, with

E[dZ(7)] =E[dW(7)] =0
E[dZ(7)dZ(7)] =S dt
E[dW(r) dW(7)] =B dt
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and
E[dZ(7) dW(r)] =0

The random variables dZ and dW are independent across different time
periods. The N XN matrix § is the correlation matrix for the vector
dZ(7), and the N X N matrix B is the correlation matrix for dW(r). The
model could be easily extended to the case where dZ(7) and dW(r) are
correlated, which would imply that changes in the capital stocks and the
capital rental prices are correlated.

Problem (2) states that the firm chooses investment to maximize the
expected discounted value of firm profits over the period 7 =1 to o, given
unexpected changes in prices and the capital stock. The value function for
the firm’s problem J(¢, k, p), is the expected maximized discounted value
of firm profits. The value function J(¢, k, p) is analogous to the expected
profit function for the static case with uncertainty and risk neutrality.

Bellman’s principle of optimality, which is valid for deterministic or
stochastic control problems, implies that (see, e.g., Intriligator, 1971):

J(t, K(t), P(t)) = Max,{e "'[ f(k, I) —pk] dt

+E[J(t+dt, K(t +dt), P(t+dt))]} (3.1)
which can be rearranged to yield:
0=Max,{e [ f(k, I) —pk] + (1/d¢t) E,[dJ]]} (3.2)

where dJ is the differential of the value function J(¢, k, p).

While (3.2) just restates the principle of optimality, the derivation of
Bellman’s equation involves substituting for the differential of the value
function. However, because J is a function of the stochastic processes, i.c.
capital stocks K and prices P, the change in the value function depends on
uncertain changes in prices and capital stocks. As a result, the ordinary
rules of calculus cannot be used to determine the differential dJ. While an
infinite set of stochastic calculi can be defined (Brock, 1976), Ito’s lemma
provides the rule for stochastic differentials that will be used here and
seems to be most commonly used in economics.

To derive the stochastic differential dJ and indirectly provide a justifica-
tion for Ito’s lemma, the first step is to expand J(¢, k, p) in a Taylor series
of order dt:

dJ=J(t+dt, K(t+dt), P(t+dt))—J(t, K(t), P(2))
=J,dt+J, dk+ 5 dk’ J, dk+J, dp+5dp' J,, dp
+dk’ J,, dp +o(dt) (4)
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where subscripts denote partial derivatives, and o(d¢) is the remainder for
terms of order higher than d¢. The quadratic terms in k and p are
included in the Taylor expansion because they are of order d¢ or less after
taking expected values. It is also assumed that in the limit E [o(d?)]/dt =0
as d¢ goes to 0.

The next step is to find E,[dJ], which involves evaluating the expected
values of the terms in equation (4). Using the definitions of the Wiener
processes W and Z, these expected values are:

E,[[J, dt] =J, dt (5.1)
E[J; dk] =J}(I -5 k) dt (5.2)
E[J; dp] =7, g(p) dt (5.3)
E,[dk’ Jy, dk] =E,[((I1 -5 k) dt + (k) dZ) T, ((I—35 k) dt
+o(k) dZ)]
=E([o(k) J, o(k)dZ dZ']
= 1RACE [0 (k) Ty o(k) S]dr (5.4)

where the derivation in (5.4) uses the assumption that higher order terms
than dt enter the remainder function o(d¢).
Following the steps in (5.4):

E,[dp' J,, dp| =TRACE[0((p), J,», a(p) B|dz (5.5)
and
E,[dk’ Jip dp] =0 since W and Z are independent (5.6)

Therefore, equations (4) and (5.1)—(5.6) yield after a little rearranging:
E[dT] ={J,+J,(I-8 k)+J, g(p)

+3 TRACE [0 ], 0S| + 3 TRACE[a’JppaB]} dt + E,[o(d?)]

(6.1)
and letting d¢ approach 0 yields:
(17de) E,[dJ] =J,+T,(I-3 k)+J) g(p)
+3 TRACE [0/, 0S] + 5 TRACE[a'],,aB]| (6.2)

since by assumption E,[o(d¢)]/dt =0 as d¢ approaches 0.

Equation (6.2) is defined as the differential generator of the function
J(t, k, p) and gives the expected change through time of a function of
stochastic processes (Chow, 1979). This differential generator for the
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stochastic case is analogous to the total time derivative dJ/d¢ for the
deterministic case.

Substituting the differential generator (6.2) into equation (3.2) yields
Bellman’s equation for problem (2):

—J, = Max,{e-"’(f(k, Iy =pk) +J[(I-5 k) +J. g(p)
+3 TRACE [0 '], 0S] + 3 TRACE[a’JppaB]> (7)

Bellman’s equation evaluated at the optimal choice of investment, I* =
I*(t, k, p), is also known as the Hamilton-Jacobi equation (Intrilligator
1971; Kamien and Schwartz, 1981).

Equation (6.1) can now be used to interpret Ito’s lemma, which states
that the differential of the function J(¢, k, p) is:

dJ=E,[dJ] +J(o dZ +J/a dW + o(dt) (8)

Thus, Ito’s lemma (8) for the differential of a function of stochastic
processes just implies that the change in a function J includes the expected
change E,([dJ], plus the unexpected change about the mean J/o dZ +
J,a dW. This unexpected change is directly related to the variance of dJ,
since:

Var(dJ) = E|(dJ - E(d)))] = E[(J{o dz +J}a dw)’]
= TRACE (0J, J0'S) dt + TRACE (aJ,J jaB) dt

The main objectives of this section are complete: stochastic differential
equations and Wiener processes have been introduced; Bellman’s equation
and the Hamilton-Jacobi equation have been derived; and Ito’s lemma has
been defined and interpreted.

A further use of the above results is considered here. Since the Hamil-
ton—Jacobi equation plays a central in dynamic duality theory for the
deterministic case (e.g., see Epstein, 1981), it is not surprising that Bell-
man’s equation (7) can be used to derive the dynamic and stochastic
analogue of Holtelling’s lemma. First, note that since problem (2) is
autonomous, the value function J(¢, k, p) =e ""V(k, p), where V' is the
firm’s intertemporal value of profit discounted to the initial time ¢ (Kamien
and Schwartz, 1981). As a result, —J,=r e "'V, and Bellman’s equation
(7) can be written as:

rV(k, p) =Max,{f—pk+V/(I-3 k)+V, g(p)

+3 TRACE[0'V,0S] + 3 TRACE[a'VppaB]} 9)
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Applying the envelope theorem to the Hamilton—Jacobi equation (9),
after rearranging, yields the stochastic and dynamic analogue of Hotelling’s
lemma:

I*(k, p) =V {rV,+k=V,, g(p) =V, g,(p)
—1 TRACE[O’(k)/ Vikp 0(k) S]
-1 TRACE[O((p), Voo @(p) B]
—TRACE [a(p) V,, a,(p) B]} +3k (10.1)

While equation (10.1) is rather complicated, it is a straightforward
generalization of the dynamic analogue of Hotelling’s lemma for the
dynamic and deterministic case. For example, if it is assumed that there is
no uncertainty, but prices are expected to follow the deterministic differen-
tial equations d P/d¢ = g(p), then equation (10.1) becomes:

I*(k, p) =V {rV,+k—V,, g(p) =V, g,(p)} +dk (10.2)

and if there is no uncertainty and prices are assumed to be constant over
time, as in Epstein (1981), then equation (10.1) becomes:

I*(k, p) =V {rV,+k}+3 k (10.3)

Thus, equation (10.1) shows that stochastic dynamic duality can be used
to model investment behavior when capital stock dynamics are uncertain
and prices evolve according to a Markovian process. As with the static and
deterministic case, the matrix of second derivatives of the value function
V(k, p) is symmetric, and the value function is homogenous of degree zero
in normalized prices. Unlike the static and deterministic case, and as
Stefanou (1987) notes, fourth-order derivatives are in general necessary to
characterize the concavity /convexity of the value function and to investi-
gate the response of the optimal choices functions I*(k, p) to price
changes.

For empirical analyses, where degrees of freedom and multicollinearity
problems will probably restrict analyses to quadratic-like value functions,
equation (10.1) along with simple forms for g(p), o(k), and a(p) may be
tractable. For example, consider a one-output /one-quasifixed input invest-
ment model where the capital stock evolves in a deterministic manner and
price expectations are:

dp=(a+bp)dt+ap dW (10.4)
and the value function is:

V(k, p)=a,+a,p+a,k+ 3a,,p*+ 2a,,k* +a,, pk (10.5)
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The value function V(k, p) is a simplified form of the value function used
in Vasavada and Ball (1988), while the price expectations model is similar
to those found in Stefanou (1987) and Epstein and Denny (1983).

Since the above formulation of expectations only depends on prices,
price expectations can be estimated in a discrete-time model using general-
ized least squares as:

p,—D,_,=a-+bp,_,+e, (10.6)
where e, are independent and identically distributed errors with E(e,) =0
and E(e?) = (ap,_))*

Based on the parameter estimates a*, b* and a*, the quadratic value
function, and the assumption of non-stochastic investment dynamics, an
empirical net-investment equation based on (10.1) can be estimated using
ordinary least squares as: >
dk,=my+m X, _, +m,k,_, +v, (10.7)
where
dkt = kt - kt—l - (r - b*)kt—l
mo=(r—>b%)a,/ay,
my=ay/a,

X,_;=(r—2b*— a*z)pt_] —a*,
and
my=1/a,

The above framework can be generalized to models with many variable
and quasi-fixed inputs and many outputs. Howard and Shumway (1988),
Epstein and Denny (1983), Taylor and Monson (1985) and Vasavada and

Ball (1988) are examples of empirical applications in agriculture and
manufacturing based on deterministic models (i.e. equation 10.3). 3

3. AN ECONOMIC MODEL OF ENVIRONMENTAL DEGRADATION

A simple economic model of environmental degradation is used in this
section to identify the stochastic maximum principle and to derive the

2 Note that the Hamilton—Jacobi equation (9) could also be used to specify a supply
equation, which could be estimated jointly with the quasi-fixed input equation. This
two-equation model would allow cross-equation restrictions to be tested or imposed on the
model and all parameters of the value function would be estimated.

3 These studies also indicate the types of data that are necessary to estimate a more
complete model for specific investigations.
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expected changes in the optimal choice functions (e.g. degradation) over
time. Specifically, it is assumed that an environmental resource, such as the
productivity of the soil, evolves according to a stochastic differential equa-
tion. Since the change in the soil stock over time is influenced by farmer
choices, such as inputs, crops grown, tillage practices, as well as weather,
the evolution of the soil stock over time is a stochastic process.
Consider the following intertemporal profit-maximization problem: *
T
t

J(x,t)= I\;I’ezlet{f e [ p f(s(7), x(1), z(7)) g(7) —c z(7)] dt

+R[x(T)] e-fT} (11)

dx(7)=(k—s(r)) dr+o(s(7), x(7), z(7)) dw(r) x(t)=x

where all the variables are scalars and p is the output price; s(7) is soil
erosion; x(7) is soil depth with initial value x; z(7) is a variable input with
price c¢; g(7) is an index of neutral technical change and fg(7) is the
technology which is increasing and concave in s, x and z; r is the discount
rate; R is the resale value of the land at the terminal time T given a
terminal soil stock x(T); k is the natural regeneration of the soil stock; and
w(7r) is a Wiener process, where o(s(7), x(7), z(7))? is the variance of
dx(7) over the period dr; and J(x, t) is the value function. For the
purposes of this section, the value function J is not written as a function of
the other parameters of the problem (p, c, r, t, k) for notation conve-
nience.

Using the process outlined in the previous section, Bellman’s equation
for problem (11) is:

—J,=Max{[pg(t) f(s, x, z) —cz] ™" + T, (k —s) + 307} (12)

The technology parameter g(7) in the production function implies that
problem (11) in not autonomous. Therefore, following Kamien and Schwartz
(1981), equation (12) is written in current value terms, using J(x, t) =
e " V(x, t), as:

rV(x,t)=V(x,t)= Max{p g(t) f(s, x,z)—cz+V,(k—s)+ %O'ZVXX}
’ (13)

4 This model is a simple generalization of the models in McConnell (1983) and Barbier
(1988). Specifically, f; > 0 so that reduced soil erosion in the short run reduces output.
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Defining the expected marginal value of the stock V, as u, the change in
the expected marginal value of the stock with a change in the initial stock
(V,,) as u,, and substituting u and ., into equation (13), the current-value
Hamiltonian for problem (11) is:

H(s, x, z,p, ) =pg(t) f-cz+ulk—s)+ 30, (14)

The Hamiltonian for the continuous stochastic case has a similar inter-
pretation as that for the deterministic case, i.e. the expected change in the
value function at time t includes current returns p g(¢) f—cz, expected
capital gains wu(k —s), plus the new term 3o%w, which is the cost of
uncertainty to the firm at time ¢. Notice that the variance of the random
variable enters the Hamiltonian even though the firm is assumed to be risk
neutral. If V(x,t) is concave in x, V,, =pu, is less than or equal to zero,
and uncertainty tends to reduce the expected value of changes in the value
function. However, V(x, ) is not necessarily concave in x, which implies
that uncertainty could increase the value of the Hamiltonian. Stefanou
(1987) suggests a process for determining the shape of the value function in
X.

The stochastic maximum principle is directly analogous to the determin-
istic case. Using (13) and (14), the stochastic maximum principle implies the
following optimality conditions:

H,=pgf,—pn +ou,=0 (15)
H,=pgf,—c+o,p,=0 (16)

From the Hamiltonian, H, = (k —s), and the state equation is found by:
dx=H, dt+o(k)dw x(t)=x (17)

And, since the costate variable u =V, is a function of the stochastic
process x, Ito’s differentiation rule (8) is used to find the costate equation:

du=(ru —H,)dt +ou, dw+o(dt)=[ru — pgf, —oo.p,]dt
+ow, dw +o(dt) (18)

with terminal condition u(7) =R [x(T)].

Thus, the maximum principle for continuous stochastic processes implies
that the optimal paths of z, s, x and u satisfy equations (15)—(18). In
contrast to the deterministic case, the marginal cost of environmental
degradation in equation (15) includes the marginal current value of the
stock w plus the extra term o, u,, which takes account of the marginal
effect of soil erosion on the standard deviation of dx over the period dz.
This additional term begins to look like an adjustment for risk preferences
found in a static expected utility-maximization framework. If it is assumed
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that o, >0 and p, <0, so that addition erosion increases uncertainty as
measured by the variance of dx, then the total term o,u, <0 and farmers
would choose less erosion under uncertainty than for the deterministic
case. On the other hand, if wu, >0, the total term o,u, > 0 and farmers
would choose more erosion under uncertainty than for the deterministic
case. Similar implications follow from equation (16).

When terminal time 7 is a choice variable, maximizing (11) with respect
to T yields:

{P&(T) f(T) = 2(T) +u(T) (k=s(T)) + 3 o(T) u(T)} =r R[x(T)]
(19)

Thus, from (19), the optimal time to sell occurs when the returns from
remaining on the land equal the opportunity cost of remaining on the land.
While asset replacement has been analyzed in a deterministic context for
many years (see, e.g., Goundrey, 1960; Perrin, 1972; or Samuelson, 1972),
equation (19) is also an asset replacement criterion for general stochastic
control models.

For analytical purposes, it may also be desirable to consider the expected
dynamics of the choice variables and how parameters of the problems
influence such dynamics. For the dynamic and uncertain model analyzed
here, Ito’s lemma implies that the expected change in soil erosion
(1/d¢) E[ds]will differ from the observed change due to the realization of
the random variable dw and any adaptation on the part of the farmer. For
example, observing increasing degradation in any time period does not
necessarily imply that a farmer planned on such a change.

Two mathematical steps must be followed to derive the expected change
in the optimal choice of erosion s(x, t) over the period d¢, (1/d¢) E,[ds].
First, Ito’s is applied to the optimality conditions (15) and (16). And
second, the two-equation system is solved for (1,/d¢) E,([ds] and
(1/dt) E[dz]. This process is outlined in Appendix A for a simplified
example. The optimality conditions (15) and (16) imply that:

(1/dt) E,[d(pgf,)] — (1/d¢) E,[du] + (1/dt) E,[d(oyp,)] =0 (20)
(17dt) E[d(pgf.)] —c,+ (1/dt) E[d(o,u,)] =0 (21)

The individual terms in equations (20) and (21) are evaluated in Ap-
pendix B, using Ito’s lemma and the process outlined in Appendix A.

Substituting equations (B1)—(B5) from Appendix B into equation (20) and
(21), after some mundane (if tedious) algebra, yields:

{(1/dt) E,[ds]

(1/dt) E,[dz] } —AlBrCc-Dl (22)
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where
rpng$+MX0-SS’ pngZ+MXUSZ -
A=
_pgfzs_*_/‘l’xo-zs’ pngZ +ILLXO-ZZ
B [ pef[r = (fo/fs) = (8./8) = (p./P) — (k = $)(fo/1.)]
pef.[(c./(c—on) — (8./8) = (p./P) = (k—s)(f../1.)]
C -r/“LxU: T OO My T Us[/*l’xt + /J’xx(k - S) + %/J‘xxxo-z]
T, = oo, — [+ (k= 8) + Su, 07
_I'LXO-SX(k —S) + 0-2[%(pgfsxx + ILLXO-SXX) + %(pgfsss + MXO-SXS)S)% |
+ %(pngZZ + /.LXO-SZZ)Zi + (pngSZ + FLXO-SSZ)SXZX
D= +(pngSX+l'LXUSSX)SX+(pngZX+l'LXO-SZX)ZX]

MXO-ZX(k —S) + 0-2[%(pgfzxx +l’LX0.ZXX) + %(pngSS +I'LX(TZSS)S)%
+ %(pgfzzz +MXUZZZ)Z,3 + (pngSZ +ILLXOFZSZ)SXZX
+(pngSX+ILLX0-ZSx)SX+(pgfzzx-i_/'LXO-ZZX)ZX]

While equations (22) are rather complicated in total, the individual
components can be readily interpreted and compared to the analogous
conditions for the deterministic case. And, as found in Stefanou (1987) and
the investment model in the previous section, the implications of the
stochastic and dynamic model include that of the deterministic model as a
special case. There are three main sets of terms in equations (22). First, the
matrix A is the inverse of the Hessian matrix of the current-value Hamilto-
nian (14). The analogous term for the deterministic case is the also just the
appropriate Hessian matrix. Second, the vector B is identical to the
deterministic case (see, e.g., McConnell, 1983), except that c,/(c —o,u,)
rather than c,/c is included to take account of the full marginal cost of the
variable input z.

The third main sets of terms in equation (22), the vectors C and D,
include increasingly complicated effects that are not found in the determin-
istic model. The vector C takes into account third- and fourth-order
changes in the value function due to a change in the state x. The vector D
takes into account the third-order effects of firm choices on the production
function and the variance function.

Equation (22) provides the expected dynamics of the optimal choice
functions s(x, t) and z(x, t) for general functional forms and generalizes
the results in Stefanou. However, more specific assumptions can greatly
simplify this general result. For example, if it is assumed that firm choices
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only influence the expected change in the stock but not the unexpected
change, as in Stefanou, then o,=0,=0 and the vector C reduces to
C'=(-oo,u,, —oo,u,), the vector D reduces to the production func-
tions terms, and the vector B and matrix 4 become identical to the
deterministic case. If it is assumed that the production function f and the
variance function o are quadratic in s, z and x, then the vector D
collapses to D' = (u,0,,(k —5), u,0,.(k —s)).

4. CONCLUSION

This paper introduces the basic techniques for the optimum control of
stochastic processes. An investment model of the firm is used to introduce
stochastic differential equations, interpret Ito’s lemma, and derive Bell-
man’s equation. A stochastic and dynamic analogue of Hotelling’s lemma is
derived. An economic model of environmental degradation is then used to
derive and interpret the stochastic maximum principle. Since deterministic
models are special cases of their stochastic counterparts, the differences
between stochastic and deterministic models can always be readily com-
pared. Thus, at a minimum, analyzing a problem at the theoretical level in
a dynamic and stochastic framework highlights the assumptions underlying
deterministic models (or static models with uncertainty).

APPENDIX A

The process for deriving the expected soil erosion dynamics (1/dz)
E [ds] from the optimality conditions of the stochastic maximum principle
is outlined in this appendix. The basic problem involves using Ito’s lemma
to determine the differential of a function y = F(x, ¢, s(x, t)) = 0, where
s(x, t) is the optimal choice of s at time ¢ given x. For the purposes of this
appendix, the simplifying assumptions are made that the state x evolves
according to the stochastic differential equation dx =(k —s) d¢t + o dw,
where o is a scaler. Using the process outlined in the text, equations
(4)—(6.1), a second-order Taylor approximation of order dt implies that:

dy=F dt+F dx+ 3F,, dx*+F, ds+ 3F, ds*+ F,, ds dx + o(d¢)

(A.1)
where
dx=(k—s)dt+o dw (A2.1)
dx2=[(k—s)di+ o dw]’ =02 dw? + o(dr) (A2.2)

ds=s,dt+s, dx + 35, dx?+ o(d?) (A2.3)
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ds? =520 dw? + o(dr) (A2.4)
ds dx =s,0? dw?+ o(d?) (A2.5)

Using equations (A2.1)-(A2.5), the differential generator of the function
y="F(x,t, s(x, 1)) is:

(1/d¢) E,[dy] =F, + F.(k—s) + 3F,, 0° + 3F, ;s’0* + F,,;s,.0"

+ F(1/dt) E,[ds] (A4)
which when set equal to zero can be rearranged to yield:
(1/dt) E,[ds] = —(1/F,)| F, + F.(k —s) + 3F,,0% + 3F, s?0> + F, 5,07

SSX SX X

(AS)

APPENDIX B

Following the process outlined in Appendix A, the terms in equations
(21) and (22) can be evaluated as:

(1/dt) Et[d(pgfs)] = (ptg+pgt)f +pg[fsx(k _S) to (2fsxx+ 2/ sss x
2fszzzx +fssz SxZyx +fssx x +fszx x)]
+pef(1/de) E[ds] +pef,,(1/de) E [dz]  (Bl)

(1/d¢) E [du] =ru —pgf, —oo,p, (B2)
(17de) E[d(oyn,)] = p,(1/de) E[d(0,)] +oy(1/d2) E [, ] (B3)
where

(1/dt) E,[d(a,)] =0,,(1/dt) E,[ds] +0,,(1/dt) E,[dz] + o, (k —5)

+02[2(rs+crz+cr

S§8T X $§ZZz7 X SXX
+0—SSZSXZX + O-SSX X + O-SZXZX:I

and

(1/de) E[p,] =po+p(k—s)+3p,,0°

(1/dt) E,[d(pef.)] = (p.g + 8 )f. + D[ for(k = 5) + 02 (5frax + 5052
t 5 22 [ S 2y oS+ 2]
+pgf.(1/dt) E [ds] +pef,.(1/dt) E,[dz]  (B4)

(17de) EJd(o,p,)] = p(1/dt) E [d(0,)] +0,(1/dt) E[p,] (BS)
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where
(l/dt) El[d(o-z)] =Uzs(1/dt) Et[ds] +Uzz(1/dt) Et[dz] +O—zx(k _S)

2 1 2 1
s;+s0,,,2z;+ 50,
ssUx | 27Fzzzlx 2% zxx
/ Z\\ )z
+o,.,5.z, +0o, s +o0 z‘]’

zZszZ X7 Xx Z5x "X zzxTXx

2[1
+ o [20'2
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