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Theoretical and applied literature on risk in decision making for agricultural pest control 
is reviewed. Risk can affect pesticide decision making either because of risk aversion or 
because of its influence on expected profit. It is concluded that risk does not necessarily lead 
to increased pesticide use by individual farmers. Uncertainty about some variables, such as 
pest density and pest mortality, does lead to higher optimal pesticide use under risk aversion. 
However, uncertainty about other important variables, such as output price and yield, leads 
to lower optimal levels of pesticide use. Neglect of these variables in most studies has led to 
the false assumption that pesticides are always risk-reducing inputs. Furthermore, there is 
evidence that, in general, the pesticide dosage which maximises expected profit is lower under 
risk than under certainty. Depending on the balance of forces to increase and decrease 
pesticide use under risk, in many circumstances the net effect of risk on optimal decision 
making for pest control may be minimal. The effect on risk of information about pest density 
and other variables (as in integrated pest management programmes) is discussed. Evidence on 
this issue is mixed. A range of analytical techniques for analysing risk in pest control is 
reviewed. Throughout the paper, gaps in the existing literature are identified. 

INTRODUCTION 

Risk has been perceived and discussed as an area of considerable impor­
tance in literature on the economics of pest control in agriculture. Reichel­
derfer (1980) and Wetzstein (1981) went so far as to claim that risk 
reduction is the main motivation for application of pesticides. While this 
seems to understate the importance of profit improvements resulting from 
pesticide use, there is widespread consensus in the literature that, in many 
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circumstances, risk considerations influence pesticide use (e.g. Carlson and 
Main, 1976; Conway, 1977; Reichelderfer and Bottrell, 1985; Antle and 
Capalbo, 1986; Lichtenberg and Zilberman, 1986a). 

The aim of this paper is to review the literature on the impact of risk and 
risk aversion on decisions to control agricultural pests by application of 
chemical pesticides. A number of specific issues are addressed including: the 
impact of risk on control decisions by risk-neutral decision makers, the 
impact of risk aversion on pest control decisions, the effect of risk on the 
level of pesticide use, the effect of pesticide use on the level of risk, the 
impact of information use on risk, which sources of risk may be important 
in the pesticide problem and whether these sources of risk have been 
adequately considered in applied studies. In addition a range of methods for 
examining risk in pest control decisions are reviewed and examples given 
from the literature. Aspects of the topic which have been neglected in the 
literature are identified. 

A GENERAL RESPONSE MODEL FOR PESTICIDES 

The reader may find it helpful in the course of the review to refer to a 
simple model of yield response to pesticide application. Lichtenberg and 
Zilberman (1986b) showed that for economic and statistical reasons it is 
important to represent response to pesticides as a two-stage process: pesti­
cides kill pests, and it is the reduction in pest levels which increases yield. 
Thus we have pest density (P) as a function of initial pest density (P0 ) and a 
kill function which depends on the rate of chemical applied [K( C) is the 
proportion of pests killed at chemical dose C]: 

P = P0 [ 1 - K (C)] (1) 

The kill function varies for different pests and pesticides and can depend on 
timing and environmental conditions. Actual yield ( Y) is a function of 
pest-free yield (Y0 ) and D(P), a damage function giving proportional yield 
loss at pest density P: 

Y= Y0 [1- D(P)] (2) 

D(P) depends on a range of factors and varies for different pests and 
different crops or pastures. Herbicides may also cause direct damage to the 
crop yield but for the purposes of this review, the simple two-equation 
model will suffice: 

Profits ( 7T) are given by: 

1r = YP - CP -A - F y c (3) 

where PY is output price, Pc is chemical cost, A is chemical application costs 
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(which are generally independent of dosage) and F is other production 
costs. 

This simple model illustrates the major components of the pest control 
problem. It can be used as the basis for a range of different types of 
analysis. For example it could be used to find the threshold pest density 
above which application of a fixed recommended chemical dosage would 
produce benefits greater than costs. Alternately marginal analysis could be 
used to determine the optimal chemical dose. The analysis could be static or, 
with additional functions, dynamic. 

There are a number of parameters in the model which are likely to be 
stochastic. In equation (1), pest density may be uncertain as a result of 
uncertainty about the initial pest density, the proportion of pests killed or 
the chemical dosage actually applied. In equation (2), yield will be uncertain 
due to uncertainty about pest-free yield, the level of damage and the final 
pest density. Profits in equation (3) are most likely to be affected by 
variance in yield and output price. The model illustrates the way these 
different sources of uncertainty affect the variance of income. For example, 
uncertainty about the level of pest mortality leads to uncertainty about pest 
density which in turn affects proportional yield loss, actual yield and, 
finally, profits. The different sources of uncertainty will be discussed further 
in the review. 

THEORETICAL FRAMEWORKS FOR ANALYSIS OF RISK 

Although the first publication on risk in pest management used the 
concept of "degree of potential surprise" (Hillebrant, 1960), the dominant 
paradigm for risk analysis in economics has been expected utility maximis­
ation (e.g. Anderson et al., 1977). In response to evidence that many people 
systematically violate predictions of expected utility theory (e.g. Allais, 1953; 
MacCrimmon and Larsson, 1979) there has been a recent growth of more 
'generalised' versions of the theory (e.g. Machina, 1982; Quiggin, 1982; 
Chew, 1983). However there have, as yet, been no applications of any of the 
generalized utility theories to problems of pest control. Of the studies 
reviewed in this paper, those which account for risk aversion consider the 
decision maker's objective to be expected utility maximisation or, in a 
couple of cases, maximin (maximisation of the minimum return). It seems 
likely that, so long as the probability distribution of net returns is not 
dramatically skewed, expected utility maximisation will reasonably ap­
proximate the more general theories (Quiggin and Fisher, 1989). 

Although the studies reviewed here are all concerned with risk, they vary 
widely in many respects. The assumed objective of decision makers ranges 
from expected profit maximisation through expected utility maximisation to 
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the extreme degree of risk aversion implied by the maxnmn principle. 
Different studies treat different parameters of the pest/pesticide/ crop 
system as being uncertain. There has been a range of analytical frameworks 
employed including dynamic programming (DP), Bayesian decision theory 
and stochastic efficiency. The following discussion elaborates on these 
differences and reviews particular studies. 

RISK NEUTRALITY VERSUS RISK A VERSION 

The broadest categorization of the risk literature is into those studies 
which assume risk neutrality and those assuming risk aversion. The assump­
tion of risk neutrality is often made for the purposes of simplicity and 
tractability (e.g. Marra and Carlson, 1983; Moffitt et al., 1984; Taylor and 
Burt, 1984; Gold and Sutton, 1986; Johnston and Price, 1986; Zacharias et 
al., 1986). The first part of this discussion considers the validity of this 
assumption. Given the extreme statements made by some authors about the 
importance of risk aversion as the prime motivation for damage control, it 
may seem that the assumption of risk neutrality is indefensible. However, 
there have been studies which found that risk aversion had minimal impact 
on decision making for pest control. Webster (1977) found that for a 
fungicide-spraying problem in the United Kingdom, the decision of whether 
or not to spray was very insensitive to the degree of risk aversion. Only 
individuals with extreme decision criteria, such as maximin, would adjust 
their spraying decision in response to risk. No farmers in a sample of 29 
were found to be this risk-averse. 

Similarly, Thornton (1984) found that decisions on control of a fungal 
disease of barley in New Zealand were almost unaffected by risk aversion. 
In many simulations of disease epidemics, differences in recommendation 
between expected profit and expected utility maximisation occurred with a 
frequency of approximately 0.03. 

Finally, Pannell (1990a) found that when a range of sources of uncer­
tainty was considered, the variance of income was almost unchanged over a 
wide range of herbicide dosages. This indicates that the optimal herbicide 
dosage would not be greatly affected by risk aversion. 

In addition to these indications that risk aversion may have little impact 
on pest control decisions, there is also evidence that many farmers are 
approximately risk-neutral or only slightly risk-averse (e.g. Bond and 
Wonder, 1980; Bardsley and Harris, 1987). Finally, Carlson (1984) and 
Musser et al. (1986) have suggested that risk may not be an important 
consideration in farmers' decisions on pest control. Taken together, these 
studies appear to provide some support for use of a risk-neutral framework. 
However there are reasons to question the general applicability of the results 
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reported by Webster (1977) and Thornton (1984). In Thornton's study, the 
insensitivity of decisions to risk aversion may have been exaggerated by 
basing the elicitation of utility functions on a range of payoffs correspond­
ing to just 10 ha. This in itself would not have been a major concern but for 
the assumption that decisions are independent of the scale of the problem. 
Given that income variability is positively related to crop area this assump­
tion is unrealistic. In Thornton's study all decisions are made on the basis of 
a small-scale problem in which risk is bound to be of minor importance. 
Zacharias and Grube (1984) addressed this issue in their application of 
stochastic dominance to weed control. They argued that 

"the decision makers will tend to exhibit more risk neutral behaviour when confronted 
with per acre outcomes rather than farm level returns. If the bounds of the risk preference 
function are constant across income levels ... the rankings [of strategies] associated with 
per acre and farm level distributions will be different" (Zacharias and Grube, 1984, p.116). 

A second factor which may have contributed to the apparent insensitivity 
of decisions to risk aversion is the use of a simple binary decision rule: don't 
treat or treat at the recommended dose. This ensures that there are wide 
ranges of parameter values for which the optimal strategy is unchanged. If 
dosage rate were treated as a continuous variable, the sensitivity of decisions 
to changes in all parameters, including risk aversion, would increase. Web­
ster (1977) also used a binary decision rule. The scale of the problem 
analysed by Webster was not reported in the article. 

In addition to these reasons for questioning the conclusions of Webster 
and Thornton, there are reasons for caution in the interpretation of studies 
which find a low average level of risk aversion. There is considerable 
variation in the degree of risk aversion and a substantial number of farmers 
are highly risk-averse (Bond and Wonder, 1980; Hamal and Anderson, 
1982). 

Finally, a number of authors have reported finding that risk aversion does 
substantially affect decision making (e.g. see following discussions of risk 
aversion and associated modelling techniques). Also, in reports of empirical 
studies of farmer behaviour, authors have reported finding that reliance on 
chemical pest control increases as risk aversion increases (Burrows, 1983; 
Pingali and Carlson, 1985). However the strength of this conclusion should 
not be overstated. Burrows (1983) conducted an econometric study to 
determine which variables influence demand for pesticides. In the estima­
tion, the degree of producers' aversion to risk was represented by a very 
crude proxy variable: the ratio of acres planted in cotton to total acres. 
Conclusions about risk based on this variable should be very tentative. In 
another regression study, Pingali and Carlson (1985) found that the level of 
pesticides used was positively related to the variance of damage. Although 
they attributed this to risk aversion on the part of decision makers, the 
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evidence is purely circumstantial. They did not recognise that there are 
several ways in which risk can affect decision making even if the decision 
maker's objective is to maximise expected profit (see below). 

Overall it appears that when analysing pest control decisions, risk neutral­
ity may not be as poor an assumption as one would expect based on some 
statements in the literature. Several studies based on risk neutrality are 
reviewed below. However it should be acknowledged that numerous studies 
have fould that risk aversion does have an impact on pest control decisions. 
We return to risk aversion after the following discussion of risk neutrality. 

Risk neutrality 

Of those studies in which risk neutrality has been assumed, the majority 
have been based on a deterministic decision framework [e.g. most of the 
studies cited in bibliographies by McCarl (1981) and Osteen et al. (1981)]. 
This approach can sometimes be defended on the basis that in a strictly 
linear model, the decision which maximises expected profit in a stochastic 
framework corresponds to the profit maximising decision in a deterministic 
framework using expected values of parameters. This implies that if ex­
pected profit maximisation is assumed, the inclusion of stochastic parame­
ters in a linear model introduces unnecessary complexity to the analysis 
without affecting results. Such was the case in studies by Marra and Carlson 
(1983) and Marra et al. (1989). They explicitly included a discrete probabil­
ity distribution for the length of the spraying period, but this was unneces­
sary since all non-linear relationships in the model were approximated by 
linear functions. 

Nevertheless there are several ways in which risk can affect the decisions 
of individuals whose objective is to maximise expected profit. Tisdell (1986) 
showed that uncertainty about a parameter value can affect the optimal level 
of pest control by affecting expected profit. He argued that 

"in many cases the expected level of application is greater under uncertainty than under 

full information but ... this depends on convexity conditions of relevant functions" (p.161). 

and that 
"convexity conditions may sometimes be such as to give rise to the opposite consequence" 
(p.159). 

He did not discuss which parameters are likely to increase and which to 
decrease treatment levels under uncertainty. Auld and Tisdell (1986, 1987, 
1988) showed that because of convexity of the relationship between weed 
density and crop yield, uncertainty about weed density reduces expected 
yield loss. Auld and Tisdell (1987) argued (but did not prove) that this 
increases the economic threshold, reducing the overall level of pesticide use. 
They noted that this does not seem consistent with comments in the 
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literature that risk increases pesticide use. They attributed the difference to 
the influence of risk aversion dominating the effect of risk on expected 
profit. 

Pannell (1990b) examined a range of uncertain variables in a model of 
yield response to herbicides under expected profit maximisation. He found 
that uncertainty about each of the variables considered (initial weed density, 
weed kill, weed competitiveness, herbicide dosage and weed-free yield) 
reduced the profit maximising herbicide dosage and increased the threshold 
density for herbicide treatment. Notwithstanding the quote from Tisdell 
(1986) above, no cases were found where the expected level of application 
was greater under uncertainty. 

The only study of this type for insect pests was by Plant (1986) who 
considered uncertainty about pest mortality. Like Pannell (1990b) he found 
that under expected profit maximisation, uncertainty led to a higher threshold 
pest density for pesticide use. Although he interpreted this higher threshold 
as implying a higher level of pesticide use this is incorrect; it actually implies 
a lower expected level of pesticide use, consistent with Pannell's (1990b) 
findings. 

Another circumstance where risk can affect the decisions of 'risk-neutral' 
decision makers is where the problem is dynamic (Antle, 1983). Zacharias et 
al. (1986) tested this hypothesis in their DP study of soybean cyst nematode. 
They found modest support for the hypothesis, with very small differences 
between the results of their deterministic and stochastic models. 

A third possibility is where the decision maker is subject to a progressive 
marginal taxation rate. Taylor (1986) showed that the effect of this on 
decision making is essentially the same as the effect of risk aversion; it 
makes the decision maker behave in an apparently more risk-averse manner 
than would otherwise be the case. 

Risk aversion 

This section of the review examines the widely accepted views that risk 
increases pesticide usage and that pesticide usage reduces risk. The impor­
tance of risk as a determinant of pesticide usage has been emphasised in the 
literature with the dominant view being that pesticide use reduces risk so 
that if risk is included in a model, risk aversion will cause the optimal 
treatment rate to be increased. This is in contrast to other types of inputs, 
such as fertilizers, which are usually supposed to be used at lower levels 
under risk aversion than under risk neutrality. Feder (1979) is commonly 
cited as having established the theoretical basis for the presumed positive 
relationship between degree of risk and level of pesticide usage. Feder 
showed that under risk aversion, uncertainty about the level of pest infesta-
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tion increases the optimal level of pesticide use. However, crop damage was 
approximated by a linear function, so the effect of uncertainty about pest 
density on expected profit (see above) was not considered. Auld and Tisdell 
(1987) showed that, at least for weeds, uncertainty about pest density 
reduces expected yield loss, and argued that this reduces the probability of 
treatment being justified. This effect at least partially offsets the positive 
effect of risk aversion on chemical usage. 

Moffitt (1986) in his extension of the M-threshold concept (Moffitt et al., 
1984) to allow for risk aversion, further questions the accepted wisdom of 
greater risk leading to greater pesticide usage. He showed in his theoretical 
model that, under risk, a higher dosage can be more than offset by less 
frequent use (i.e. a higher threshold) although this was not found to occur in 
an empirical application of the approach by Osteen et al. (1988). 

A further relevant issue which has received almost no comment in the 
literature is the fact that the reputation of pesticides as "risk reducing 
inputs" (Carlson, 1984; Robison and Barry, 1987) appears to be mainly 
based on analyses which only consider uncertainty about the level of pest 
infestation or chemical efficacy (e.g. Feder, 1979; Robison and Barry, 1987; 
Osteen et al., 1988). However, there are numerous other sources of uncer­
tainty in the pest/pesticide/ crop system which may or may not result in 
reduced risk as pesticides are increased. Feder (1979) did consider uncer­
tainty about pesticide effectiveness but was equivocal about its impact on 
pesticide usage. Chisaka (1977) showed that the level of crop yield loss 
caused by weeds can be a significant source of uncertainty. Auld and Tisdell 
(1987) considered uncertainty about crop yield loss in a risk-neutral setting, 
finding that it would not affect decision making. They did not consider its 
effect on a risk-averse decision maker. Robison and Barry (1987) com­
mented in passing that the Feder model could be expanded to allow for 
uncertainty about output price. They observed that 

"two random variables, however, quickly complicate our analysis, forcing us into numeri­
cal rather than analytical approaches. Furthermore, we could find the threshold level for 
N * as before but the solution would require solving a quadratic formula with few 
deterministic results" (p.llO). 

This may explain some of the reticence of most analysts to consider 
uncertainties other than pest density. However this reticence may have 
resulted in the perpetuation of a general false impression that pesticides 
always reduce risk. Pannell (1990a) found that for weeds, uncertainty about 
output price, weed-free yield or chemical damage to the crop leads to greater 
variance of income at higher herbicide rates. In many environments these 
may be more important sources of uncertainty than are pest density, pest 
damage to crops or pesticide effectiveness. In all environments, the question 
of whether pesticide use results in higher or lower income variability 
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depends on the balance of forces of positive and negative effects on risk. 
Pesticide usage will result in risk being increased in some circumstances and 
reduced in others. In an analysis of ryegrass control in wheat in Western 
Australia, Pannell (1990a) found that the forces balanced so that income 
variability was almost unchanged over a wide range of herbicide rates. 

A number of other authors have considered multiple sources of risk. 
While they have not provided analytical proof, they have produced some 
support for the proposition that pesticides do not always reduce risk. 
Hawkins et al. (1977) conducted budgeting analysis of field results from 
weed control trials. These would have implicitly included several biological 
sources of risk including weed density, herbicide effectiveness and weed-free 
yield. They found that herbicide use increased the standard deviation of 
returns, which suggests that weed-free yield was the major source of variabil­
ity in the trials. 

In studies by Cochran et al. (1985) and Greene et al. (1985), simulation 
approaches were used to estimate probability distributions of income for 
analysis using stochastic dominance techniques. The uncertain variables 
considered by Greene et al. (1985) were wheat yield, wheat price, soybean 
price, July temperature and August rainfall. They assumed that these varia­
bles followed a multivariate normal distribution which was estimated from 
20 years of historical data. Cochran et al. (1985) allowed for uncertainty 
about the weather, yield, prices, the determination of infestation periods and 
the calculation of yield loss. It is very interesting that in both these studies, 
integrated pest management (IPM) strategies, which generally involve re­
duced pesticide use, were found to be efficient for risk-averse decision 
makers. In the Greene et al. study, IPM strategies clearly dominated 
conventional strategies for even the highest level of risk aversion considered. 
If pesticide use did reduce risk, one might have expected risk-averse decision 
makers to prefer prophylactic pesticide use. Cochran et al. (1985) used a 
number of stochastic dominance criteria with different powers of discrimina­
tion. IPM strategies were part of the efficient set under all criteria. As the 
criterion was made more discriminating, strategies involving calendar spray­
ing (i.e. predetermined prophylactic treatments) were removed from the 
efficient set until the most discriminating criterion resulted in a unique 
ranking with IPM as the only efficient strategy. Again, if pesticides were 
risk-reducing, IPM strategies involving lower pesticide use might involve 
higher risk and not be clearly efficient for risk-averse decision makers. 

While these detailed studies are suggestive that pesticides may not reduce 
risk, there is a need for caution in ascribing this interpretation to the results. 
It may be that the use of information in IPM strategies is itself risk-reduc­
ing. Evidence in support of this is provided by Antle (1988a) who found that 
pesticides used in an IPM programme were more risk-reducing than those 
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used prophylactically. He also found that the value of information use in 
IPM strategies was substantially higher for more risk-averse decision makers. 
Even if lower pesticide use increases risk, information may be sufficiently 
risk-reducing to more than offset this, making the IPM strategy attractive to 
risk-averse decision makers. Nevertheless it does appear that the risk-reduc­
ing nature of pesticides is by no means proven. This is an issue deserving 
further attention. 

Finally, note that even if pesticide applications do reduce income risk, it 
does not necessarily follow that a stochastic decision model will lead to 
greater pesticide usage than will a deterministic model. As discussed earlier, 
the introduction of risk into the decision process may affect expected profit 
in such a way that chemical use tends to be reduced. In some circumstances 
this effect may more than offset increases in chemical usage due to risk 
aversiOn. 

The remainder of the paper is a review of applied studies which have 
allowed for risk. The various techniques which have been used are described. 
Advantages and disadvantages of the techniques are suggested. 

BAYESIAN DECISION THEORY 

Bayesian decision theory is concerned with the revision of risky decisions 
in response to information about the problem at hand. Many Bayesian 
studies calculate the expected value of information to be used in a decision. 

Anderson et al. (1977) described the application of Bayesian decision 
theory to a range of problem types in agriculture. One of the earliest 
applications of the approach to damage control was by Carlson (1970) who 
examined the disease control practices of Californian peach growers. He 
elicited prior probability distributions of disease loss from growers and used 
these to show that if the number of applications of chemicals is optimally 
adjusted in response to disease forecasts, chemical usage can be substantially 
reduced. 

Webster (1977) conducted a Bayesian analysis of a fungal parasite prob­
lem on wheat. He elicited (quadratic) utility functions from farmers and, as 
discussed earlier, found that the decision of whether to spray was very 
insensitive to risk attitudes. In a follow-up study, Menz and Webster (1981) 
used a Bayesian approach to estimate the expected value of information 
which would be provided by a hypothetical advisory scheme proposed by 
Webster (1977). They found that the expected value of information was very 
high so that benefits of the proposed scheme would be very likely to 
outweigh costs. In a later publication, Webster (1982) gave a general 
discussion of the value of information in pest control and presented exam­
ples for a disease control program. The analysis was simplified by assuming 
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expected profit maximisation and by assuming that the values of different 
types of information are additive and independent. 

Mumford (1981) emphasised the subjective aspects of pest control deci­
sions. He found that pest control decisions by members of a particular 
group of surveyed farmers was consistent with a simple Bayesian model in 
their pest control behaviour. He assumed that the objective of the more 
risk-averse farmers in the group approximated to 'maximin', although 
Webster (1977) found no farmers in a group of 29 who were that risk-averse. 

Thornton and Dent (1984a, b) focused on revision of optimal disease 
control strategies in response to information on climate and disease informa­
tion levels. They described their approach as "implicitly Bayesian" (Thorn­
ton and Dent, 1984a, p.123) and presented a framework for implementing it 
for use by farmers. They found that the expected value of climate and 
disease level information "increases with decreasing partial risk aversion, 
since the value is dependent on the recommendation not to spray, risk-averse 
individuals being loath not to apply spray" (Thornton and Dent, 1984b, 
p.241). 

The study by Antle (1988a, b) might also be considered as "implicitly 
Bayesian" in its emphasis on risk and sequential decision making. Interest­
ingly, in a case study of IPM strategies for tomato production, he obtained 
the opposite result to Thornton and Dent (1984b); greater degrees of risk 
aversion were associated with substantially higher values of information. 
Another interesting finding was that although insecticides as a group were 
found to be marginally risk-reducing inputs, those pesticides applied with 
relatively low frequency in the IPM programme were found to be substan­
tially more risk-reducing than those applied prophylactically. Clearly the 
degree of risk reduction obtained from pesticide use depends not just on the 
level of pesticide used, but also on the way it is used. Antle's finding 
suggests that information which aids in determining optimal pesticide use 
may be more risk reducing than pesticides per se. 

Moffitt et al. (1986) examined the value of publicly provided information 
on pest levels in a situation where private scouting services were available. 
They found that the value depended on the reliability of public information. 
If it were slightly less reliable than private information, public information 
still had a positive net value to farmers by virtue of its lower cost. However, 
below a certain level of reliability, public information had no value. 

Stefanou et al. (1986) presented a Bayesian model incorporating decisions 
on both whether to scout and whether to spray. They applied the model to 
cotton lygus bug in California and conducted wide-ranging sensitivity analy­
SIS. 

The studies discussed above all allowed for risk aversion on the part of 
decision makers. Bayesian decision theory can also be applied in a risk-neu-
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tral setting. For example Johnston and Price (1986) assumed risk neutrality 
in calculating the expected values of perfect and imperfect information in 
the problem of stored grain insect control. Cammell and Way (1977) applied 
a risk-neutral Bayesian model to estimate the value of forecasting black bean 
aphid populations. They found that basing treatment decisions on this 
information was substantially more profitable than routine treatment or no 
treatment. 

All of the farm level studies cited in this section treat the pesticide as a 
binary variable to be applied at the recommended rate or not at all. There 
does not seem to have been an application of Bayesian decision theory in 
which treatment dosage has been treated as a continuous variable. It is also 
notable that none of these studies examine a problem of weed control. It 
appears that a Bayesian approach to probability revision is highly applicable 
to problems of tactical weed control. 

STOCHASTIC EFFICIENCY 

In the Bayesian studies described above, particular utility functions were 
elicited or assumed for use in the analysis. If a specific utility function is 
used then it is possible to give an unambiguous ranking of all strategies 
under consideration. However, these rankings are not necessarily consistent 
with the preferences of individuals who do not have the exact utility 
function used in the analysis. 

Stochastic efficiency analysis is used to generate information which is 
applicable to broadly defined groups of decision makers. There are a 
number of different stochastic efficiency criteria used depending on how 
broadly defined a group of decision makers is being targeted: 
(a) first-degree stochastic dominance (FSD) applies to all decision makers 

who prefer more income to less (Quirk and Saposnik, 1962); 
(b) second-degree stochastic dominance (SSD) applies to those decision 

makers from (a) who are risk-averse (Hadar and Russell, 1969); 
(c) third degree stochastic dominance (TSD) applies to those decision 

makers from (b) whose degree of risk aversion decreases with increasing 
wealth (Whitmore, 1970); 

(d) stochastic dominance with respect to a function (SDWRF) is applicable 
to decision makers whose degree of risk aversion lies between that of two 
given utility functions. The breadth of the decision group can be varied 
by adjusting the functions which define the bounds (Meyer, 1977a, b). 

The greater generality of these techniques is only obtained at the cost of 
reduced specificity of their recommendations. In general they do not provide 
a unique ranking of the available strategies. Rather they identify groups of 
strategies which are 'efficient'. All elements of the efficient set of strategies 
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would be preferred to all strategies not in the efficient set by all members of 
the relevant group of decision makers. A potential problem with the tech­
nique is that the efficient set can be vary large, in some cases including most 
of the available strategy options. In this circumstance the information 
provided by the technique is of little value. Greater discriminatory power 
can be obtained by more closely defining the group of decision makers (e.g. 
using third degree, rather than second degree, stochastic dominance) andjor 
by using techniques such as convex set stochastic dominance (Cochran et al., 
1985). However, as Tolley and Pope (1988) observed, "second degree 
stochastic dominance has been easily implementable and continues to have a 
preeminent place in efficiency analysis" (p.694). Tolley and Pope noted that 
sampling errors in the estimation of probability distribution functions are 
usually not considered. They showed that if sampling errors are considered, 
the size of the efficient set is increased even further. 

Finally in this background information on stochastic efficiency, it should 
be noted that a very common method of identifying efficient strategies for 
risk-averse decision makers is E-V analysis (Markowitz, 1952). However E-V 
analysis has been widely criticised because it has very strong requirements 
for validity (Lambert and McCarl, 1985). Either returns must be distributed 
normally or the decision maker must have a quadratic utility function. The 
former is frequently not the case and the latter is generally dismissed as 
unrealistic because it implies increasing risk aversion with increasing wealth. 

The literature on the economics of pest control includes five applications 
of stochastic dominance: two in problems of insect control, one on a disease 
problem, one on weeds and one encompassing weed, pest and disease 
control. Between them, these studies have included most of the efficiency 
criteria described above (all except TSD). 

Papers by Greene et al. (1985) and Cochran et al. (1985) were described 
above in the discussion of whether pesticides are risk-reducing inputs. 
Greene et al. (1985) used SDWRF to rank various strategies for insect pest 
control in soybeans. They found that IPM strategies are efficient relative to 
prophylactic spraying for a wide range of risk attitudes. Cochran et al. 
(1985) used FSD, SSD, SDWRF and SDWRF with convex set stochastic 
dominance to evaluate strategies for Apple scab control. Again IPM strate­
gies were favoured. 

Moffitt et al. (1983) used FSD and SSD to evaluate a range of alternative 
citrus thrip control methods for inland Southern California orange groves. 
Of the eight strategies considered, six were in the FSD efficient set while 
three were in the SSD efficient set. 

Zacharias and Grube (1984) examined a range of crop rotations in 
conjunction with different weed control methods. They used SDWRF to 
examine strategy rankings for risk-averse, risk-neutral and risk-preferring 
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decision makers. Their conclusions about the effect on risk of using informa­
tion to adjust herbicide usage were the reverse of Antle's (1988a): 

Successively altering herbicides on an annual basis as compared to applying a single major 
herbicide was found to increase both net returns and risk" (p.l13). 

Finally Musser et al. (1981) compared the results of E-V analysis and 
FSD jSSD in ranking four sets of strategies for controlling weeds, pests and 
diseases in Georgia. They found that, in an E-V framework, both conven­
tional strategies and IPM strategies were efficient. IPM had higher mean net 
income but also higher variance of income and so was not clearly preferred 
to conventional control in an E-V framework. However IPM was found to 
be FSD over conventional strategies and so would be preferred by all 
decision makers regardless of their risk preferences. Note again that use of 
an IPM strategy was not found to reduce risk. Apparently in both of these 
studies, chemical sprays were risk-reducing and information was not suffi­
ciently risk reducing to offset the increase in risk resulting from lower 
chemical use. 

Studies employing an E-V approach to assessing risk in pest control have 
included Carlson (1970), King et al. (1986) and Lybecker et al. (1988). 

DYNAMIC PROGRAMMING 

Pest control in a crop or pasture may have either positive or negative 
carry-over effects in subsequent crops or pastures. For example, one of the 
advantages of including the legume crop, lupins, in rotation with cereals in 
Western Australia is that they allow use of the herbicide simazine for weed 
control, reducing the costs of grass weed competition and control in subse­
quent cereal crops. In general, the number of weed seeds with potential to 
germinate in a given year depends on the degree of control in previous years. 
A negative effect of weed control in crops is that the density of subsequent 
pastures can be reduced. Dynamic factors such as these may affect optimal 
weed control practices. 

A dynamic analytical framework is even more important for problems of 
pest and disease control. Reproduction rates are very high for these organisms 
so that infestation levels can increase rapidly. For most weeds, the life cycle 
takes at least a year so that population dynamics are not as essential to the 
economic problem as they are for pests and diseases. Techniques used to 
address dynamic problems include simulation (discussed in the next section) 
and DP. 

Christine Shoemaker stands out as the major contributor to the literature 
in the DP field, particularly for management of alfalfa weevil. In two of her 
papers, stochastic DP was used to assess the effect of risk on decision 
making (Shoemaker and Onstad, 1983; Shoemaker, 1984). In Shoemaker 
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(1984) the issues of multiple pesticide applications and carryover of pesticide 
from one season to the next were considered. As well as using more than one 
variable to determine whether to treat, she has also considered more than 
one type of treatment: pesticide application and biological control (Shoe­
maker and Onstad, 1983). 

Taylor and Burt (1984) used stochastic DP to determine whether or not to 
spray andjor fallow to control wild oats in spring wheat in the U.S.A. 
Pandey (1989) used deterministic and stochastic DP to determine optimal 
herbicide rates for control of wild oats in Western Australia. 

There has also been an application of stochastic DP to a problem of 
disease control. Zacharias et al. (1986) used stochastic DP to evaluate 
management strategies for controlling soybean cyst nematode. They. tested 
and upheld Antle's (1983) hypothesis that risk-neutral (i.e. expected profit­
maximising) decision makers can respond to risk if the problem is dynamic. 

In each of these studies, expected profit maximisation was assumed to be 
the objective; there was no allowance for risk aversion on the part of 
decision makers. 

The obvious advantage of DP as a solution method is its efficient 
handling of dynamics. The main disadvantage is the 'curse of dimensional­
ity': as the number of state variables in the model increases, the number of 
calculations required for solution increases exponentially and can become 
impractically large. Hence DP generally requires that complex systems be 
greatly simplified before they can be analysed. 

Another facet of DP which may be considered a disadvantage is that it 
can only handle discrete decision problems. Only discrete alternative strate­
gies can be evaluated, not continuous variables such as chemical dosage, 
although this can be overcome to a degree by considering a discrete number 
of chemical dosages as alternative strategies (e.g. Pandey, 1989). 

SIMULATION 

Simulation models of vanous kinds have been used in a number of 
different ways to evaluate the economics of pest, disease or weed control. 
Risk aversion has been analysed in a number of ways in these studies: by 
numerical solution of the expected utility maximisation problem (Lazarus 
and Swanson, 1983; Thornton and Dent 1984a, b), by E-V analysis (King et 
al., 1986) and by stochastic dominance approaches (Cochran et al., 1985; 
Greene et al., 1985). 

An advantage of simulation models is that they allow estimation of 
technical relationships which would be expensive, time-consuming or im­
practical to estimate from field experiments. A second advantage is that, 
relative to optimization techniques such as DP or mathematical program-
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ming, they allow more detailed representation of biological and technical 
components of the system (Shoemaker, 1984). A disadvantage is that in most 
economic applications they must be solved numerous times to reach a 
conclusion. For example, Shoemaker (1979) noted that to conduct a similar 
analysis to that carried out by a particular DP model, a simulation model 
would have to be solved 1 380 000 times. Simulation models do not imply 
use of a particular economic framework; rather they can be used to provide 
inputs to economic analyses of several types. 

There have been several studies in which simulation models were used to 
estimate probability distributions of technical parameters which were then 
used to estimate thresholds under risk. For example Thornton and Dent 
(1984a; b) described the design, operation and implementation of such a 
system for evaluating control of the fungal disease Puccini a hordei in New 
Zealand barley crops. The effect of climatic variation on the variance of 
profit was estimated by simulation and used to calculate thresholds under 
risk aversion. Their study was discussed earlier in the context of Bayesian 
decision theory. King et al. (1986) estimated thresholds for weed control in 
continuous corn ( Zea mays). Although they did not consider the impact of 
risk aversion on the decision, they estimated the variance of profit for 
different strategies. Lazarus and Swanson (1983) did allow for risk aversion 
in their evaluation of rootworm control in corn. Although their representa­
tion of biological relationships was relatively simplistic, this allowed them to 
analyse a more complex decision problem. They estimated not just pest 
thresholds at which chemical application was justified, but also a higher 
threshold at which it was worth rotating to another crop. 

A somewhat similar use of simulation models has been to estimate 
probability distributions of net returns for evaluation using stochastic domi­
nance techniques. Cochran et al. (1985) used this approach in their applica­
tion of convex set stochastic dominance to evaluation of various apple scab 
control strategies, as did Greene et al. (1985) in their use of generalised 
stochastic dominance to evaluate soybean integrated pest management 
strategies. 

ANALYTICAL/NUMERICAL APPROACHES 

In a number of applied studies of risk in pest control, direct numerical 
solution of theoretical models has been employed. Moffitt et al. (1984) 
numerically solved for the optimal parameters of their M-threshold model 
for corn nematode control under uncertainty about pest density. Osteen et 
al. (1988) conducted a similar study of corn nematode control which, unlike 
Moffitt et al. (1984), allowed for risk averse decision making. Liapis and 
Moffitt (1983) used the exponential utility moment generating function 
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approach to calculate certainty equivalents of alternative cotton pest control 
strategies under different degrees of risk aversion. The use of this approach 
was attacked by Scott et al. (1986) but defended by Liapis and Moffitt 
(1986). Lazarus and Swanson (1983) used numerical solution in conjunction 
with a simulation model to calculate pest density thresholds for application 
of pesticide and for switching crop rotation. 

The numerical solution techniques employed in these studies can be very 
useful when the problem is not amenable to analytical solution or to 
solution by common optimization techniques such as DP or LP. This can be 
the case, for example, when the profit function has more than one local 
optimum, when it has several state variables or when close links with a 
simulation model are desired. 

In a number of studies relevant to pesticide application, Lichtenberg and 
Zilberman have used marginal analysis to derive optimal regulatory stan­
dards for reducing the probability of negative effects on health (Lichtenberg 
and Zilberman 1988a, 1988b; Lichtenberg et al. 1988). In each of these 
analyses allowance was made for "aversion to uncertainty." No other 
studies of public or social pest control problems have considered risk except 
by conducting sensitivity analysis (e.g. Pannell, 1984; Denne, 1988). 

RELEVANCE FOR DEVELOPED AND DEVELOPING COUNTRIES 

Almost all studies cited in this review deal with problems in developed 
countries. However the review also has relevance for developing countries; 
the biological and economic relationships are similar although some parame­
ters differ. Particularly important for this topic is the higher level of absolute 
risk aversion found amongst farmers in developing countries (Binswanger, 
1980; Hamal and Anderson, 1982; Antle, 1987) compared to their counter­
parts in developed countries (Bond and Wonder, 1980; Bardsley and Harris, 
1987; Myers, 1989). (These studies find similar ranges for partial risk 
aversion in developed and developing countries, and since incomes are lower 
in developing countries this implies that they have higher absolute risk 
aversion). Given the conventional wisdom about pest control reducing risk 
we would expect farmers in developing countries to adopt pesticides with 
enthusiasm. However if the conclusion in this review is correct and pesti­
cides do not always reduce risk we should not be surprised if adoption of 
pesticides is no greater than for other inputs such as chemical fertilizers. 

Secondly, if information about pest density increases in value with 
increasing risk aversion (as found by Antle 1988a, b), we would expect 
pesticides to be more acceptable to farmers in developing countries if they 
are promoted as part of an IPM package involving scouting for pests before 
making spray decisions. However, further work is needed in this area as 
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Thornton and Dent (1984a, b) found decreasing information value with 
increasing risk aversion. 

CONCLUSION 

In the course of this review, some commonly made assertions about the 
influence of risk in pest control have been challenged. In addition some 
gaps, unresolved issues and possible methodological deficiencies in the 
existing literature have been identified. 

There are a number of sources of uncertainty which affect decision 
making for pest control. It was concluded that for some of these sources of 
uncertainty (e.g. pest density, yield loss per pest, pesticide effectiveness) 
pesticide application acts to reduce risk. However, for others (e.g. pesticide 
damage to crops, pest-free crop yield, output price) pesticide application can 
increase risk. Thus the validity of the usual assumption that pesticides 
reduce risk depends on the relative importance of these different sources of 
uncertainty. Thus it is important to consider more sources of risk than the 
ones most commonly considered: uncertainty about pest density and pest 
mortality. 

It was noted that, due to nonlinearities in the biological relationships, risk 
can affect pesticide decisions even if the farmer's objective is to maximise 
expected profit. Evidence in the literature indicates that the optimal level of 
pesticide use for risk-neutral decision makers is lower under uncertainty. 
This issue has received attention with regard to weeds but has been relatively 
neglected for insects and diseases. On the other hand, applied studies of the 
impact of risk aversion on pesticide decisions have been conducted for 
insects and diseases (albeit for a limited range of sources of uncertainty) but 
not for weeds. 

Information about the cropjpestjpesticide system not only increases 
expected profits but can also be a very useful source of risk reduction in its 
own right. On the other hand some studies have indicated that use of 
information results in higher levels of risk. The impact on risk of informa­
tion use needs further investigation to resolve this conflicting evidence. So 
far, studies of information use in pest control have focused on information 
about pest density. Attention should also be given to information related to 
other variables such as pesticide efficacy and pest-free yield. 

The review has covered a wide range of analytical techniques, with 
different strengths and weaknesses, which can be used to analyse risk in 
decisions on control of pests. Regardless of the technique used, virtually all 
published applied studies have treated the pesticide as a binary variable to 
be used at recommended rates or not at all. There appears to be scope for 
analysing risk and risk aversion when input level is treated as a continuous 
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variable. With increasing concern about externalities from high pesticide use 
(e.g. through spray drift, chemical residues in food, resistance development) 
the economics of reducing chemical rates, including its impact on risk, is a 
topic ripe for analysis by agricultural economists (Pannell, 1988a, b, 1989). 
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