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ABSTRACT 

Pandey, S. and Medd, R.W., 1991. A stochastic dynamic programming framework for weed 
control decision making: an application to Avena fatua L. Agric. Econ., 6: 115-128. 

This paper develops a stochastic multi-period decision model to analyse a continuous 
wheat cropping system infested by wild oats (Avena fatua L.), in southern Australia. The 
multi-period solutions is obtained by employing a dynamic programming model in conjunc
tion with a bioeconomic simulation model. An empirically estimated dose response function 
is used to derive the optimal herbicide rate. Uncertainties due to environmental effects on 
the performance of herbicide and crop yields are modelled and optimal decision rules 
derived. The results indicate that substantial economic gains can be realised if herbicide 
dose decisions are taken by considering future profit effects of current decisions, as opposed 
to the more common approach of only considering the current-period effect. 

INTRODUCTION 

Weeds impose a considerable economic burden on the Australian farmer. 
Total losses due to weeds for 1985 j86 have been estimated to be approxi
mately A$1500 million (Combellack, 1987). In 1984, farmers in Australia 
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spent over $220 million on herbicides (Blacklow et al., 1984), a large 
proportion of which was for weed control in wheat. Despite such massive 
expenditure, may important attributes of the crop-weed-herbicide system 
are not explicitly modelled in deriving herbicide dose recommendations. 
For example, in some states of Australia it is illegal to apply any dose of 
herbicide other than that specified on the label (Pannell, 1989). In other 
states farmers may legally apply any dose up to that specified on the label 
but the recommendations are based on simplified singly-period threshold 
concepts with ad-hoc adjustments for risks. 

Uncertainty in the crop-weed-herbicide system arises mainly from the 
variability in the performance of control measures, variability in the weed
free yield and variability of weed density. Feder (1979) has theoretically 
investigated the effect of some of these risks on the optimum dose of the 
control agent in a generic framework. Most contributions on modelling the 
effects of risk on pest control decisions are deficient because only one 
source of risk is modelled at a time, In reality, risks faced by farmers are 
manifestations of several sources of uncertainties and hence models which 
accommodate multiple sources of risk are likely to have greater relevance. 

Benefits from weed control have a multi-period dimension due to (a) the 
effects of current level of control on future infestation levels, (b) develop
ment of herbicide resistance, and (c) herbicide carryover effects. Even 
though the current profits may not be adequate to recoup the current costs 
of treatment, some treatment may be justifiable if the possible prevention 
of future losses is also taken into account. Crop rotation decisions in many 
cases are governed by such long-term considerations. Similarly, if resistance 
to herbicides is likely to develop, recommendations based only on current 
period effects will be suboptimal. The models of decision making in weed 
control must thus be cast in a multi-period framework. 

The purpose of this paper is to present a systems model for herbicide 
recommendations taking into account multi-period effects of current weed 
control decisions, stochastic influences and farmers' attitude towards risk. 
Our objective was to develop a stochastic multi-period decision model for 
weed control which could be solved using dynamic programming in con
junction with a bioeconomic model and which considered uncertainties in 
the performance of herbicide and crop yields in deriving optimal decision 
rules. An empirically estimated dose response function is used to derive the 
optimal dose of the control agent, a non-residual post-emergence herbi
cide. Although all three types of multi-period effects can be built into the 
model, data limitations permitted the incorporation of only the effect of 
the current level of control on future infestation. This is done in the 
context of a continuous wheat cropping system in southern Australia which 
is infested with wild oats (Avena fatua L.). 
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AN ECONOMIC MODEL OF WEED MANAGEMENT 

For the purpose of this study, we have assumed a farm of non-specific 
size is uniformly infested with wild oats, is a closed system with negligible 
export or import of weed seeds and is managed by one farmer. The 
economic output of the farm is the grain yield of an annual crop. The 
farmer wishes to maximise profit (or utility) over a planning horizon of T 
periods. The profit function is assumed to be stationary in the sense that its 
parameters are constant over time. The decision problem is to derive an 
optimal strategy for the control of wild oats using diclofop-methyl. The 
solution is the dose of herbicide applied in each time period such that the 
present value over the planning horizon is maximised. 

The solution to the problem can be found by using the tools of the 
optimal control theory. Let B(sDI' X 1) define profit in time period 't' as a 
function of the seed density in the soil (so) and herbicide dose (X). In the 
parlance of the optimal control theory, so and X are the state and decision 
variables, respectively. The change in seed density from one time period to 
the next depends on the initial seed density which determines the potential 
for seed production during the current time period and the quantity of 
herbicide used which determines the reproductive output. Let G(so I' X 1) 

be a function measuring the change in seed density. The function G 
represents the equation of motion. Also, let S(soT) represent the terminal 
value of the weed seed bank at the end of the planning horizon. The 
objective function, assuming profit maximisation, is to maximise present 
value (Pv): 

T-1 

max PV = E B ( SD I' XI) 8 I + 8 I s ( SD T) (1) 
t= 1 

subject to 

SD 1+ 1 - SD 1 = G(sol' X 1 ) 

where 81 is the discount factor for time period 't'. Applying Pontryagins' 
Principle of Maximum, one of the first-order conditions requires that: 

t=0,1, ... ,T-1 (2) 

Equation (2) is equivalent to the usual first-order condition of setting 
marginal profits equal to zero if either A1+ 1 or aG ;aX1 is assumed to be 
zero. The costate variable A1+ 1 represents the marginal change in present 
value caused by a marginal change in the number of seeds at the beginning 
of time period 't '. Other things remaining constant, an increase in the 
current number of seeds (and hence weeds) reduces future profits; hence 
A 1 + 1 < 0. Also, aG ;aX1 < 0 because, ceteris paribus, future weed popula-
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tion is reduced if the addition to the seed bank is reduced by increasing the 
current herbicide dose. The second term in equation (2), which measures 
the marginal benefit resulting from the effects of current level of control on 
future infestation, is hence non-negative. Due to the beneficial of the 
current level of control on future profits, the current marginal productivity 
of control inputs is increased. This results in a higher level of control than 
when current profits are maximised. 

DYNAMIC PROGRAMMING MODEL 

Dynamic programming is a computationally efficient method for solving 
the maximisation problem specified in equation (1). The method has been 
used for deriving optimal weed control strategies by Fisher and Lee (1981), 
Shoemaker (1982) and Taylor and Burt (1984). Its more general application 
for agricultural resource management has been reviewed by Kennedy 
(1986). The advantage of dynamic programming is that risk elements can be 
more easily incorporated, compared with other programming methods, and 
globally optimal solutions can be found even if the objective function is 
non-concave and discontinuous. To obtain a solution the total planning 
horizon is divided into periods (or 'stages' in the dynamic programming 
parlance) and the optimal solution for each stage derived. The interdepen
dence of decision between stages is captured by using the concept of the 
state as these variables portray the nature of the system at the beginning of 
each stage. Thus the effects of decisions in one stage on the following stage 
is transmitted through the state variable. State variables need to be defined 
so that all information relevant to the current decision problem is em
braced by the state variables. This requirement of dynamic programming is 
called the condition of Markovian independence (Nemhauser, 1966). 

With the post-emergence herbicide as the control agent, weed density at 
the time of spraying is one of the state variables. If seeds exhibit dormancy, 
as in the case of wild oats, the number of viable seeds in the soil is another 
state variable. However, weed density can be ignored if a constant propor
tion of the seed bank is recruited. Thus, in the deterministic model in 
which all stochastic variables are replaced by their mean values, the seed 
bank population is the only state variable. The stochastic model is properly 
specified as having two state variables. However we used Taylor and Burt's 
(1984) decomposition method since it is more efficient for solving the 
stochastic model. The decomposition procedure is explained in a later 
section. 

The uncertain variables included in the model are the efficacy of 
herbicide and weed-free yield. All other variables such as crop price, weed 
density and spray efficiency are assumed to be known with certainty. It has 
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been the experience of farmers and researchers that the variability in 
herbicide efficacy is one of the dominant sources of risk in weed control. 
Similarly, weed-free yield is strongly influenced by climatic factors and this 
impinges on the profitability of weed control decisions. 

In the literature on pest management, it is usual to consider pest density 
as an uncertain variable. Uncertainty arises both from non-uniform spatial 
distribution and with difficulties in measuring pest density. When the 
planning horizon is a single-period, it is straight forward to model spatial 
variability in weed density. However, in a multi-period framework, it 
becomes necessary to introduce a state variable for each portion of land 
with different weed densities. Such a dynamic programming model would 
be very difficult to solve. Thus the assumption made here is that a farmer 
would subjectively partition land into nominal categories according to the 
density of the weed. The spraying decision for a particular portion then 
depends on the weed density category. Formulated this way, the optimal 
decision rule for a farmer with more than one partition can be easily 
obtained from a single-state dynamic programming solution. 

The solution procedure involved in the dynamic programming model is 
described by the recursive equation: 

v; ( SD f' Wr) = max [ E 7T ( SD f' Wr ' xt) + () E v;- 1 ( SD t - 1 ' Wr- 1 ) ] 
X, 

t=l,2, ... ,T (3) 

where v;Csn 0 Wr) is the optimal value function at stage 't' given seed 
density (sn) and weed density (W); 7T is the current profit if decision X is 
implemented and E is the expectations operator. In accordance with the 
dynamic programming method, time subscripts are specific in reverse 
order. Thus, the last year of the planning horizon is labelled as stage 1, the 
second last year as stage 2, and so on. 

The length of the planning horizon, T, may be finite or infinite. In the 
solution of the infinite horizon problem, the optimal decision rule depends 
on the value of the state variable but not on the decision stages. In the case 
of the finite horizon problem the optimal decision depends both on the 
value of the state variable and the decision state. An approximate solution 
of a finite horizon problem can be derived by first solving the model for an 
infinite horizon such that v; :::::::: v; _1 and using the optimal decision rule 
corresponding to v; for deriving solutions for a finite horizon problem. 

In the deterministic model, weed density was deleted as a state variable 
because it is assumed to be a constant proportion of seed density. In the 
stochastic model weed density was retained along with seed density giving 
two state variables. The model was solved in two steps. First, the optimal 
value function for an infinite horizon problem was derived by dropping 
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weed density as in the case of a deterministic model. In the second step, 
the optimal value function derived in the first step was substituted for v;._ 1 

and an additional iteration solved. The recursive equation for the second 
step being: 

(4) 

The two-state variable problem is solved in the second stage by specifying 
current profit as a function of weed density and seed density. Although 
v;._ 1 is specified as a function of sot-l only, the decision rule derived is not 
myopic because the multi-period effects of current decisions are reflected 
by the seed bank population which appears in v;._ 1• It is also assumed that 
weed density in the current period does not have any significant indirect 
effect on weed density in the next period. 

For deriving numerical solutions, the state and decision variables were 
represented by 63 and 17 discrete values, respectively. The decision alter
natives considered are different doses (including non-use) of diclofop
methyl up to the maximum permitted dose. For each starting value of the 
state variable, profits and ending values of the state variable were calcu
lated for all discrete decision alternatives. For the ending value of the state 
variable falling between the two grid points, the optimal value function was 
approximated by linear interpolation between the adjacent grid points. 

Risk is introduced to the model through random variables. Two random 
variables are required to incorporate risk of herbicide efficacy and weed
free yields. In the estimated weed kill function (see bioeconomic model), 
herbicide efficacy depends on soil moisture, which can take one of three 
ranked values. A discrete probability distribution for the soil moisture was 
derived by analysing climatic data. Values from this distribution were 
selected by Monte-Carlo sampling. In the case of weed-free yield, the 
simulated values (see bioeconomic model), were used directly as a sample 
from its distribution. The random variables associated with the soil mois
ture at the time of spraying and the weed-free yield were sampled indepen
dently. This is justified because correlation between them is expected to be 
low. Whereas herbicide efficacy is highly influenced by soil moisture at the 
time of spraying, the weed-free yield depends on the moisture regime 
throughout the life of the crop. 

Bioeconomic simulation model 

A bioeconomic simulation model was developed to trace the effect of 
weed control decisions on both the current and the future profits. The 
overall model is comprised of submodels for weed population dynamics, 
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yield response to weed infestation, weed kill function, weed-free yield of 
crop, and climatic and economic factors. 

A life cycle model of wild oats is used for predicting seedling recruit
ment, plant survival, seed production and seed survival. The recruitment of 
wild oats is not synchronised and occurs in waves during its life cycle (Quail 
and Carter, 1968; Amor, 1985). Given that the control agent is a non-resid
ual post-emergence herbicide, modelling is helped by dividing seedlings 
into three cohorts. Plants which emerge before sowing belong to the first 
cohort. The second cohort encompasses plants emerging after sowing but 
before the post-emergence herbicide is applied. Plants emerging after the 
application of the post-emergence herbicide constitute the third cohort. 

The seed bank is assumed to be homogeneous and recruitment in each 
cohort is specified as a constant proportion of the seed bank. Values of 
23%, 12% and 2% recruitment were assumed respectively for the three 
cohorts. All seedlings in the first cohort are assumed to be killed by 
presowing operations. Due to the competitive effects exerted by seedlings 
upon each other, only a proportion of seedlings survive to maturity. 
Empirical evidence indicates that the majority of deaths in the second 
cohort seedlings occur before the biologically appropriate time for the 
application of the post-emergence herbicide (Medd, unpublished data). 
Thus, it is assumed that the full effect of density-dependent mortality is 
realised before the application of diclofop-methyl. 

Plant fecundity is also density-dependent and is described by a hyper
bolic function, where the maximum number of seeds produced per plant 
were 118, 22 and 4 for plants belonging to cohorts one to three, respec
tively. Some proportion of new seeds produced, in this case 10%, is 
assumed to be removed by the combine. Also, a proportion (65%) of the 
existing seed bank is lost due to natural mortality. Thus, the seed dynamics 
can be described by the following identity: 

(5) 

where snt+l is the size of the seed bank at the start of the period t + 1, sn 1 

is the starting stock of seed bank, G is the loss due to recruitment, M is the 
loss due to mortality, and N is the new seed added to the seed bank. Most 
of the parameters for the model are obtained from experimental work at 
Orange, N.S.W. (Medd and Ridings, 1990). Values of the parameters 
unavailable from this source were obtained from experimental work in the 
United Kingdom (Cousens et al., 1986). 

The yield (Y) of a weedy crop is specified as: 

Y= Y*g(W) (6) 

where Y * is a parameter representing the maximum attainable yield in a 
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weed-free situation given the level of environmental and management 
inputs, W is the weed density at maturity, and g( ·) is a function often 
called the 'relative yield response' (Lanzer and Paris, 1981). By definition, 
g(O) = 1 and g( oo) = c *, where 0 < c * :::; 1. Thus the function g( ·) provides 
a scaling factor. An implicit assumption contained in this specification is 
that Y * and g( ·) are separable. This assumption seems plausible and has 
been widely used to describe the yield response to various factors such as 
irrigation (Doorenbos and Kassam, 1979), fertilisers (Lanzer and Paris, 
1981), weeds (Cousens et al., 1986) and insect pests (Feder, 1979). 

It is usual to represent g( ·) in the case of pests by a linear or sigmoidal 
function of pest density (Feder, 1979; Zimdahl, 1980). Cousens (1985) has 
argued, however, that g( ·) is more accurately represented as a hyperbola 
in the case of weeds. The specific form suggested is: 

g(W) = 1- Wj(a- 1 + Wb- 1) (7) 

where 'a' and 'b' are the parameters, with values of 104.4 and 1.22, 
respectively. The parameter 'a' is a measure of the marginal yield loss as 
the weed density approaches zero. The parameter 'b' is an estimate of the 
maximum proportionate yield loss of a weedy crop. Since crops and weeds 
exert competitive effects on each other, yield loss due to weeds also 
depends on crop density. Based on Australian data, Martin et al. (1987) 
found 'a' to be proportional to crop density and their parameter estimates 
have been used herein. 

Dose response function relates the quantity of herbicide applied to the 
proportion of weeds killed. The dose response relationship has the proper
ties of a probability distribution function (Finney, 1971; Lichtenberg and 
Zilberman, 1986). Since the response to herbicides is a binomial variable 
(with the plants being considered as dead or alive), probit and logit 
regressions are the appropriate methods for efficient estimation of dose 
response relationships (Finney, 1971; Hewlett and Plackett, 1979). The 
logit specification is used in the present study, the specific relationship for 
diclofop-methyl being: 

(8) 

where P is the proportion of weeds killed, X is the quantity of herbicide 
applied (up to a maximum dose of 2liters ha - 1), SM and A are measures of 
soil moisture and additives which also affect the performance of herbicide, 
and u is the random disturbance term. 

Data from field experiments testing diclofop-methyl for control of wild 
oats, conducted by Hoechst in Western Australia, Victoria and New South 
Wales were adjusted for the effects of natural mortality using Abbott's 
formula (Finney, 1971). Based on the description of the soil moisture in the 
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trial report as wet, average and dry, the soil moisture variable was rated as 
3, 2 and 1, respectively. The dummy variable 'A' specified the addition 
(A = 1) or omission (A = 0) of wetting agent. Estimates of a 0 = -0.88 ± 
0.23, a 1 = + 1.66 ± 0.24, a 2 = + 0.64 ± 0.12 and a 3 = + 0.45 ± 0.18 (x 2 = 

151, n = 155) obtained using the computer package GLIM (Anonymous, 
1986) were all statistically significant (P < 0.05) and had the expected signs. 

To take account of factors influencing the weed-free yield of wheat we 
employed a wheat growth simulation model developed at the Western 
Australian Department of Agriculture. The model inputs daily climatic 
data and yields for 74 years from 1912 to 1985 were predicted for Merredin, 
W.A. All management-specific inputs were assumed nonlimiting in the 
simulation. The yield predicted by the model was appropriately scaled 
down to reflect the average management practices. The average adjusted 
yield for the 74 simulated years was 1 t ha- 1• 

RESULTS AND DISCUSSION 

In order to derive a deterministic solution, the weed-free yield and the 
proportion of weeds killed for a given herbicide dose were set at their 
respective average values. As outlined under the dynamic programming 
methodology, the solution represents the optimal decision as a function of 
the state variable, but not of the decision state. Also, although the number 
of seeds in the soil is the state variable, results are presented in terms of 
weed density. 

The optimal decision rule derived by solving the infinite horizon problem 
shows that herbicide dose increases, but at a diminishing rate, as weeds 

2.5 
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"0 
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'G :e 
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Fig. 1. Optimal deterministic multi-period decision rule. 
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Fig. 2. Time traces of weed density resulting from the application of multi-period and 
single-period optimal decision rules for two initial seed densities. 

become more dense (Fig. 1). The decision rule illustrated is straight 
forward and is seen as a useful applied decision making tool. A notable 
consequence of herbicide dose being dependent on weed density is that 
savings are possible. For instance, a herbicide dose of 1.5 litres ha _, is 
specified for a wild oat density of 75 plants m- 2 whereas 50 plants m- 2 

requires a dose of 1.3 litres ha- 1. Such savings affect profits and the 
present value of an infinite stream of profits is maximised if the decision 
rule is applied every year. 

Time traces of weed density when the optimal decision rule (Fig. 1) is 
applied repeatedly are shown in Fig. 2. These traces were derived for initial 
seed densities of 100 and 5000 seeds m- 2, representing low and high 
populations. The weed density corresponding to the approximate steady
state in the case of multi-period optimisation was around 3 plants m - 2 

compared with 40 plants m- 2 in the single-period case. Thus, by using the 
multi-period framework for decision making, the wild oat population is 
substantially minimised, but not eradicated at the optimal steady state. 

The cumulative gain in present value when the multi-period, instead of 
the single-period decision rule is applied repeatedly, is shown in Fig. 3. 
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Fig. 3. Cumulative differences in present values between multi-period and single-period 
solutions for two initial seed densities. 

These results demonstrate that the present value of profits is higher under 
multi-period optimisation and the gain over the single-period solution 
increases over time, more so at the lower initial seed density. Thus, in the 
case of wild oats, significant gains can be realised in future periods by 
reducing the weed burden early in the planning horizon even if current 
gains from such actions might be negative. 

In the stochastic case, where transitions are probabilistic, solutions were 
derived using the two-step methodology described earlier and with the 
similar proviso that farmers were assumed to maximise expected profits. 
These results, along with the single-period optimal solution are depicted in 
Fig. 4. Here the optimal solution depends on weed density as well as seed 
density. For a given weed density, the optimal herbicide dose decreases 
with an increase in the seed bank. This is realistic since it is expected that 
the seed bank could be more readily manipulated by herbicide dose when 
there are few seeds in the soil to start with. On the other hand, when the 
initial seed bank is large, varying the addition to the seed bank by killing 
more weeds is unlikely to affect the seed bank substantially. When the seed 
bank is very large, the multi-period solution approaches that of the single
period. 
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Fig. 4. Optimal stochastic multi-period and single-period decision rules. 

If farmers are assumed to be risk-averse, then both the mean and 
variability of profits enter the objective function. If herbicide performance 
is assumed to be stochastic but the weed-free yield is deterministic, an 
increase in herbicide will reduce the variability of profits. Thus a risk-averse 
farmer would tend to apply more herbicide compared to a risk-neutral 
farmer. If herbicide performance is assumed to be deterministic but the 
weed-free yield is stochastic, the opposite result will hold because the 
variability of profits increases with an increase in herbicide rate. This is 
indicated by the structure of the yield response function specified in 
equation (6). The expected direction of change is ambiguous if both the 
weed-free yield and herbicide performance are assumed to be stochastic 
simultaneously. In this context, the generalisation usually made in the 
literature that herbicides are 'risk-reducing' (Binswanger, 1978; Feder, 
1979) is therefore misleading. Our considerations reveal that the source of 
risk and how it is entered into the profit function influence whether or not 
an input such as herbicide reduces risk. 

CONCLUSION 

In order to improve decision making about herbicide dose in cropping 
systems we concluded it is necessary to consider multi-period effects and 
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uncertainties due to environmental effects on crop yield, weed density and 
herbicide efficacy. This objective was achieved by combining a method of 
stochastic dynamic programming with a bioeconomic simulation model, to 
generate return matrix and transition probabilities, together with the novel 
inclusion of an empirically estimated dose response function. The develop
ment of such a model enabled the derivation of dynamically optimal dose 
of a post-emergence herbicide. The results indicated that the dynamically 
optimal solution maintained a lower steady-state weed population and 
higher economic returns compared with the single-period solution. From 
this we concluded that a long term approach to weed control is economi
cally superior. 

A limitation of the model is that only one of the long term effects, viz. 
The effect of current control on future infestation, is explicitly modelled. If 
resistance to herbicide is likely to develop, the policies derived here will 
not be optimal. However, the strength of the approach developed here is 
that such long term effects can be easily incorporated if the appropriate 
relationships can be quantified. 
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