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ABSTRACT
Pannell, D.J., 1991. Pests and pesticides, risks and risk aversion. Agric. Econ., 5: 361-383.

Theoretical and applied literature on risk in decision making for agricultural pest control
is reviewed. Risk can affect pesticide decision making either because of risk aversion or
because of its influence on expected profit. It is concluded that risk does not necessarily lead
to increased pesticide use by individual farmers. Uncertainty about some variables, such as
pest density and pest mortality, does lead to higher optimal pesticide use under risk aversion.
However, uncertainty about other important variables, such as output price and yield, leads
to lower optimal levels of pesticide use. Neglect of these variables in most studies has led to
the false assumption that pesticides are always risk-reducing inputs. Furthermore, there is
evidence that, in general, the pesticide dosage which maximises expected profit is lower under
risk than under certainty. Depending on the balance of forces to increase and decrease
pesticide use under risk, in many circumstances the net effect of risk on optimal decision
making for pest control may be minimal. The effect on risk of information about pest density
and other variables (as in integrated pest management programmes) is discussed. Evidence on
this issue is mixed. A range of analytical techniques for analysing risk in pest control is
reviewed. Throughout the paper, gaps in the existing literature are identified.

INTRODUCTION

Risk has been perceived and discussed as an area of considerable impor-
tance in literature on the economics of pest control in agriculture. Reichel-
derfer (1980) and Wetzstein (1981) went so far as to claim that risk
reduction is the main motivation for application of pesticides. While this
seems to understate the importance of profit improvements resulting from
pesticide use, there is widespread consensus in the literature that, in many
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circumstances, risk considerations influence pesticide use (e.g. Carlson and
Main, 1976; Conway, 1977; Reichelderfer and Bottrell, 1985; Antle and
Capalbo, 1986; Lichtenberg and Zilberman, 1986a).

The aim of this paper is to review the literature on the impact of risk and
risk aversion on decisions to control agricultural pests by application of
chemical pesticides. A number of specific issues are addressed including: the
impact of risk on control decisions by risk-neutral decision makers, the
impact of risk aversion on pest control decisions, the effect of risk on the
level of pesticide use, the effect of pesticide use on the level of risk, the
impact of information use on risk, which sources of risk may be important
in the pesticide problem and whether these sources of risk have been
adequately considered in applied studies. In addition a range of methods for
examining risk in pest control decisions are reviewed and examples given
from the literature. Aspects of the topic which have been neglected in the
literature are identified.

A GENERAL RESPONSE MODEL FOR PESTICIDES

The reader may find it helpful in the course of the review to refer to a
simple model of yield response to pesticide application. Lichtenberg and
Zilberman (1986b) showed that for economic and statistical reasons it is
important to represent response to pesticides as a two-stage process: pesti-
cides kill pests, and it is the reduction in pest levels which increases yield.
Thus we have pest density (P) as a function of initial pest density ( Py) and a
kill function which depends on the rate of chemical applied [K(C) is the
proportion of pests killed at chemical dose CJ:

P=F[1-K(C)] (1)

The kill function varies for different pests and pesticides and can depend on
timing and environmental conditions. Actual yield (Y) is a function of
pest-free yield (Y;) and D(P), a damage function giving proportional yield
loss at pest density P:

Y=Y,[1- D(P)] )

D(P) depends on a range of factors and varies for different pests and
different crops or pastures. Herbicides may also cause direct damage to the
crop yield but for the purposes of this review, the simple two-equation
model will suffice:

Profits (7) are given by:

m7=YP,—CP,.—A—F (3)

where P, is output price, P, is chemical cost, 4 is chemical application costs
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(which are generally independent of dosage) and F is other production
costs.

This simple model illustrates the major components of the pest control
problem. It can be used as the basis for a range of different types of
analysis. For example it could be used to find the threshold pest density
above which application of a fixed recommended chemical dosage would
produce benefits greater than costs. Alternately marginal analysis could be
used to determine the optimal chemical dose. The analysis could be static or,
with additional functions, dynamic.

There are a number of parameters in the model which are likely to be
stochastic. In equation (1), pest density may be uncertain as a result of
uncertainty about the initial pest density, the proportion of pests killed or
the chemical dosage actually applied. In equation (2), yield will be uncertain
due to uncertainty about pest-free yield, the level of damage and the final
pest density. Profits in equation (3) are most likely to be affected by
variance in yield and output price. The model illustrates the way these
different sources of uncertainty affect the variance of income. For example,
uncertainty about the level of pest mortality leads to uncertainty about pest
density which in turn affects proportional yield loss, actual yield and,
finally, profits. The different sources of uncertainty will be discussed further
in the review.

THEORETICAL FRAMEWORKS FOR ANALYSIS OF RISK

Although the first publication on risk in pest management used the
concept of “degree of potential surprise” (Hillebrant, 1960), the dominant
paradigm for risk analysis in economics has been expected utility maximis-
ation (e.g. Anderson et al., 1977). In response to evidence that many people
systematically violate predictions of expected utility theory (e.g. Allais, 1953;
MacCrimmon and Larsson, 1979) there has been a recent growth of more
‘generalised’ versions of the theory (e.g. Machina, 1982; Quiggin, 1982;
Chew, 1983). However there have, as yet, been no applications of any of the
generalized utility theories to problems of pest control. Of the studies
reviewed in this paper, those which account for risk aversion consider the
decision maker’s objective to be expected utility maximisation or, in a
couple of cases, maximin (maximisation of the minimum return). It seems
likely that, so long as the probability distribution of net returns is not
dramatically skewed, expected utility maximisation will reasonably ap-
proximate the more general theories (Quiggin and Fisher, 1989).

Although the studies reviewed here are all concerned with risk, they vary
widely in many respects. The assumed objective of decision makers ranges
from expected profit maximisation through expected utility maximisation to
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the extreme degree of risk aversion implied by the maximin principle.
Different studies treat different parameters of the pest/pesticide/crop
system as being uncertain. There has been a range of analytical frameworks
employed including dynamic programming (DP), Bayesian decision theory
and stochastic efficiency. The following discussion elaborates on these
differences and reviews particular studies.

RISK NEUTRALITY VERSUS RISK AVERSION

The broadest categorization of the risk literature is into those studies
which assume risk neutrality and those assuming risk aversion. The assump-
tion of risk neutrality is often made for the purposes of simplicity and
tractability (e.g. Marra and Carlson, 1983; Moffitt et al., 1984; Taylor and
Burt, 1984; Gold and Sutton, 1986; Johnston and Price, 1986; Zacharias et
al., 1986). The first part of this discussion considers the validity of this
assumption. Given the extreme statements made by some authors about the
importance of risk aversion as the prime motivation for damage control, it
may seem that the assumption of risk neutrality is indefensible. However,
there have been studies which found that risk aversion had minimal impact
on decision making for pest control. Webster (1977) found that for a
fungicide-spraying problem in the United Kingdom, the decision of whether
or not to spray was very insensitive to the degree of risk aversion. Only
individuals with extreme decision criteria, such as maximin, would adjust
their spraying decision in response to risk. No farmers in a sample of 29
were found to be this risk-averse.

Similarly, Thornton (1984) found that decisions on control of a fungal
disease of barley in New Zealand were almost unaffected by risk aversion.
In many simulations of disease epidemics, differences in recommendation
between expected profit and expected utility maximisation occurred with a
frequency of approximately 0.03.

Finally, Pannell (1990a) found that when a range of sources of uncer-
tainty was considered, the variance of income was almost unchanged over a
wide range of herbicide dosages. This indicates that the optimal herbicide
dosage would not be greatly affected by risk aversion.

In addition to these indications that risk aversion may have little impact
on pest control decisions, there is also evidence that many farmers are
approximately risk-neutral or only slightly risk-averse (e.g. Bond and
Wonder, 1980; Bardsley and Harris, 1987). Finally, Carlson (1984) and
Musser et al. (1986) have suggested that risk may not be an important
consideration in farmers’ decisions on pest control. Taken together, these
studies appear to provide some support for use of a risk-neutral framework.
However there are reasons to question the general applicability of the results
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reported by Webster (1977) and Thornton (1984). In Thornton’s study, the
insensitivity of decisions to risk aversion may have been exaggerated by
basing the elicitation of utility functions on a range of payoffs correspond-
ing to just 10 ha. This in itself would not have been a major concern but for
the assumption that decisions are independent of the scale of the problem.
Given that income variability is positively related to crop area this assump-
tion is unrealistic. In Thornton’s study all decisions are made on the basis of
a small-scale problem in which risk is bound to be of minor importance.
Zacharias and Grube (1984) addressed this issue in their application of

stochastic dominance to weed control. They argued that
“the decision makers will tend to exhibit more risk neutral behaviour when confronted
with per acre outcomes rather than farm level returns. If the bounds of the risk preference
function are constant across income levels...the rankings [of strategies] associated with
per acre and farm level distributions will be different” (Zacharias and Grube, 1984, p.116).

A second factor which may have contributed to the apparent insensitivity
of decisions to risk aversion is the use of a simple binary decision rule: don’t
treat or treat at the recommended dose. This ensures that there are wide
ranges of parameter values for which the optimal strategy is unchanged. If
dosage rate were treated as a continuous variable, the sensitivity of decisions
to changes in all parameters, including risk aversion, would increase. Web-
ster (1977) also used a binary decision rule. The scale of the problem
analysed by Webster was not reported in the article.

In addition to these reasons for questioning the conclusions of Webster
and Thornton, there are reasons for caution in the interpretation of studies
which find a low average level of risk aversion. There is considerable
variation in the degree of risk aversion and a substantial number of farmers
are highly risk-averse (Bond and Wonder, 1980; Hamal and Anderson,
1982).

Finally, a number of authors have reported finding that risk aversion does
substantially affect decision making (e.g. see following discussions of risk
aversion and associated modelling techniques). Also, in reports of empirical
studies of farmer behaviour, authors have reported finding that reliance on
chemical pest control increases as risk aversion increases (Burrows, 1983;
Pingali and Carlson, 1985). However the strength of this conclusion should
not be overstated. Burrows (1983) conducted an econometric study to
determine which variables influence demand for pesticides. In the estimna-
tion, the degree of producers’ aversion to risk was represented by a very
crude proxy variable: the ratio of acres planted in cotton to total acres.
Conclusions about risk based on this variable should be very tentative. In
another regression study, Pingali and Carlson (1985) found that the level of
pesticides used was positively related to the variance of damage. Although
they attributed this to risk aversion on the part of decision makers, the
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evidence is purely circumstantial. They did not recognise that there are
several ways in which risk can affect decision making even if the decision
maker’s objective is to maximise expected profit (see below).

Overall it appears that when analysing pest control decisions, risk neutral-
ity may not be as poor an assumption as one would expect based on some
statements in the literature. Several studies based on risk neutrality are
reviewed below. However it should be acknowledged that numerous studies
have fould that risk aversion does have an impact on pest control decisions.
We return to risk aversion after the following discussion of risk neutrality.

Risk neutrality

Of those studies in which risk neutrality has been assumed, the majority
have been based on a deterministic decision framework [e.g. most of the
studies cited in bibliographies by McCarl (1981) and Osteen et al. (1981)].
This approach can sometimes be defended on the basis that in a strictly
linear model, the decision which maximises expected profit in a stochastic
framework corresponds to the profit maximising decision in a deterministic
framework using expected values of parameters. This implies that if ex-
pected profit maximisation is assumed, the inclusion of stochastic parame-
ters in a linear model introduces unnecessary complexity to the analysis
without affecting results. Such was the case in studies by Marra and Carlson
(1983) and Marra et al. (1989). They explicitly included a discrete probabil-
ity distribution for the length of the spraying period, but this was unneces-
sary since all non-linear relationships in the model were approximated by
linear functions.

Nevertheless there are several ways in which risk can affect the decisions
of individuals whose objective is to maximise expected profit. Tisdell (1986)
showed that uncertainty about a parameter value can affect the optimal level

of pest control by affecting expected profit. He argued that
“in many cases the expected level of application is greater under uncertainty than under

full information but... this depends on convexity conditions of relevant functions” (p.161).
and that

“convexity conditions may sometimes be such as to give rise to the opposite consequence”

(p-159).
He did not discuss which parameters are likely to increase and which to
decrease treatment levels under uncertainty. Auld and Tisdell (1986, 1987,
1988) showed that because of convexity of the relationship between weed
density and crop yield, uncertainty about weed density reduces expected
yield loss. Auld and Tisdell (1987) argued (but did not prove) that this
increases the economic threshold, reducing the overall level of pesticide use.
They noted that this does not seem consistent with comments in the
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literature that risk increases pesticide use. They attributed the difference to
the influence of risk aversion dominating the effect of risk on expected
profit.

Pannell (1990b) examined a range of uncertain variables in a model of
yield response to herbicides under expected profit maximisation. He found
that uncertainty about each of the variables considered (initial weed density,
weed kill, weed competitiveness, herbicide dosage and weed-free yield)
reduced the profit maximising herbicide dosage and increased the threshold
density for herbicide treatment. Notwithstanding the quote from Tisdell
(1986) above, no cases were found where the expected level of application
was greater under uncertainty.

The only study of this type for insect pests was by Plant (1986) who
considered uncertainty about pest mortality. Like Pannell (1990b) he found
that under expected profit maximisation, uncertainty led to a higher threshold
pest density for pesticide use. Although he interpreted this higher threshold
as implying a higher level of pesticide use this is incorrect; it actually implies
a lower expected level of pesticide use, consistent with Pannell’s (1990b)
findings.

Another circumstance where risk can affect the decisions of ‘risk-neutral’
decision makers is where the problem is dynamic (Antle, 1983). Zacharias et
al. (1986) tested this hypothesis in their DP study of soybean cyst nematode.
They found modest support for the hypothesis, with very small differences
between the results of their deterministic and stochastic models.

A third possibility is where the decision maker is subject to a progressive
marginal taxation rate. Taylor (1986) showed that the effect of this on
decision making is essentially the same as the effect of risk aversion; it
makes the decision maker behave in an apparently more risk-averse manner
than would otherwise be the case.

Risk aversion

This section of the review examines the widely accepted views that risk
increases pesticide usage and that pesticide usage reduces risk. The impor-
tance of risk as a determinant of pesticide usage has been emphasised in the
literature with the dominant view being that pesticide use reduces risk so
that if risk is included in a model, risk aversion will cause the optimal
treatment rate to be increased. This is in contrast to other types of inputs,
such as fertilizers, which are usually supposed to be used at lower levels
under risk aversion than under risk neutrality. Feder (1979) is commonly
cited as having established the theoretical basis for the presumed positive
relationship between degree of risk and level of pesticide usage. Feder
showed that under risk aversion, uncertainty about the level of pest infesta-
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tion increases the optimal level of pesticide use. However, crop damage was
approximated by a linear function, so the effect of uncertainty about pest
density on expected profit (see above) was not considered. Auld and Tisdell
(1987) showed that, at least for weeds, uncertainty about pest density
reduces expected yield loss, and argued that this reduces the probability of
treatment being justified. This effect at least partially offsets the positive
effect of risk aversion on chemical usage.

Moffitt (1986) in his extension of the M-threshold concept (Moffitt et al.,
1984) to allow for risk aversion, further questions the accepted wisdom of
greater risk leading to greater pesticide usage. He showed in his theoretical
model that, under risk, a higher dosage can be more than offset by less
frequent use (i.e. a higher threshold) although this was not found to occur in
an empirical application of the approach by Osteen et al. (1988).

A further relevant issue which has received almost no comment in the
literature is the fact that the reputation of pesticides as “risk reducing
inputs” (Carlson, 1984; Robison and Barry, 1987) appears to be mainly
based on analyses which only consider uncertainty about the level of pest
infestation or chemical efficacy (e.g. Feder, 1979; Robison and Barry, 1987;
Osteen et al., 1988). However, there are numerous other sources of uncer-
tainty in the pest/pesticide/crop system which may or may not result in
reduced risk as pesticides are increased. Feder (1979) did consider uncer-
tainty about pesticide effectiveness but was equivocal about its impact on
pesticide usage. Chisaka (1977) showed that the level of crop yield loss
caused by weeds can be a significant source of uncertainty. Auld and Tisdell
(1987) considered uncertainty about crop yield loss in a risk-neutral setting,
finding that it would not affect decision making. They did not consider its
effect on a risk-averse decision maker. Robison and Barry (1987) com-
mented in passing that the Feder model could be expanded to allow for

uncertainty about output price. They observed that
“two random variables, however, quickly complicate our analysis, forcing us into numeri-
cal rather than analytical approaches. Furthermore, we could find the threshold level for
N* as before but the solution would require solving a quadratic formula with few
deterministic results” (p.110).

This may explain some of the reticence of most analysts to consider
uncertainties other than pest density. However this reticence may have
resulted in the perpetuation of a general false impression that pesticides
always reduce risk. Pannell (1990a) found that for weeds, uncertainty about
output price, weed-free yield or chemical damage to the crop leads to greater
variance of income at higher herbicide rates. In many environments these
may be more important sources of uncertainty than are pest density, pest
damage to crops or pesticide effectiveness. In all environments, the question
of whether pesticide use results in higher or lower income variability
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depends on the balance of forces of positive and negative effects on risk.
Pesticide usage will result in risk being increased in some circumstances and
reduced in others. In an analysis of ryegrass control in wheat in Western
Australia, Pannell (1990a) found that the forces balanced so that income
variability was almost unchanged over a wide range of herbicide rates.

A number of other authors have considered multiple sources of risk.
While they have not provided analytical proof, they have produced some
support for the proposition that pesticides do not always reduce risk.
Hawkins et al. (1977) conducted budgeting analysis of field results from
weed control trials. These would have implicitly included several biological
sources of risk including weed density, herbicide effectiveness and weed-free
yield. They found that herbicide use increased the standard deviation of
returns, which suggests that weed-free yield was the major source of variabil-
ity in the trials.

In studies by Cochran et al. (1985) and Greene et al. (1985), simulation
approaches were used to estimate probability distributions of income for
analysis using stochastic dominance techniques. The uncertain variables
considered by Greene et al. (1985) were wheat yield, wheat price, soybean
price, July temperature and August rainfall. They assumed that these varia-
bles followed a multivariate normal distribution which was estimated from
20 years of historical data. Cochran et al. (1985) allowed for uncertainty
about the weather, yield, prices, the determination of infestation periods and
the calculation of yield loss. It is very interesting that in both these studies,
integrated pest management (IPM) strategies, which generally involve re-
duced pesticide use, were found to be efficient for risk-averse decision
makers. In the Greene et al. study, IPM strategies clearly dominated
conventional strategies for even the highest level of risk aversion considered.
If pesticide use did reduce risk, one might have expected risk-averse decision
makers to prefer prophylactic pesticide use. Cochran et al. (1985) used a
number of stochastic dominance criteria with different powers of discrimina-
tion. IPM strategies were part of the efficient set under all criteria. As the
criterion was made more discriminating, strategies involving calendar spray-
ing (i.e. predetermined prophylactic treatments) were removed from the
efficient set until the most discriminating criterion resulted in a unique
ranking with IPM as the only efficient strategy. Again, if pesticides were
risk-reducing, IPM strategies involving lower pesticide use might involve
higher risk and not be clearly efficient for risk-averse decision makers.

While these detailed studies are suggestive that pesticides may not reduce
risk, there is a need for caution in ascribing this interpretation to the results.
It may be that the use of information in IPM strategies is itself risk-reduc-
ing. Evidence in support of this is provided by Antle (1988a) who found that
pesticides used in an IPM programme were more risk-reducing than those
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used prophylactically. He also found that the value of information use in
IPM strategies was substantially higher for more risk-averse decision makers.
Even if lower pesticide use increases risk, information may be sufficiently
risk-reducing to more than offset this, making the IPM strategy attractive to
risk-averse decision makers. Nevertheless it does appear that the risk-reduc-
ing nature of pesticides is by no means proven. This is an issue deserving
further attention.

Finally, note that even if pesticide applications do reduce income risk, it
does not necessarily follow that a stochastic decision model will lead to
greater pesticide usage than will a deterministic model. As discussed earlier,
the introduction of risk into the decision process may affect expected profit
in such a way that chemical use tends to be reduced. In some circumstances
this effect may more than offset increases in chemical usage due to risk
aversion.

The remainder of the paper is a review of applied studies which have
allowed for risk. The various techniques which have been used are described.
Advantages and disadvantages of the techniques are suggested.

BAYESIAN DECISION THEORY

Bayesian decision theory is concerned with the revision of risky decisions
in response to information about the problem at hand. Many Bayesian
studies calculate the expected value of information to be used in a decision.

Anderson et al. (1977) described the application of Bayesian decision
theory to a range of problem types in agriculture. One of the earliest
applications of the approach to damage control was by Carlson (1970) who
examined the disease control practices of Californian peach growers. He
elicited prior probability distributions of disease loss from growers and used
these to show that if the number of applications of chemicals is optimally
adjusted in response to disease forecasts, chemical usage can be substantially
reduced.

Webster (1977) conducted a Bayesian analysis of a fungal parasite prob-
lem on wheat. He elicited (quadratic) utility functions from farmers and, as
discussed earlier, found that the decision of whether to spray was very
insensitive to risk attitudes. In a follow-up study, Menz and Webster (1981)
used a Bayesian approach to estimate the expected value of information
which would be provided by a hypothetical advisory scheme proposed by
Webster (1977). They found that the expected value of information was very
high so that benefits of the proposed scheme would be very likely to
outweigh costs. In a later publication, Webster (1982) gave a general
discussion of the value of information in pest control and presented exam-
ples for a disease control program. The analysis was simplified by assuming
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expected profit maximisation and by assuming that the values of different
types of information are additive and independent.

Mumford (1981) emphasised the subjective aspects of pest control deci-
sions. He found that pest control decisions by members of a particular
group of surveyed farmers was consistent with a simple Bayesian model in
their pest control behaviour. He assumed that the objective of the more
risk-averse farmers in the group approximated to ‘maximin’, although
Webster (1977) found no farmers in a group of 29 who were that risk-averse.

Thornton and Dent (1984a, b) focused on revision of optimal disease
control strategies in response to information on climate and disease informa-
tion levels. They described their approach as “implicitly Bayesian” (Thorn-
ton and Dent, 1984a, p.123) and presented a framework for implementing it
for use by farmers. They found that the expected value of climate and
disease level information “increases with decreasing partial risk aversion,
since the value is dependent on the recommendation not to spray, risk-averse
individuals being loath not to apply spray” (Thornton and Dent, 1984b,
p.241).

The study by Antle (1988a, b) might also be considered as “implicitly
Bayesian” in its emphasis on risk and sequential decision making. Interest-
ingly, in a case study of IPM strategies for tomato production, he obtained
the opposite result to Thornton and Dent (1984b); greater degrees of risk
aversion were associated with substantially higher values of information.
Another interesting finding was that although insecticides as a group were
found to be marginally risk-reducing inputs, those pesticides applied with
relatively low frequency in the IPM programme were found to be substan-
tially more risk-reducing than those applied prophylactically. Clearly the
degree of risk reduction obtained from pesticide use depends not just on the
level of pesticide used, but also on the way it is used. Antle’s finding
suggests that information which aids in determining optimal pesticide use
may be more risk reducing than pesticides per se.

Moffitt et al. (1986) examined the value of publicly provided information
on pest levels in a situation where private scouting services were available.
They found that the value depended on the reliability of public information.
If it were slightly less reliable than private information, public information
still had a positive net value to farmers by virtue of its lower cost. However,
below a certain level of reliability, public information had no value.

Stefanou et al. (1986) presented a Bayesian model incorporating decisions
on both whether to scout and whether to spray. They applied the model to
cotton lygus bug in California and conducted wide-ranging sensitivity analy-
sis.

The studies discussed above all allowed for risk aversion on the part of
decision makers. Bayesian decision theory can also be applied in a risk-neu-
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tral setting. For example Johnston and Price (1986) assumed risk neutrality
in calculating the expected values of perfect and imperfect information in
the problem of stored grain insect control. Cammell and Way (1977) applied
a risk-neutral Bayesian model to estimate the value of forecasting black bean
aphid populations. They found that basing treatment decisions on this
information was substantially more profitable than routine treatment or no
treatment.

All of the farm level studies cited in this section treat the pesticide as a
binary variable to be applied at the recommended rate or not at all. There
does not seem to have been an application of Bayesian decision theory in
which treatment dosage has been treated as a continuous variable. It is also
notable that none of these studies examine a problem of weed control. It
appears that a Bayesian approach to probability revision is highly applicable
to problems of tactical weed control.

STOCHASTIC EFFICIENCY

In the Bayesian studies described above, particular utility functions were
elicited or assumed for use in the analysis. If a specific utility function is
used then it is possible to give an unambiguous ranking of all strategies
under consideration. However, these rankings are not necessarily consistent
with the preferences of individuals who do not have the exact utility
function used in the analysis.

Stochastic efficiency analysis is used to generate information which is
applicable to broadly defined groups of decision makers. There are a
number of different stochastic efficiency criteria used depending on how
broadly defined a group of decision makers is being targeted:

(a) first-degree stochastic dominance (FSD) applies to all decision makers
who prefer more income to less (Quirk and Saposnik, 1962);

(b) second-degree stochastic dominance (SSD) applies to those decision
makers from (a) who are risk-averse (Hadar and Russell, 1969);

(c) third degree stochastic dominance (TSD) applies to those decision
makers from (b) whose degree of risk aversion decreases with increasing
wealth (Whitmore, 1970);

(d) stochastic dominance with respect to a function (SDWRF) is applicable
to decision makers whose degree of risk aversion lies between that of two
given utility functions. The breadth of the decision group can be varied
by adjusting the functions which define the bounds (Meyer, 1977a, b).

The greater generality of these techniques is only obtained at the cost of
reduced specificity of their recommendations. In general they do not provide
a unique ranking of the available strategies. Rather they identify groups of
strategies which are ‘efficient’. All elements of the efficient set of strategies
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would be preferred to all strategies not in the efficient set by a// members of
the relevant group of decision makers. A potential problem with the tech-
nique is that the efficient set can be vary large, in some cases including most
of the available strategy options. In this circumstance the information
provided by the technique is of little value. Greater discriminatory power
can be obtained by more closely defining the group of decision makers (e.g.
using third degree, rather than second degree, stochastic dominance) and /or
by using techniques such as convex set stochastic dominance (Cochran et al.,
1985). However, as Tolley and Pope (1988) observed, “second degree
stochastic dominance has been easily implementable and continues to have a
preeminent place in efficiency analysis” (p.694). Tolley and Pope noted that
sampling errors in the estimation of probability distribution functions are
usually not considered. They showed that if sampling errors are considered,
the size of the efficient set is increased even further.

Finally in this background information on stochastic efficiency, it should
be noted that a very common method of identifying efficient strategies for
risk-averse decision makers is E-V analysis (Markowitz, 1952). However E-V
analysis has been widely criticised because it has very strong requirements
for validity (Lambert and McCarl, 1985). Either returns must be distributed
normally or the decision maker must have a quadratic utility function. The
former is frequently not the case and the latter is generally dismissed as
unrealistic because it implies increasing risk aversion with increasing wealth.

The literature on the economics of pest control includes five applications
of stochastic dominance: two in problems of insect control, one on a disease
problem, one on weeds and one encompassing weed, pest and disease
control. Between them, these studies have included most of the efficiency
criteria described above (all except TSD).

Papers by Greene et al. (1985) and Cochran et al. (1985) were described
above in the discussion of whether pesticides are risk-reducing inputs.
Greene et al. (1985) used SDWRF to rank various strategies for insect pest
control in soybeans. They found that IPM strategies are efficient relative to
prophylactic spraying for a wide range of risk attitudes. Cochran et al.
(1985) used FSD, SSD, SDWRF and SDWRF with convex set stochastic
dominance to evaluate strategies for Apple scab control. Again IPM strate-
gies were favoured.

Moffitt et al. (1983) used FSD and SSD to evaluate a range of alternative
citrus thrip control methods for inland Southern California orange groves.
Of the eight strategies considered, six were in the FSD efficient set while
three were in the SSD efficient set.

Zacharias and Grube (1984) examined a range of crop rotations in
conjunction with different weed control methods. They used SDWREF to
examine strategy rankings for risk-averse, risk-neutral and risk-preferring
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decision makers. Their conclusions about the effect on risk of using informa-

tion to adjust herbicide usage were the reverse of Antle’s (1988a):
Successively altering herbicides on an annual basis as compared to applying a single major
herbicide was found to increase both net returns and risk” (p.113).

Finally Musser et al. (1981) compared the results of E-V analysis and
FSD/SSD in ranking four sets of strategies for controlling weeds, pests and
diseases in Georgia. They found that, in an E-V framework, both conven-
tional strategies and IPM strategies were efficient. IPM had higher mean net
income but also higher variance of income and so was not clearly preferred
to conventional control in an E-V framework. However IPM was found to
be FSD over conventional strategies and so would be preferred by all
decision makers regardless of their risk preferences. Note again that use of
an IPM strategy was not found to reduce risk. Apparently in both of these
studies, chemical sprays were risk-reducing and information was not suffi-
ciently risk reducing to offset the increase in risk resulting from lower
chemical use.

Studies employing an E-V approach to assessing risk in pest control have
included Carlson (1970), King et al. (1986) and Lybecker et al. (1988).

DYNAMIC PROGRAMMING

Pest control in a crop or pasture may have either positive or negative
carry-over effects in subsequent crops or pastures. For example, one of the
advantages of including the legume crop, lupins, in rotation with cereals in
Western Australia is that they allow use of the herbicide simazine for weed
control, reducing the costs of grass weed competition and control in subse-
quent cereal crops. In general, the number of weed seeds with potential to
germinate in a given year depends on the degree of control in previous years.
A negative effect of weed control in crops is that the density of subsequent
pastures can be reduced. Dynamic factors such as these may affect optimal
weed control practices.

A dynamic analytical framework is even more important for problems of
pest and disease control. Reproduction rates are very high for these organisms
so that infestation levels can increase rapidly. For most weeds, the life cycle
takes at least a year so that population dynamics are not as essential to the
economic problem as they are for pests and diseases. Techniques used to
address dynamic problems include simulation (discussed in the next section)
and DP.

Christine Shoemaker stands out as the major contributor to the literature
in the DP field, particularly for management of alfalfa weevil. In two of her
papers, stochastic DP was used to assess the effect of risk on decision
making (Shoemaker and Onstad, 1983; Shoemaker, 1984). In Shoemaker
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(1984) the issues of multiple pesticide applications and carryover of pesticide
from one season to the next were considered. As well as using more than one
variable to determine whether to treat, she has also considered more than
one type of treatment: pesticide application and biological control (Shoe-
maker and Onstad, 1983).

Taylor and Burt (1984) used stochastic DP to determine whether or not to
spray and/or fallow to control wild oats in spring wheat in the U.S.A.
Pandey (1989) used deterministic and stochastic DP to determine optimal
herbicide rates for control of wild oats in Western Australia.

There has also been an application of stochastic DP to a problem of
disease control. Zacharias et al. (1986) used stochastic DP to evaluate
management strategies for controlling soybean cyst nematode. They. tested
and upheld Antle’s (1983) hypothesis that risk-neutral (i.e. expected profit-
maximising) decision makers can respond to risk if the problem is dynamic.

In each of these studies, expected profit maximisation was assumed to be
the objective; there was no allowance for risk aversion on the part of
decision makers.

The obvious advantage of DP as a solution method is its efficient
handling of dynamics. The main disadvantage is the ‘curse of dimensional-
ity’: as the number of state variables in the model increases, the number of
calculations required for solution increases exponentially and can become
impractically large. Hence DP generally requires that complex systems be
greatly simplified before they can be analysed.

Another facet of DP which may be considered a disadvantage is that it
can only handle discrete decision problems. Only discrete alternative strate-
gies can be evaluated, not continuous variables such as chemical dosage,
although this can be overcome to a degree by considering a discrete number
of chemical dosages as alternative strategies (e.g. Pandey, 1989).

SIMULATION

Simulation models of various kinds have been used in a number of
different ways to evaluate the economics of pest, disease or weed control.
Risk aversion has been analysed in a number of ways in these studies: by
numerical solution of the expected utility maximisation problem (Lazarus
and Swanson, 1983; Thornton and Dent 1984a, b), by E-V analysis (King et
al., 1986) and by stochastic dominance approaches (Cochran et al., 1985;
Greene et al., 1985).

An advantage of simulation models is that they allow estimation of
technical relationships which would be expensive, time-consuming or im-
practical to estimate from field experiments. A second advantage is that,
relative to optimization techniques such as DP or mathematical program-
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ming, they allow more detailed representation of biological and technical
components of the system (Shoemaker, 1984). A disadvantage is that in most
economic applications they must be solved numerous times to reach a
conclusion. For example, Shoemaker (1979) noted that to conduct a similar
analysis to that carried out by a particular DP model, a simulation model
would have to be solved 1380000 times. Simulation models do not imply
use of a particular economic framework; rather they can be used to provide
inputs to economic analyses of several types.

There have been several studies in which simulation models were used to
estimate probability distributions of technical parameters which were then
used to estimate thresholds under risk. For example Thornton and Dent
(1984a; b) described the design, operation and implementation of such a
system for evaluating control of the fungal disease Puccinia hordei in New
Zealand barley crops. The effect of climatic variation on the variance of
profit was estimated by simulation and used to calculate thresholds under
risk aversion. Their study was discussed earlier in the context of Bayesian
decision theory. King et al. (1986) estimated thresholds for weed control in
continuous corn ( Zea mays). Although they did not consider the impact of
risk aversion on the decision, they estimated the variance of profit for
different strategies. Lazarus and Swanson (1983) did allow for risk aversion
in their evaluation of rootworm control in corn. Although their representa-
tion of biological relationships was relatively simplistic, this allowed them to
analyse a more complex decision problem. They estimated not just pest
thresholds at which chemical application was justified, but also a higher
threshold at which it was worth rotating to another crop.

A somewhat similar use of simulation models has been to estimate
probability distributions of net returns for evaluation using stochastic domi-
nance techniques. Cochran et al. (1985) used this approach in their applica-
tion of convex set stochastic dominance to evaluation of various apple scab
control strategies, as did Greene et al. (1985) in their use of generalised
stochastic dominance to evaluate soybean integrated pest management
strategies.

ANALYTICAL /NUMERICAL APPROACHES

In a number of applied studies of risk in pest control, direct numerical
solution of theoretical models has been employed. Moffitt et al. (1984)
numerically solved for the optimal parameters of their M-threshold model
for corn nematode control under uncertainty about pest density. Osteen et
al. (1988) conducted a similar study of corn nematode control which, unlike
Moffitt et al. (1984), allowed for risk averse decision making. Liapis and
Moffitt (1983) used the exponential utility moment generating function



PESTS AND PESTICIDES, RISK AND RISK AVERSION 377

approach to calculate certainty equivalents of alternative cotton pest control
strategies under different degrees of risk aversion. The use of this approach
was attacked by Scott et al. (1986) but defended by Liapis and Moffitt
(1986). Lazarus and Swanson (1983) used numerical solution in conjunction
with a simulation model to calculate pest density thresholds for application
of pesticide and for switching crop rotation.

The numerical solution techniques employed in these studies can be very
useful when the problem is not amenable to analytical solution or to
solution by common optimization techniques such as DP or LP. This can be
the case, for example, when the profit function has more than one local
optimum, when it has several state variables or when close links with a
simulation model are desired.

In a number of studies relevant to pesticide application, Lichtenberg and
Zilberman have used marginal analysis to derive optimal regulatory stan-
dards for reducing the probability of negative effects on health (Lichtenberg
and Zilberman 1988a, 1988b; Lichtenberg et al. 1988). In each of these
analyses allowance was made for “aversion to uncertainty.” No other
studies of public or social pest control problems have considered risk except
by conducting sensitivity analysis (e.g. Pannell, 1984; Denne, 1988).

RELEVANCE FOR DEVELOPED AND DEVELOPING COUNTRIES

Almost all studies cited in this review deal with problems in developed
countries. However the review also has relevance for developing countries;
the biological and economic relationships are similar although some parame-
ters differ. Particularly important for this topic is the higher level of absolute
risk aversion found amongst farmers in developing countries (Binswanger,
1980; Hamal and Anderson, 1982; Antle, 1987) compared to their counter-
parts in developed countries (Bond and Wonder, 1980; Bardsley and Harris,
1987; Myers, 1989). (These studies find similar ranges for partial risk
aversion in developed and developing countries, and since incomes are lower
in developing countries this implies that they have higher absolute risk
aversion). Given the conventional wisdom about pest control reducing risk
we would expect farmers in developing countries to adopt pesticides with
enthusiasm. However if the conclusion in this review is correct and pesti-
cides do not always reduce risk we should not be surprised if adoption of
pesticides is no greater than for other inputs such as chemical fertilizers.

Secondly, if information about pest density increases in value with
increasing risk aversion (as found by Antle 1988a, b), we would expect
pesticides to be more acceptable to farmers in developing countries if they
are promoted as part of an IPM package involving scouting for pests before
making spray decisions. However, further work is needed in this area as
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Thornton and Dent (1984a, b) found decreasing information value with
increasing risk aversion.

CONCLUSION

In the course of this review, some commonly made assertions about the
influence of risk in pest control have been challenged. In addition some
gaps, unresolved issues and possible methodological deficiencies in the
existing literature have been identified.

There are a number of sources of uncertainty which affect decision
making for pest control. It was concluded that for some of these sources of
uncertainty (e.g. pest density, yield loss per pest, pesticide effectiveness)
pesticide application acts to reduce risk. However, for others (e.g. pesticide
damage to crops, pest-free crop yield, output price) pesticide application can
increase risk. Thus the validity of the usual assumption that pesticides
reduce risk depends on the relative importance of these different sources of
uncertainty. Thus it is important to consider more sources of risk than the
ones most commonly considered: uncertainty about pest density and pest
mortality.

It was noted that, due to nonlinearities in the biological relationships, risk
can affect pesticide decisions even if the farmer’s objective is to maximise
expected profit. Evidence in the literature indicates that the optimal level of
pesticide use for risk-neutral decision makers is lower under uncertainty.
This issue has received attention with regard to weeds but has been relatively
neglected for insects and diseases. On the other hand, applied studies of the
impact of risk aversion on pesticide decisions have been conducted for
insects and diseases (albeit for a limited range of sources of uncertainty) but
not for weeds.

Information about the crop/pest/pesticide system not only increases
expected profits but can also be a very useful source of risk reduction in its
own right. On the other hand some studies have indicated that use of
information results in higher levels of risk. The impact on risk of informa-
tion use needs further investigation to resolve this conflicting evidence. So
far, studies of information use in pest control have focused on information
about pest density. Attention should also be given to information related to
other variables such as pesticide efficacy and pest-free yield.

The review has covered a wide range of analytical techniques, with
different strengths and weaknesses, which can be used to analyse risk in
decisions on control of pests. Regardless of the technique used, virtually all
published applied studies have treated the pesticide as a binary variable to
be used at recommended rates or not at all. There appears to be scope for
analysing risk and risk aversion when input level is treated as a continuous
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variable. With increasing concern about externalities from high pesticide use
(e.g. through spray drift, chemical residues in food, resistance development)
the economics of reducing chemical rates, including its impact on risk, is a
topic ripe for analysis by agricultural economists (Pannell, 1988a, b, 1989).
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